Rejection Based Face Detection

Michael Elad*

Scientific Computing and Computational Mathematics

Stanford University

The Computer Vision Workshop March 18th, 2002

* Collaboration with Y. Hel-Or and R. Keshet

Introduction of the Problem and Basic Considerations

1. The Task

Input image

Face (target) Detector

Comments:

1. Extension to color

2. Faces vs. general targets

2. Requirements

Detect frontal & vertical faces:

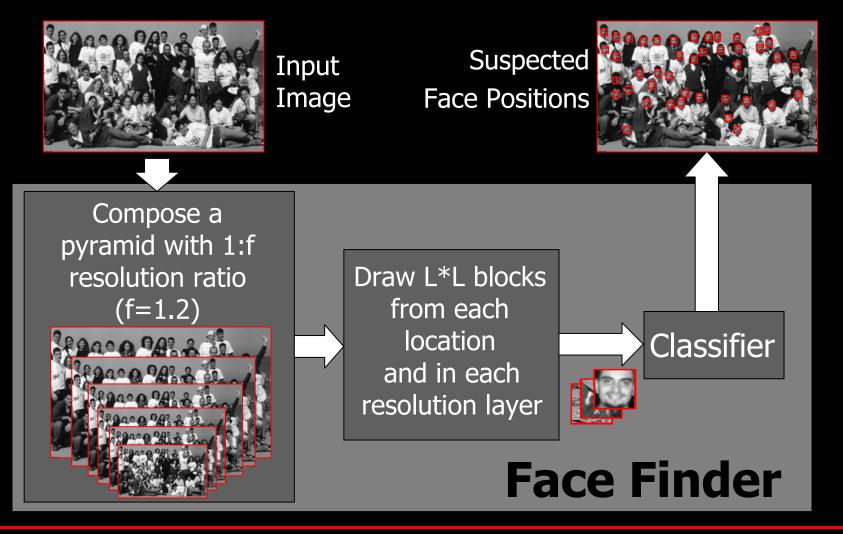
- All spatial position, all scales
- Any person, any expression
- Robust to illumination conditions
- Old/young, man/woman, hair, glasses.

Design Goals:

- Fast algorithm
- Accurate (False Positive / False Negative)

3. Frontal-Vertical Faces

4. Scale-Position



5. Classifier Design

A classifier is a parametric (J parameters) function $C(\underline{Z}, \underline{\theta})$ of the form

$$\mathsf{C}\{\underline{\mathsf{Z}},\underline{\theta}\}:\ \mathfrak{R}^{\mathsf{L}^{\mathsf{Z}}}\times\mathfrak{R}^{\mathsf{J}}\to\{-1,\!+1\}$$

Need to answer two questions:

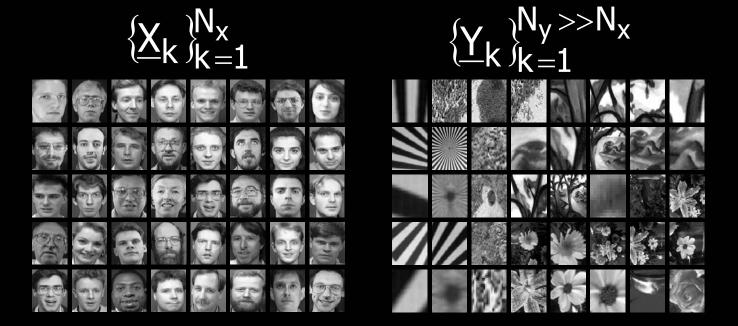
- Q1: What parametric form to use? Linear or nonlinear? What kind of non-linear? Etc.
- Q2: Having chosen the parametric form, how do we find appropriate set of parameters $\underline{\theta}$?

6. Algorithm Complexity

Searching faces in a given scale, for a 1000 by 2000 pixels image, the classifier is applied 2e6 times

(Q1) Choosing the parametric form: keep in mind that the algorithm's complexity is governed by the classifier complexity

7. Training by Examples



(Q2) Finding Suitable Parameters: $\forall 1 \le k \le N_X, C\{\underline{X}_k, \underline{\theta}\} = +1$ $\forall 1 \le k \le N_Y, C\{\underline{Y}_k, \underline{\theta}\} = -1$

Geometric Interpretation $C(\underline{Z},\underline{\theta})$ is to drawing a separating manifold between the two classes

SOME Previous Work

1. Neural Networks

- \Box Choose C(Z, θ) to be a Neural Network (NN).
- □ Add prior knowledge in order to:
 - Control the structure of the net,
 - Choose the proper kind (RBF ?),
 - Pre-condition the data (clustering)
- ❑ Representative Previous Work:
 - Juel & March (1996), and
 - Rowley & Kanade (1998), and
 - Sung & Poggio (1998).

NN leads to a Complex Classifier

2. Support Vector Machine

- \Box Choose C(Z, θ) to be a based on SVM.
- □ Add prior knowledge in order to:
 - Prune the support vectors,
 - Choose the proper kind (RBF, Polynomial ?),
 - Pre-condition the data (clustering)
- ❑ Representative Previous Work:
 - Osuna, Freund, & Girosi (1997),
 - Bassiou et.al.(1998),
 - Terrillon et. al. (2000).

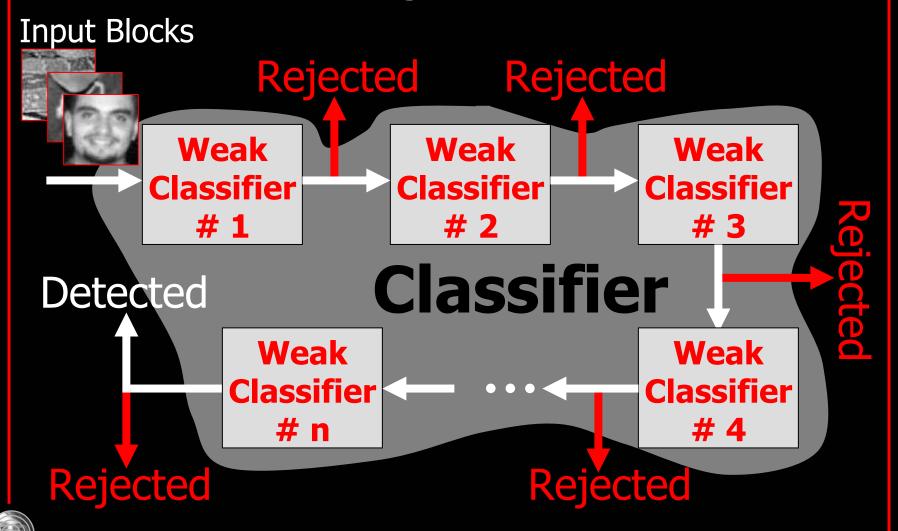
SVM leads to a Complex Classifier

3. Rejection Based

- □ Build $C(\underline{Z}, \underline{\theta})$ as a combination of weak (simple to design and activate) classifiers.
- Apply the weak classifiers sequentially while rejecting non-faces.
- □ Representative Previous Work:
 - Rowley & Kanade (1998)
 - Elad, Hel-Or, & Keshet (1998),
 - Amit, Geman & Jedyank (1998),
 - Osdachi, Gotsman & Keren (2001), and
 - Viola & Jones (2001).

Fast (and accurate) classifier

4. The Rejection Idea



5. Supporting Theory

□(Ada) Boosting – Freund & Schapire (1990-2000) – Using a group of weak classifiers in order to design a successful complex classifier.

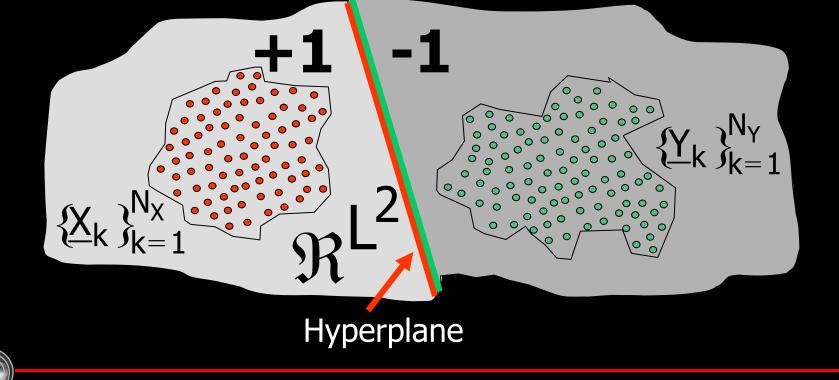
- Decision-Tree Tree structured classification (the rejection approach here is a simple dyadic tree).
- Rejection Nayar & Baker (1995) Application of rejection while applying the sequence of weak classifiers.

□ Maximal Rejection – Elad, Hel-Or & Keshet (1998) – Greedy approach towards rejection.

Maximal Rejection Classification

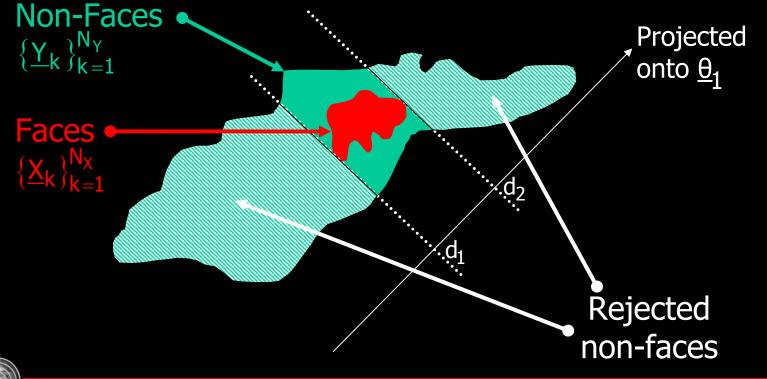
1. Linear Classification (LC)

We propose LC as our weak classifier: $C\{\underline{Z}, \underline{\theta}\} = sign\{\underline{Z}^{\mathsf{T}}\underline{\theta} - \theta_0\}$

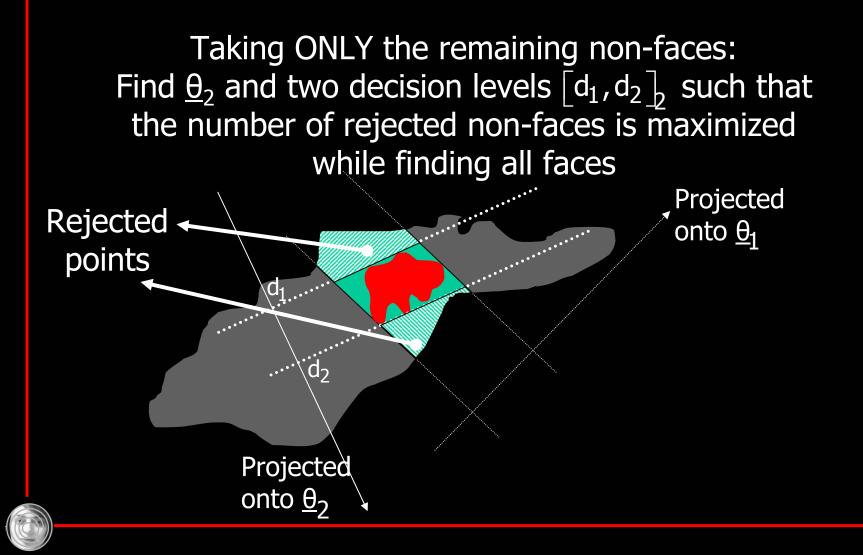


2. Maximal Rejection

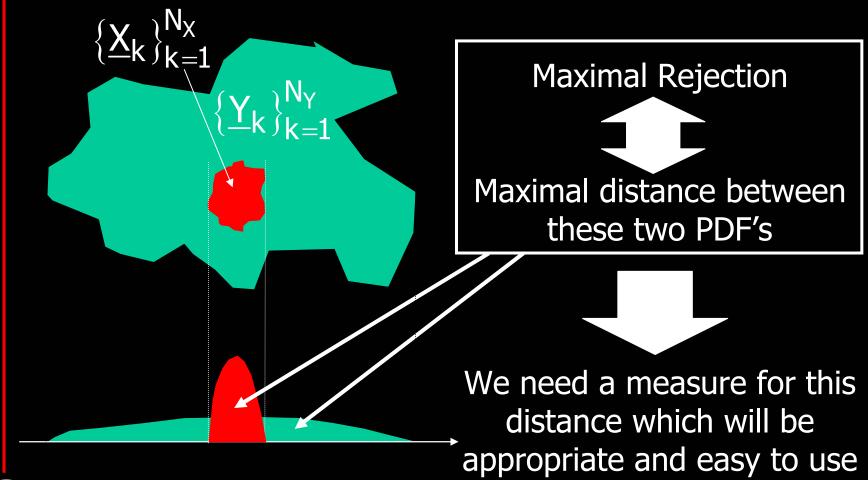
Find $\underline{\theta}_1$ and two decision levels $[d_1, d_2]_1$ such that the number of rejected non-faces is maximized while finding all faces



3. Iterations



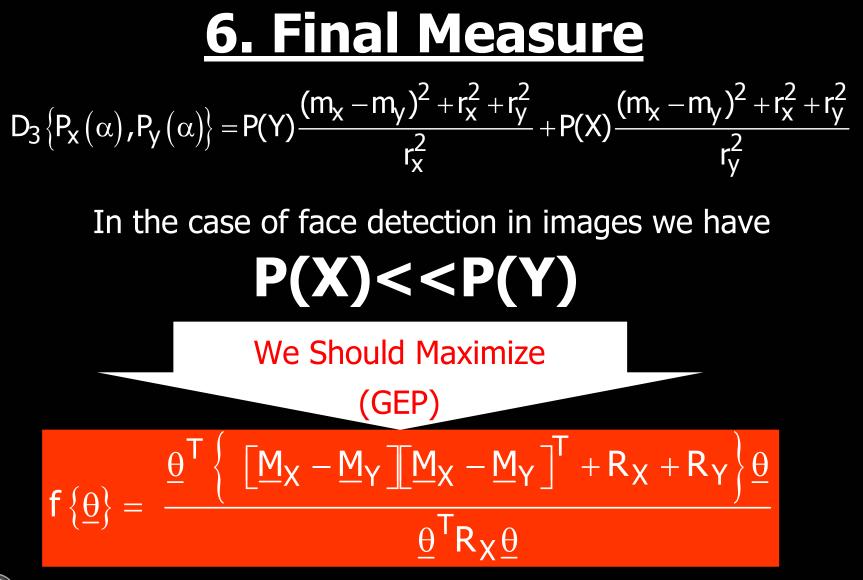
4. Maximizing Rejection



<u>5. One Sided Distance</u>

Define a distance between a point and a PDF by

This distance is asymmetric !! It describes the average distance between points of Y to the X-PDF, $P_X(\alpha)$.



7. Different Method 1

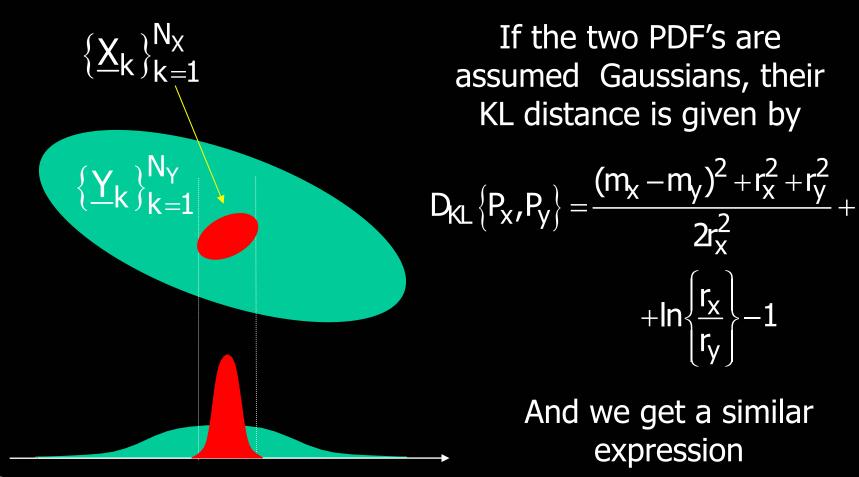
Maximize the following function:

Maximize the distance between all the pairs of [face, non-face]

 $\frac{\underline{\theta}^{\mathsf{T}} \mathbf{R} \underline{\theta}}{\underline{\theta}^{\mathsf{T}} \mathbf{Q} \underline{\theta}} = \frac{\mathbf{The same}}{\mathbf{Expression}}$

Minimize the distance between all the pairs of [face, face]

8. Different Method 2



9. Limitations

- The discriminated zone is a parallelogram. Thus, if the faces set is non-convex^{*}, zero false alarm discrimination is impossible
 Solution: Second layer.
- Even if the faces-set is convex, convergence to zero falsealarms is not guaranteed.
 – Solution: Clustering the nonfaces.

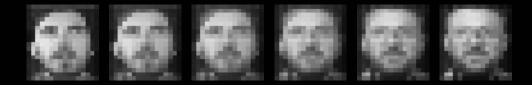
* More accurately, if in the convex hull of the face set there are non-faces

8. Convexity?

Can we assume that the Faces set is convex?

- We are dealing with frontal and vertical faces only

- We are dealing with a low-resolution representation of the faces



- Are they any non-faces that are convex combination of faces ?

Chapter 4

Results & Conclusions

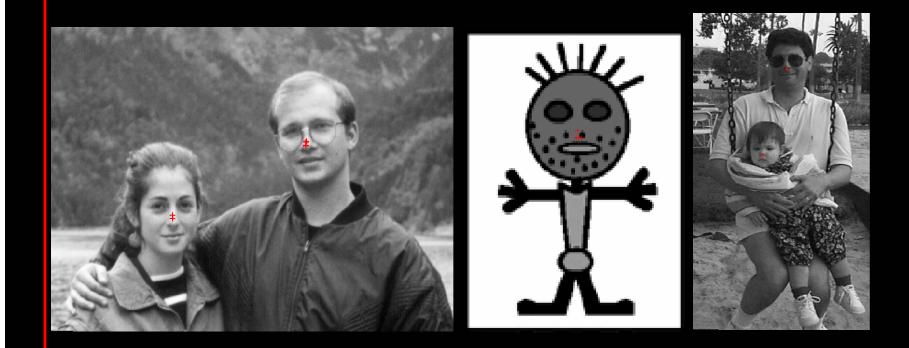
1. Details

- □ Kernels for finding *faces* (15.15) and *eyes* (7.15).
- Searching for eyes and faces sequentially very efficient!
- □ Face DB: 204 images of 40 people (ORL-DB after some screening). Each image is also rotated ±5° and vertically flipped to produce 1224 Face images.
- Non-Face DB: 54 images All the possible positions in all resolution layers and vertically flipped - about 40.10⁶ non-face images.
- □ Core MRC applied (no second layer, no clustering).

2. Results - 1

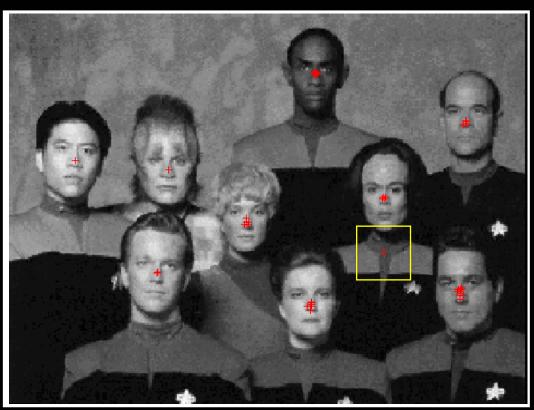
Out of 44 faces, 10 faces are undetected, and 1 false alarm (the undetected faces are circled - they are either rotated or strongly shadowed)

3. Results - 2



All faces detected with no false alarms

4. Results - 3



All faces detected with 1 false alarm (looking closer, this false alarm can be considered as face)

5. More Details

- A set of 15 kernels the first typically removes about 90% of the pixels from further consideration. Other kernels give a rejection of 50%.
- The algorithm requires slightly more that one convolution of the image (per each resolution layer).

□ Compared to state-of-the-art results:

- Accuracy Similar to (slightly inferior in FA) to Rowley and Viola.
- Speed Similar to Viola much faster (factor of ~10) compared to Rowley.

6.Conclusions

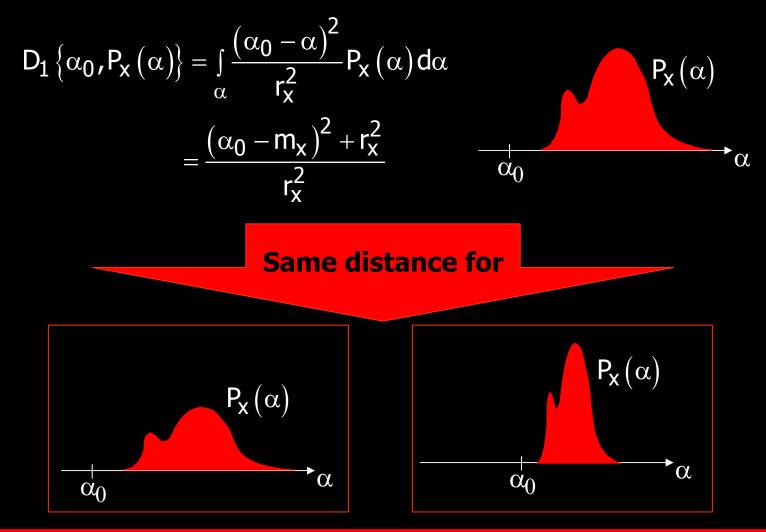
- □ Rejection-based classification effective and accurate.
- Basic idea group of weak classifiers applied sequentially followed each by rejection decision.
- Theory Boosting, Decision tree, Rejection based classification, and MRC.
- □ The Maximal-Rejection Classification (MRC):
 - Fast in close to one convolution we get face detection,
 - Simple easy to train, apply, debug, maintain, and extend.
 - Modular to match hardware/time constraints.
 - Limitations Can be overcome.

□ More details – <u>http://www-sccm.stanford.edu/~elad</u>

7. More Topics

- 1. <u>Why scale-invariant measure?</u>
- 2. <u>How we got the final distance expression?</u>
- 3. <u>Relation of the MRC to Fisher Linear Discriminant</u>
- 4. <u>Structure of the algorithm</u>
- 5. <u>Number of convolutions per pixel</u>
- 6. <u>Using color</u>
- 7. Extending to 2D rotated faces
- 8. Extension to 3D rotated faces
- 9. <u>Relevancy to target detection</u>
- 10. Additional ingredients for better performance

<u>1. Scale-Invariant</u>

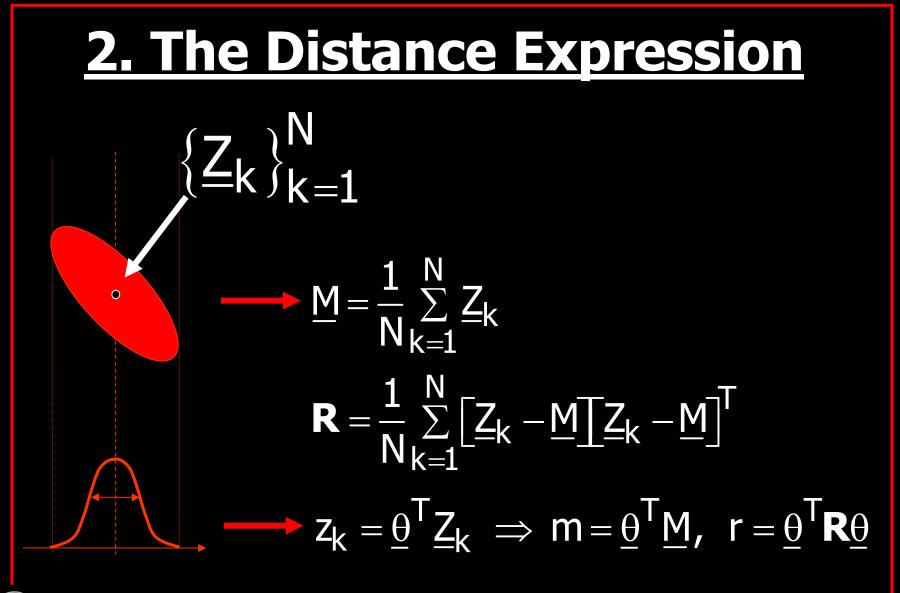


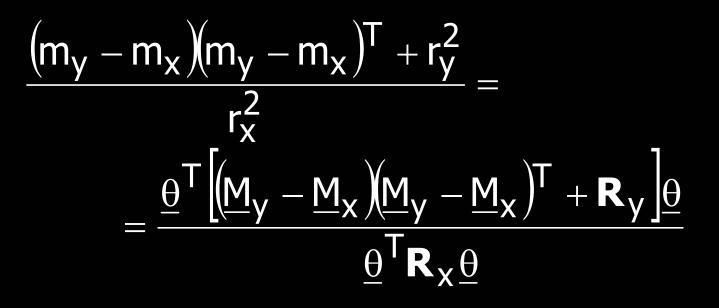
$$f\left\{\underline{\theta}\right\} = \frac{\underline{\theta}^{\mathsf{T}}\left\{\left[\underline{\mathsf{M}}_{\mathsf{X}} - \underline{\mathsf{M}}_{\mathsf{Y}}\right]\!\!\left[\underline{\mathsf{M}}_{\mathsf{X}} - \underline{\mathsf{M}}_{\mathsf{Y}}\right]\!\!^{\mathsf{T}} + \mathsf{R}_{\mathsf{X}} + \mathsf{R}_{\mathsf{Y}}\right\}\!\underline{\theta}}{\underline{\theta}^{\mathsf{T}}\mathsf{R}_{\mathsf{X}}\underline{\theta}}$$

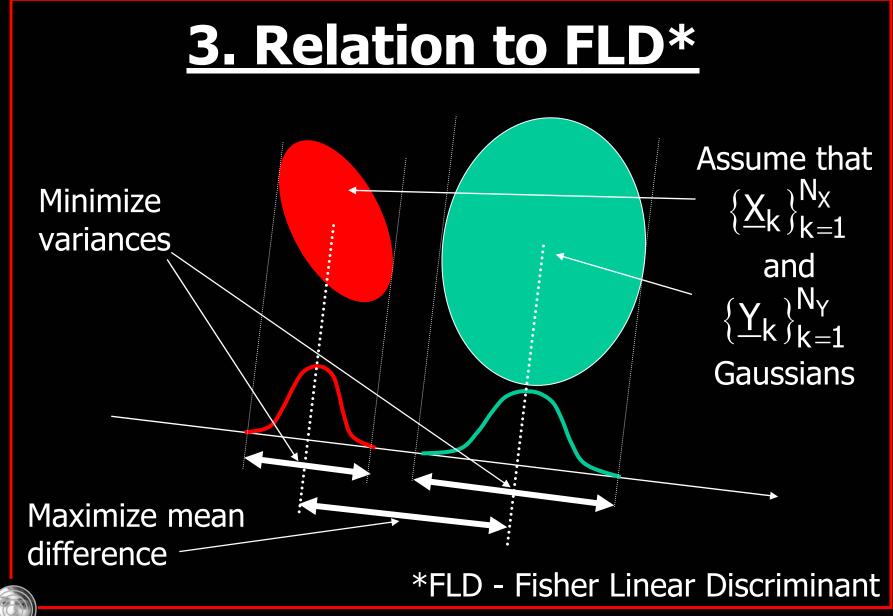
In this expression:

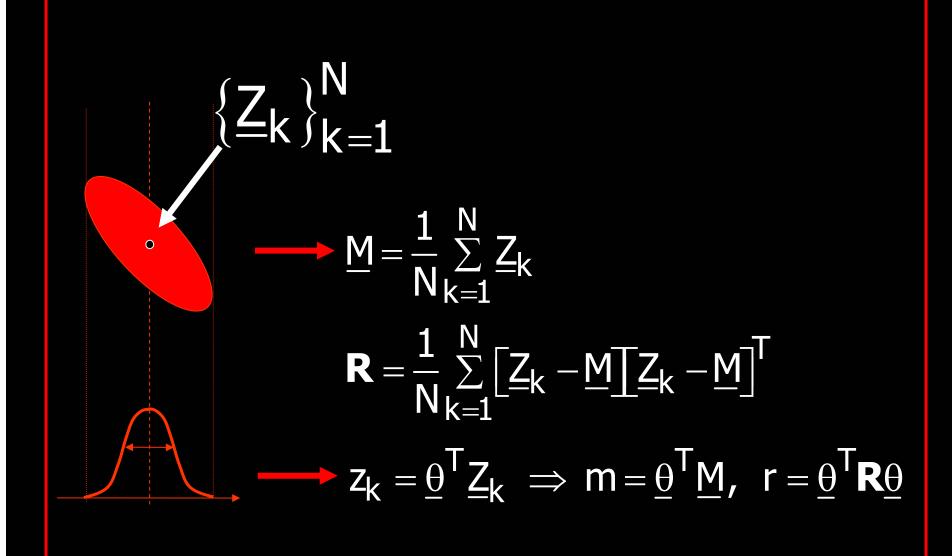
- 1. The two classes means are encouraged to get far from each other
- 2. The Y-class is encouraged to spread as much as possible, and
- 3. The X-class is encouraged to condense to a nearconstant value

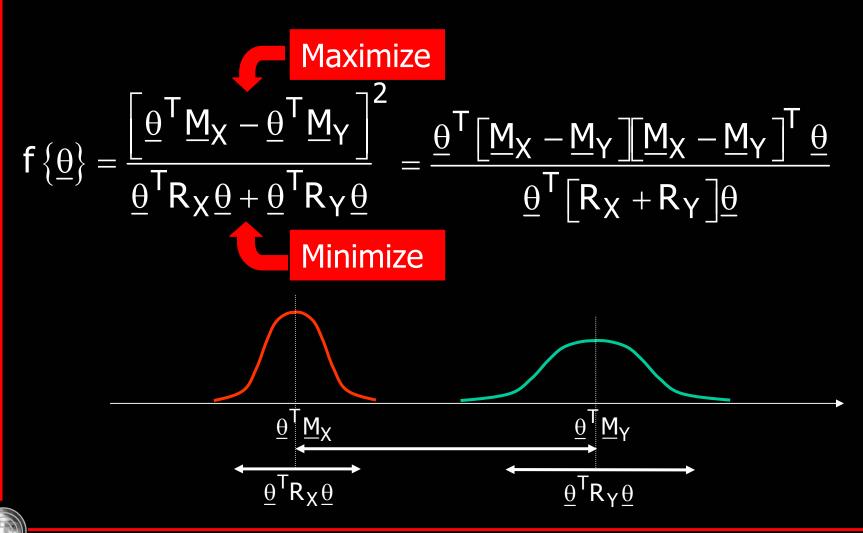
Thus, getting good rejection performance.











In the MRC we got the expression for the distance

$$P(Y) \frac{(m_{x} - m_{y})^{2} + r_{x}^{2} + r_{y}^{2}}{r_{x}^{2}} + P(X) \frac{(m_{x} - m_{y})^{2} + r_{x}^{2} + r_{y}^{2}}{r_{y}^{2}}$$

$$If P(X) = P(Y) = 0.5 \text{ we maximize}$$

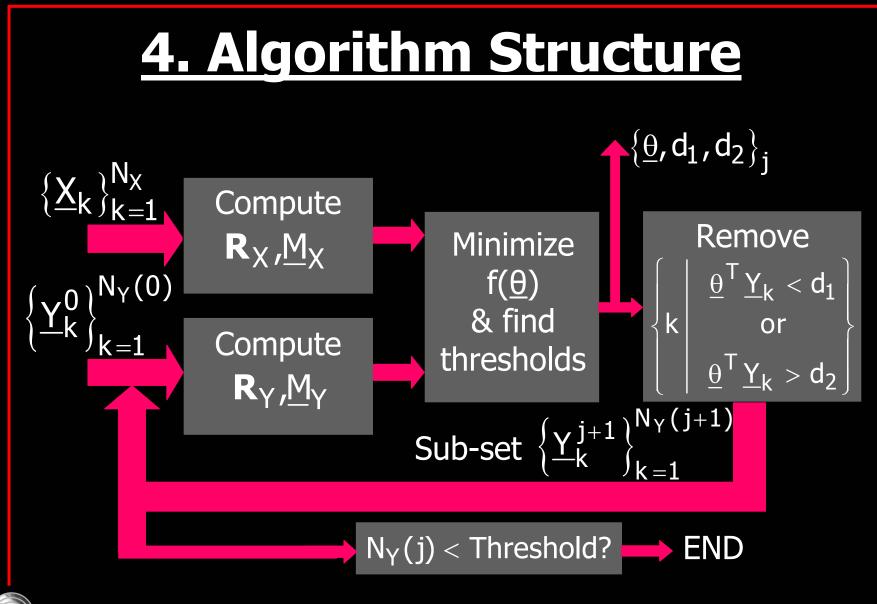
$$\frac{(m_{x} - m_{y})^{2} + r_{x}^{2} + r_{y}^{2}}{r_{x}^{2}} + \frac{(m_{x} - m_{y})^{2} + r_{x}^{2} + r_{y}^{2}}{r_{y}^{2}}$$

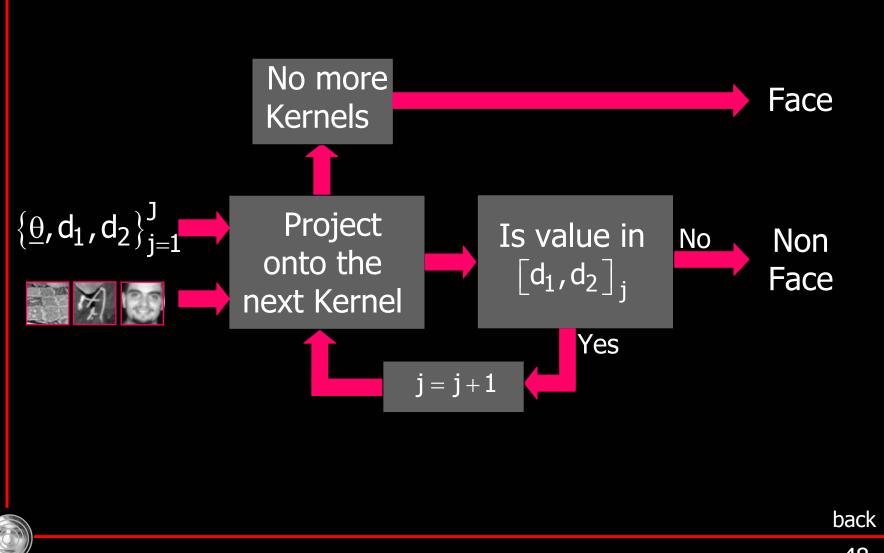
The distance of the Y pointsThe distance of the X pointsto the X-distributionto the Y-distribution

$$\frac{(m_x - m_y)^2 + r_x^2 + r_y^2}{r_x^2} + \frac{(m_x - m_y)^2 + r_x^2 + r_y^2}{r_y^2}$$

Minimize the inverse of the two expressions (the inverse represent the proximity)

$$Min \ \frac{r_x^2}{\left(m_x - m_y\right)^2 + r_x^2 + r_y^2} + \frac{r_y^2}{\left(m_x - m_y\right)^2 + r_x^2 + r_y^2} = Min \ \frac{r_x^2 + r_y^2}{\left(m_x - m_y\right)^2}$$





5. Counting Convolutions

- Assume that the first kernel rejection is $0 < \alpha < 1$ (I.e. α of the incoming blocks are rejected).
- Assume also that the other stages rejection rate is 0.5.
- Then, the number of overall convolutions per pixel is given by

$$\alpha \cdot 1 + (1 - \alpha) \sum_{k=2}^{\infty} k \cdot 0.5^{k-1} = 3 - 2\alpha = \begin{cases} \sim 1 & \alpha = 0.99 \\ 1.2 & \alpha = 0.9 \\ 1.8 & \alpha = 0.6 \end{cases}$$

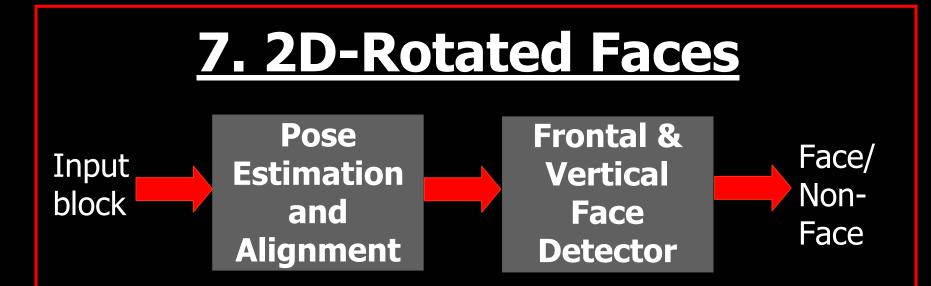
6. Using Color

Several options:

Trivial approach – use the same algorithm with blocks of L-by-L by 3.

Exploit color redundancy – work in HSV space with decimated versions of the Hue and the Saturation layers.

Rejection approach – Design a (possibly non-spatial) color-based simple classifier and use it as the first stage rejection.



Remarks:

- 1. A set of rotated kernels can be used instead of actually rotating the input block
- 2. Estimating the pose can be done with a relatively simple system (few convolutions).

8. 3D-Rotated Faces

A possible solution:

- Cluster the face-set to same-view angle faces and design a Final classifier for each group using the rejection approach
- 2. Apply a pre-classifier for fast rejection at the beginning of the process.
- 3. Apply a mid-classifier to map to the appropriate cluster with the suitable angle

9. Faces vs. Targets

Treating other targets can be done using the same concepts of

- Treatment of scale and location
- Building and training sets
- Designing a rejection based approach (e.g. MRC)
- Boosting the resulting classifier

□ The specific characteristics of the target in mind could be exploited to fine-tune and improve the above general tools.

10. Further Improvements

- Pre-processing linear kind does not cost
- Regularization compensating for shortage in examples
- Boosted training enrich the non-face group by finding false-alarms and train on those again
- Boosted classifier Use the sequence of weak-classifier outputs and apply yet another classifier on them –use ada-boosting or simple additional linear classifier
- Constrained linear classifiers for simpler classifier
- Can apply kernel methods to extend to non-linear version

