
1

Dual Graph Regularized Dictionary Learning
Yael Yankelevsky and Michael Elad, Fellow, IEEE

Abstract—Dictionary Learning (DL) techniques aim to find
sparse signal representations that capture prominent character-
istics in a given data. Such methods operate on a data matrix
Y ∈ RN×M , where each of its columns yi ∈ RN constitutes a
training sample, and these columns together represent a sampling
from the data manifold. For signals y ∈ RN residing on weighted
graphs, an additional challenge is incorporating the underlying
geometric structure of the data domain into the learning process.
In such cases, the topological graph structure may provide a
crucial interpretation for the columns, while the data manifold
itself may also possess a low-dimensional intrinsic structure that
should be taken into account.

In this work we propose a novel dictionary learning algorithm
for graph signals that simultaneously takes into account the
underlying structure in both the signal and the manifold domains.
Specifically, we require that the dictionary atoms are smooth
with respect to the graph topology, as encapsulated by the graph
Laplacian matrix. Furthermore, we propose to learn this graph
Laplacian within the dictionary learning process, adapting it to
promote the desired smoothness. Utilizing the manifold structure,
we propose to encourage smoothness of the sparse representations
on the data manifold in a similar manner. Both these smoothness
forces implicitly enhance the learned dictionary. The efficiency of
the proposed approach is demonstrated on synthetic examples as
well as on real data, showing that it outperforms other dictionary
learning methods in typical problems such as resistance to noise
and data completion.

Index Terms—Dictionary learning, graph Laplacian, graph
signal processing, sparse approximation, manifold structure, dual
graph regularization.

I. INTRODUCTION

The era of big data introduces new challenges to classic
signal processing applications. In numerous problems, the sig-
nals to be handled have an underlying complicated geometric
topology, which could be represented using a graph structure.
Examples of such signals can be found in applications of
transportation, energy, social networks, sensor networks, and
more [1].

A popular and highly effective approach taken for solving
common signal processing problems such as denoising, data
completion etc. is sparse representation of the signals over a
trained dictionary. In this paper we shall be focusing on pro-
cessing of graph-structured signals via sparse representation
modeling and learned dictionaries.

Seeking a representative dictionary for graph signals, it is
possible to ignore the graph structure and view the signals
as vectors in RN , similarly to signal representation in the
Euclidean domain. Then, dictionary learning approaches that
adapt the dictionary to a set of signal realizations can be
applied, such as the Method of Directions (MOD) [2] or K-
SVD [3]. The basic dictionary learning problem is formulated
as

arg min
D,X
‖Y −DX‖2F s.t. ‖xi‖0 ≤ T ∀i, (1)

where Y ∈ RN×M is the data matrix, D ∈ RN×K is an
overcomplete dictionary, X ∈ RK×M is the sparse coefficients
matrix, T is a sparsity threshold and xi denotes the i-th
column of the matrix X . However, these methods ignore
dependencies arising from the irregular data domain, and
so the learned dictionaries will neither possess an efficient
structure nor explicitly incorporate the underlying topology.
As some signal characteristics, such as smoothness, depend
on the topology of the graph on which the signals reside,
this topology should be accounted for in order to identify and
exploit structure in the data. This is especially true in cases
of incomplete, insufficient or corrupted data. It is therefore
desired to capitalize on the prior knowledge provided by the
underlying graph structure when extending dictionary learning
methods to signals residing on weighted graphs.

Along this line of reasoning, analytic dictionaries for graph
signals can be proposed, generalizing transform-based dictio-
naries from the Euclidean domain to the graph settings. These
include the graph Fourier transform [4], windowed graph
Fourier transform [5], diffusion wavelets [6], and spectral
graph wavelets [7], among others. Such dictionaries exhibit
structure derived from the graph and are less costly to apply,
yet they are less adapted to the data.

To bridge the gap between analytic and dictionary learning
approaches, recent work dealing with dictionary learning for
graph signals imposes structure on the trained dictionary.
The enforced structure is derived from the graph topology
while its parameters are learned from the data. Zhang et
al. [8] suggest that the dictionary should be a collection
of shift-invariant filters or sub-dictionaries. Namely, each
structured sub-dictionary has the form Ds = χΛsχ

T where
χ is the eigenbasis of the graph Laplacian L and Λs � 0 are
some diagonal matrices. Thanou et al. [9], [10] further restrict
the dictionary to a polynomial structure, Ds =

∑K
k=0 αs,kLk,

with additional constraints imposed in order to control the
frequency behavior of the kernels.

The graph considered thus far captures the internal structure
of each signal y ∈ RN , and so describes the relation between
the rows of the data matrix Y . In this context, another graph
structure can be considered, describing the relations between
columns of Y . To limit terminology confusion, we shall
henceforth refer to this graph as the data manifold and denote
its Laplacian matrix by Lc. This manifold may also possess
a low-dimensional intrinsic structure that should be taken into
account.

Various manifold learning methods have been proposed to
explore this structure (e.g. [11], [12], [13]), their common
assumption being that if two data points are close in the
intrinsic data manifold, then their representations in any other
domain are close as well. In recent years, the data manifold has

2

become prevalent in image processing for describing pairwise
relationships between image pixels or patches (see e.g. [14],
[15], [16], [17], [18], [19], [20]). The manifold Laplacian Lc is
then used as a regularizer, promoting similar pixels to remain
similar in the sparse embedded domain.

Note that smoothness of a graph signal f can be measured
in terms of a quadratic form of the graph Laplacian

fTLf =
1

2

∑
i,j

Wij [f(i)− f(j)]
2 (2)

which is merely a sum of squared differences between the
signal entries, weighted by the corresponding graph weights.
Using this notion, the manifold regularized sparse coding, as
used for example by [21], [16], reads:

min
X
‖Y −DX‖2F + βTr(XLcX

T) s.t. ‖xi‖0 ≤ T ∀i. (3)

The added regularization limits the degree of freedom in
the sparse coding task and favors solutions preserving the
manifold geometry. A similar approach was taken by [22], [19]
by applying the Laplacian regularization on the reconstructed
data DX rather than on the sparse representation X .

Nonetheless, requiring that the obtained sparse representa-
tions X vary smoothly along the geodesics of the data mani-
fold, Equation (3) promotes inter-signal smoothness. When the
signals themselves reside on a graph or network, we propose
to require intra-signal smoothness in a similar manner.

In this paper, we therefore account for the graph structure
by an additional Laplacian regularization term applied to the
dictionary D:

min
D,X
‖Y −DX‖2F + αTr(DTLD) + βTr(XLcX

T)

s.t. ‖xi‖0 ≤ T ∀i,
(4)

where L ∈ RN×N is the graph Laplacian. The two regular-
ization terms have similar forms, but serve totally different
purposes. Requiring that the dictionary atoms vary smoothly
along the graph geodesics implies smoothness of any signal
represented over this dictionary. The additional smoothness
constraint serves the purpose of reducing the degrees of
freedom given to the learning algorithm, as does the explicit
dictionary structure proposed by [8] and [10], yet it is simpler
and less restrictive.

Furthermore, our proposed scheme suggests the additional
ability of learning the graph topology, encapsulated by the
matrix L, within the dictionary learning process. This is
important in cases where this structure is not given, yet
known to exist.

To summarize, motivated by the above discussion, in this
paper we propose a dual regularized dictionary learning prob-
lem that incorporates the graph topology via a quadratic
smoothness constraint imposed on the dictionary atoms, in
addition to a manifold smoothness regularization applied to
the sparse codes. The latter of these regularizations alters the
sparse coding problem and thus calls for the development of
a new pursuit technique, as described in detail in Section V.
Furthermore, we propose to learn the graph Laplacian L within
the dictionary learning process, adapting it to promote the

desired smoothness. All these joint forces implicitly enhance
the learned dictionary.

A potential application for the proposed approach is graph
signal recovery from noisy or incomplete measurements.
Consider for example a temperature sensor network. In this
case, the rows and columns of the data matrix Y correspond
to the measurements location and time, respectively. Since
the temperature is expected to change gradually in both time
and space, the proposed graph smoothness constraints seem
very natural in both dimensions, and so incorporating the
temporal and spatial structure of the data in our scheme may
improve the recovery performance in cases of malfunctioning
sensors. Indeed, we shall come back to this and other data
sources in Section VI, demonstrating the effectiveness of the
proposed learning scheme in the context of recovery from
noisy and missing measurements.

The rest of the paper is organized as follows: Section II
delineates the background and recalls some basic definitions
on graphs. Section III presents our basic regularized dictionary
learning approach, and Section IV suggests an extension that
adapts the graph Laplacian along the learning process. The
complete scheme that regularizes the sparse codes as well as
the dictionary atoms is then described in Section V. Experi-
mental results are presented and discussed in Section VI, cov-
ering synthetic and true-data applications. Finally, we conclude
in Section VII.

II. PRELIMINARIES

A weighted and undirected graph G = (V,E,W) consists
of a finite set V of N vertices (or nodes), a finite set E ⊂
V × V of weighted edges, and a weighted adjacency matrix
W . The entry Wij represents the weight of the edge (vi, vj) ∈
E, reflecting the similarity between the nodes vi and vj . In
general, Wij is non-negative, and Wij = 0 if vi, vj are not
directly connected in the graph. Additionally, for undirected
weighted graphs, Wij = Wji. The graph degree matrix ∆ is
the diagonal matrix having ∆ii =

∑
jWij . ∆ii is the degree

of the node vi, measuring the sum of weights in the direct
neighborhood of that node. The combinatorial graph Laplacian
matrix L is then defined to be L = ∆ −W . A normalized
version of the Laplacian can also be defined in the form L =
∆−1/2L∆−1/2 = I − ∆−1/2W∆−1/2. While we note that
other normalized versions of the Laplacian are sometime used,
we focus on this symmetric form for its desired properties.

Given a topological graph, we refer to graph signals as
functions f : V → R assigning a real value to each graph
node. Any graph signal is therefore a vector in RN .

When the weight matrix W is not naturally defined by
an application, a common construction is via a thresholded
Gaussian kernel. Put explicitly,

Wij =

{
exp

(
−d2(i,j)

2σ2

)
if d(i, j) ≤ κ

0 otherwise,
(5)

for some parameters σ and κ. The distance function d(i, j)
may represent a physical distance between nodes vi and vj , or
the Euclidean distance between two feature vectors describing

3

these nodes (e.g. sensor locations). Alternatively, d(i, j) may
be data-dependent and measure the distance between the data
signals evaluated at the nodes vi and vj . This is the case
in the Non-Local Means (NLM) filter [23], for example. A
combination of external and internal features is also possible,
as suggested for the bilinear filter [24]. Besides the Gaussian
kernel, another common construction method is to connect
each node with its k-nearest neighbors based on either the
physical or the feature space distance [1]. We further touch
upon this point in Section VI.

III. GRAPH REGULARIZED DICTIONARY LEARNING

We start by incorporating the internal signal structure into
the training process, leading to the following graph regularized
dictionary learning problem:

arg min
D,X
‖Y −DX‖2F + αTr(DTLD)

s.t. ‖xi‖0 ≤ T ∀i,
(6)

where Y ∈ RN×M is the data matrix, D ∈ RN×K is an over-
complete dictionary, X ∈ RK×M is the sparse codes matrix,
L ∈ RN×N is the graph Laplacian, T is a sparsity threshold
and xi denotes the i-th column of X .

The suggested smoothness regularization, based on the
Laplacian Quadratic Form (LQF), is less restrictive than
forcing a parametric structure on the atoms. As opposed to
previously proposed Laplacian regularizations (e.g. [22]),
smoothness along the graph geodesics is here imposed directly
on the dictionary atoms rather than on the reconstructed
signals. Clearly, smoothness of the atoms over the graph
topology implies smoothness of any signal represented
over the dictionary, bearing in mind that such signals are
sparse combinations of these atoms. Yet a major benefit of
this approach is that it significantly simplifies the learning
process by relieving the additional coupling between D and
X beyond their tie through the fidelity term. Moreover, an
explicit constraint posed on the dictionary prevents scenarios
where the sparse coefficients compensate for non-smoothness
of the atoms, and therefore yields a more robust dictionary that
can be better generalized for representing other sets of signals.

To solve Equation (6), we propose a dictionary learning
algorithm in the spirit of K-SVD [3]. That is, the algorithm
alternates between estimating the sparse coefficients X and
updating the dictionary D. Since optimization over X is not
impacted by the added regularization, standard sparse coding
can be used. Moreover, due to the nature of the proposed
regularization, each atom could still be updated independently
of the rest, since Tr(DTLD) =

∑K
i=1 d

T
i Ldi. Overall, by uti-

lizing the positive semi-definite nature of the graph Laplacian,
a computationally efficient learning algorithm is obtained.

Adopting the K-SVD algorithm formulation [3], Equa-
tion (6) is solved by sequential update of each atom inde-
pendently. Let vj denote the j-th column of XT , so that vTj

is the j-th row of X . For the j-th atom update, the error term
could thus be reformulated as follows:

‖Y −DX‖2F =‖Y −
∑
i 6=j

div
T
i − djvTj ‖2F

=‖Ej − djvTj ‖2F ,
(7)

To preserve the representation sparsity, the update support is
restricted to samples using the j-th atom by the restriction
matrix Pj , that selects the subset of columns corresponding to
signals using the j-th atom:

‖EjPj − djvTj Pj‖2F = ‖ERj − dj(vTj)R‖2F , (8)

with ERj , (v
T
j)R denoting the restricted versions of Ej , vTj

respectively. The regularized update problem for the j-th atom
is hence

min
dj ,vRj

‖ERj − dj(vTj)R‖2F + αdTj Ldj , (9)

and could be solved using a block-coordinate descent (BCD)
approach, by alternating between updates of dj and (vTj)R

(assuming the other variables are kept fixed). Minimizing (9)
leads to closed-form update rules:

vRj = (ERj)T
dj
‖dj‖22

=
PTj E

T
j dj

‖dj‖22
, (10)

dj = (‖vRj ‖22I + αL)−1EjPjv
R
j . (11)

We observe that the graph Laplacian L is real and symmetric,
hence by eigenvalue decomposition L = QΛQT ,

(‖vRj ‖22I + αL)−1 = Q(‖vRj ‖22I + αΛ)−1QT . (12)

Therefore the computational complexity is limited to a single
decomposition of L followed by repeating inversions of di-
agonal matrices. The additional cost of O(N2) is negligible
compared with the complexity of the pursuit which is O(N3).
The computational cost of our approach is therefore similar
to that of K-SVD, which is anyhow bounded by the pursuit
complexity. Since the decomposition of L also costs O(N3)
computations and is similarly required for the polynomial
dictionary learning, the complexity of both algorithms is
comparable.

The complete algorithm is summarized in Algorithm 1.

IV. LAPLACIAN LEARNING

The graph Laplacian L has an important role in describing
the structure of a graph, and its construction thus has a signif-
icant impact on the success of the dictionary learning process.
Nevertheless, the choice of L was thus far rather arbitrary.
Even when the choice of L is natural to the application at hand,
it may not accurately reflect the true network connectivity and
the intrinsic relationships between data entities. Basing the
smoothness constraint on a non-representative L will evidently
lead to sub-optimal performance of our proposed algorithm.
Moreover, it may be the case that the underlying topology is
altogether unknown.

To overcome this barrier, we propose an extended frame-
work that adapts the arbitrarily initialized Laplacian to the
data in a way that promotes atom smoothness. The suggested

4

Algorithm 1 Graph Regularized Dictionary Learning

Input: initial dictionary D(0) ∈ RN×K
Iterate: for k = 1, 2, ...

• Sparse Coding: solve (e.g. using OMP)

X(k) = arg min
X
‖Y −D(k−1)X‖2F

s.t. ‖xi‖0 ≤ T ∀i

• Dictionary Update: for j = 1, 2, ...,K

– Identify the samples using the atom dj,

Ωj =
{
i | 1 ≤ i ≤M , X(k)[j, i] 6= 0

}
– Define the restriction operator Pj corresponding to

Ωj
– Compute the residual matrix

Ej = Y −
∑
i 6=j

div
T
i

where vT
i is the i-th row of X(k).

– Apply alternately:

∗ vR
j =

PT
j ET

j dj

‖dj‖22
∗ dj = (‖vR

j ‖22I + αL)−1EjPjv
R
j

Output: D(k)

optimization of L is integrated in the dictionary learning
process.

The extended formulation now aims at solving the following
joint optimization problem:

arg min
L,D,X

‖Y −DX‖2F + αTr(DTLD) + µ‖L‖2F

s.t. ‖xi‖0 ≤ T ∀i
Lij = Lji ≤ 0 (i 6= j)

L · 1 = 0

Tr(L) = N,

(13)

where N is the number of graph nodes. We shall refer to this
proposed method as graphDL. The first two added constraints
guarantee that the resulting L is a valid Laplacian matrix, and
the third is added as normalization to avoid the trivial solution.
Since the trace constraint fixes the `1 norm of L, the Frobenius
norm penalty is added to control the distribution of the off-
diagonal entries and impact the resulting sparsity of L.

We note that Laplacian learning was also proposed in [25],
[26] under a different setting of promoting smoothness of the
given signals. That is, smoothness over L is imposed on the
data matrix, while within the sparsity context of our approach,
we employ it directly on the dictionary atoms.

While Equation (13) is non-convex with respect to
(L,D,X) jointly, it is convex with respect to D and L
separately, assuming the other variables are fixed. Solving by
alternation, optimization over D,X (for a fixed L) reduces to
Equation (6), and can be solved using the algorithm proposed
in Section III. Consequently, optimization over L (assuming

D and X are fixed) leads to the following problem:

min
L

αTr(DTLD) + µ‖L‖2F
s.t. Lij = Lji ≤ 0 (i 6= j)

L · 1 = 0

Tr(L) = N.

(14)

By vectorizing L, Equation (14) can be cast as a quadratic
optimization problem with linear constraints, which could
be solved using existing convex optimization tools. As
the computational complexity scales quadratically with the
number of nodes N , for very large graphs an approximate
solution may be sought based on splitting methods or using
iterative approaches.

V. DATA MANIFOLD REGULARIZATION

Having introduced the graph regularization in Equation (6),
we next construct a combined problem restricting both the
rows and columns of the recovered data matrix. The network
topology, representing the internal structure of the signals, is
modeled by a graph Laplacian L ∈ RN×N that is applied to
the dictionary D. The data manifold, representing the relations
between different signals, is modeled by another Laplacian
Lc ∈ RM×M that is applied to the sparse code matrix
X . Enforcing a similar LQF smoothness constraint in both
dimensions, the following unified problem is obtained:

arg min
D,X
‖Y −DX‖2F + αTr(DTLD)

+ βTr(XLcX
T) s.t. ‖xi‖0 ≤ T ∀i.

(15)

To solve this problem, some modification of Algorithm 1
is required. First, the sparse coding stage will now diverge
from the standard form due to the regularization applied
on the sparse codes. Second, the update rule for the sparse
coefficients related to the j-th atom should be altered to reflect
the added restriction.

For the latter, Equation (9) now reads

min
dj ,vRj

‖ERj − dj(vTj)R‖2F + αdTj Ldj

+ β(vTj)RLRc v
R
j ,

(16)

where LRc = PTj LcPj is the Mj ×Mj restricted version of
Lc, consisting solely of the rows and columns corresponding
to the samples using the j-th atom. We emphasize that LRc
is simply a subset selection out of the full Laplacian Lc, and
does not require recomputing the weights.

Optimizing over dj , vRj alternately, the modified closed-
form update rule for vRj is

vRj =
(
‖dj‖22I + βLRc

)−1
PTj E

T
j dj (17)

while the update rule for dj remains as given by Equation (11).
Computation-wise, we note that while different for

each atom, LRc does not occupy the entire dimension of
Lc but rather the restricted support considering only the
samples using that atom. Assuming that each atom is only
used by a small subset of the signals, LRc is of limited

5

dimensions, and the matrix inversion in Equation (17) can be
carried out for each atom (at each iteration) in reasonable time.

Having modified the dictionary update stage, we should still
tackle the graph regularized sparse coding task:

arg min
X
‖Y −DX‖2F + βTr(XLcX

T)

s.t. ‖xi‖0 ≤ T ∀i
(18)

This problem is no longer separable, demanding joint sparse
coding of the dataset signals. Previous work [16] proposed
to solve Equation (18) by replacing the `0 norm with `1 and
using a coordinate descent approach and subgradient methods.

We propose a different solution based on the Alternating
Direction Method of Multipliers (ADMM) [27], which enables
simultaneous update of all columns of X . In this approach, the
non-convex sparsity constraint is separated from the rest and
Equation (18) is reformulated as

arg min
X
‖Y −DX‖2F + βTr(XLcX

T)

s.t. X = Z,

‖zi‖0 ≤ T ∀i.

(19)

The augmented Lagrangian is then given by

Lρ(X,Z,U) = f(X) + g(Z) + ρ‖X − Z + U‖22 (20)

where f(X) = ‖Y − DX‖2F + βTr(XLcX
T), g(Z) =

I(‖zi‖0 ≤ T ∀i) for an indicator function I(), and U is the
scaled dual form variable.

The ADMM iterative solution consists of the following
steps, with k denoting the iteration number:

X(k+1) = arg min
X

(
f(X) + ρ‖X − Z(k) + U (k)‖22

)
Z(k+1) = arg min

Z

(
g(Z) + ρ‖X(k+1) − Z + U (k)‖22

)
U (k+1) = U (k) +X(k+1) − Z(k+1)

(21)

For the sub-problem of updating X , omitting the sparsity
requirement has led to a quadratic objective. By simple deriva-
tion, this problem reduces to solving the following Sylvester
equation [28]:

(DTD + ρI)X + βXLc = DTY + ρ(Z − U). (22)

It is well known (e.g. [29], [30]) that this equation has a unique
solution X since the eigenvalues of (DTD+ρI) and (−βLc)
are distinct. A numerical solution can be efficiently obtained
using the Bartels-Stewart algorithm [31], [32], based on a
Schur decomposition and backward substitution. Alternatively,
for large dimensions, an iterative gradient descent approach
may be applied.

As for the sub-problem of updating Z, this turns out to be
a shrinkage problem, requiring merely a sparse projection of
X + U . To obtain it, hard thresholding is applied to X + U
such that only the T largest entries of each column are kept.
We denote this projection operator by PT .

Upon convergence, to further improve the result while
preserving the sparsity pattern, an additional least squares
(LS) step is performed to update the coefficient values on
the determined support. Let Ωj denote the set of T atoms

used for representing the j-th signal, Ωj = {i | Zi,j 6= 0}.
Minimization of ‖Y − DZ‖2F over the fixed supports Ωj
is a convex problem, leading to the final update ZΩj ,j =

D†Ωj
yj ∀j = 1, ...,M .

As the problem in Equation (19) is non-convex, ADMM
is not guaranteed to converge, and even if it does, it need
not be to a global optimum. This approach is thus relatively
sensitive to the choice of parameters and initialization of
X,Z,U . Nonetheless, as a heuristic, we initialize with the
standard sparse coding

X(0) = arg min
X
‖Y −DX‖2F s.t. ‖xi‖0 ≤ T ∀i, (23)

which is empirically found to perform well.
The graph regularized sparse coding algorithm is summa-

rized in Algorithm 2.

Algorithm 2 Graph Regularized Sparse Coding

Initialize:

X(0) = arg min
X
‖Y −DX‖2F s.t. ‖xi‖0 ≤ T ∀i

Z(0) = X(0)

U(0) = 0

Iterate: for k = 1, 2, ...

• Update X(k) as the solution of

(DTD+ρI)X+βXLc = DTY+ρ
(
Z(k−1) −U(k−1)

)
• Update Z(k) = PT

(
X(k) + U(k−1)

)
• Update U(k) = U(k−1) + X(k) − Z(k)

LS update: for j=1 to M
• Ωj =

{
i | Z(k)[i, j] 6= 0

}
• Z(k)[Ωj , j] = D†Ωj

yj

where DΩj
is the restriction of D to the subset Ωj .

Output: The desired result is Z(k).

To show the advantage of the proposed formulation, we
performed simulations on a synthetic example and compared
both regularized sparse coding methods (our ADMM based
pursuit and the graph regularized sparse coding proposed
in [16]) in representing noisy graph signals over a known
dictionary. The signals were generated by combining 4 atoms
of the dictionary and adding Gaussian noise with Signal to
Noise Ratio (SNR) of 10. These signals were then coded over
the known dictionary for different levels of sparsity using both
pursuit methods, and the representation error was evaluated
in terms of Root Mean Squared Error (RMSE) divided by
the noise power. Since graphSC [16] uses an `1 sparsity
measure, its regularization coefficient was chosen such that
both methods yield the same sparsity level in terms of `0.

The results presented in Figure 1 clearly demonstrate that
the ADMM approach yields lower representation errors for
all the evaluated sparsity levels.

The dual graph regularized dictionary learning algorithm for
solving Equation (15) is assembled by replacing the sparse

6

Number of atoms used in the representation
2 3 4 5 6 7 8 9 10

R
M

S
E

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
Representation Error

ADMM
graphSC

Fig. 1: Evaluation results for two graph regularized pursuit
methods: the proposed ADMM solution and the graph regu-
larized sparse coding (graphSC) of [16].

coding stage in Algorithm 1 with the procedure of Algo-
rithm 2, and replacing the update rule from Equation (10) in
the dictionary update stage with Equation (17). The resulting
algorithm is described in Algorithm 3.

Algorithm 3 Dual Graph Regularized Dictionary Learning

Input: initial dictionary D(0) ∈ RN×K
Iterate: for k = 1, 2, ...

• Sparse Coding: run Algorithm 2 to solve

X(k) = arg min
X
‖Y −D(k−1)X‖2F + βTr

(
XLcX

T
)

s.t. ‖xi‖0 ≤ T ∀i

• Dictionary Update: for j = 1, 2, ...,K

– Identify the samples using the atom dj,

Ωj =
{
i | 1 ≤ i ≤M , X(k)[j, i] 6= 0

}
– Define the restriction operator Pj corresponding to

Ωj
– Compute the residual matrix

Ej = Y −
∑
i 6=j

div
T
i

where vT
i is the i-th row of X(k).

– Apply alternately:
∗ vR

j = (‖dj‖22I + βLR
c)−1PT

j E
T
j dj

∗ dj = (‖vR
j ‖22I + αL)−1EjPjv

R
j

Output: D(k),X(k)

Finally, the proposed extensions may be merged together by
adding the Laplacian learning, which results in the following

optimization problem:

arg min
L,D,X

‖Y −DX‖2F + αTr(DTLD)

+ βTr(XLcX
T) + µ‖L‖2F

s.t. ‖xi‖0 ≤ T ∀i
Lij = Lji ≤ 0 (i 6= j)

L · 1 = 0

Tr(L) = N,

(24)

which we refer to as graph2DL. This problem could then be
solved using a fused procedure, alternating between optimiza-
tion over D,X using Algorithm 3, and optimization over L
by solving Equation (14).

As stated in the introduction, this combined learning frame-
work offers a symmetric two-dimensional analysis of the
data while jointly optimizing the graph Laplacian and the
representation dictionary.

Finally, we note that we could theoretically learn Lc simi-
larly to learning L, which would result in a fully symmetric
problem formulation. This was not attempted in the scope of
this work mainly for focusing on the new proposed regular-
ization that uses L, and due to the larger typical dimensions
of Lc.

VI. EXPERIMENTS AND APPLICATIONS

In this section, we demonstrate the effectiveness of our
method on synthetic examples and on real network data and
show its potential use in data analysis applications.

The main problem we discuss is dealing with faulty sensors,
producing missing or corrupted measurements. Specifically,
we evaluate the ability of the proposed approach to recover the
true underlying signals from noisy or incomplete samples. This
application is demonstrated on two sensor networks: traffic
loads and temperatures. Consequently, we revisit the problem
of image denoising and demonstrate the capability of our
method to improve denoising performance while successfully
inferring the underlying patch structure.

Throughout this section, the parameters used for the various
compared algorithms are chosen empirically, by exhaustive
search over different sets of values.

A. A Synthetic Experiment

We first carry out experiments on a synthetic setup, where
the generating dictionary and underlying graph are known,
such that their recovery by our algorithm can be quantitatively
assessed. Note that due to the complexity of the model and
the inherent coupling between D and L, these matrices can
not be drawn independently and rather require a more careful
construction.

We generated a random graph consisting of N = 100 nodes
that are randomly distributed in the square [0,

√
5] × [0,

√
5].

The edge weights between each pair of nodes were determined
based on the Euclidean distances between them and using the
Gaussian Radial Basis Function (RBF) Wij = exp

(
−d2(i,j)

2σ2

)
with σ = 0.5. Consequently, edges with weights smaller than

7

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Fig. 2: Synthetic experiment ground-truth graph

0.5 were removed, keeping about 17% of the overall edges.
An illustration of the resulting graph is provided in Figure 2.

The graph Laplacian L = ∆−W was then computed (for
the diagonal degree matrix ∆), and multiplied by a constant
normalization factor such that for the resulting L, Tr(L) =
N . This form of normalization is only needed to enable fair
comparison with the graph learned in our method, which is
restricted to have a predefined trace.

To construct the dictionary D ∈ RN×K(K = 2N) with
smooth atoms, an initial random dictionary D0 was drawn
and then D was obtained as the solution of

arg min
D
‖D −D0‖2F + λTr(DTLD), (25)

or put explicitly, D = (I + λL)
−1
D0.

We note that the choice of λ is important. The larger it is,
the smoother the generated atoms, yet a strong enforcement
of structure dramatically increases the mutual coherence of D,
which may result in convergence problems for the Orthogonal
Matching Pursuit (OMP) incorporated in our method. In our
experiment, we used λ = 5, which empirically resulted in a
reasonable coherence.

The data matrix Y ∈ RN×40N was generated by drawing a
random sparse coefficient matrix X with a predefined sparsity
of T = 4 atoms per signal, and setting Ŷ = DX . Each signal
was then normalized to have unit norm, and contaminated by
an additive Gaussian noise with Signal to Noise Ratio (SNR)
of 10.

Given the noisy data Y , the data manifold graph Lc was
constructed using an RBF kernel for the Euclidean distance
function d(i, j) = ‖yi − yj‖2, where yi is the i-th column of
Y .

An initial graph Laplacian Li was constructed using the
same approach as building Lc, this time based on the Eu-
clidean distances between rows of Y and with σ = 10. The
same thresholding and normalization were applied as in the
ground truth graph.

To evaluate the influence of the individual components, we
provide results for three versions of our algorithm: graphDL
which relies on the initial Laplacian Li and does not update
it, graphDL which learns L as well, and graph2DL, which
also exploits the relation between the example signals via
Lc. The dictionaries learned by our algorithm (for empirically
chosen parameters α = 0.1, β = 0.6, µ = 0.08, T = 4) were
compared against the K-SVD [3], the manifold regularized
dictionary (graphSC) [16] and the polynomial dictionary [10].

Each of the dictionaries was evaluated with respect to the
ground truth generating dictionary by measuring the amount
of recovered atoms. For that matter, an atom di of the ground
truth dictionary is considered to be recovered if for any atom
d̂j in the learned dictionary, |〈d̂j , di〉| > 0.99.

Additionally, we assess the ability of the dictionaries to
sparsely represent a set of test signals with a known sparsity
of T = 4 atoms. Two normalized measures of quality are
presented: (i) The representation error, i.e. the residual energy
for representing the test set using 4 atoms, divided by the
additive noise power; and (ii) The denoising factor, which
shows the relative noise remaining in the test signals after
denoising (a value below 1 implies effective denoising).

The dictionary comparison results are presented in Table I,
indicating that graph2DL best recovers the generating dic-
tionary and also yields the lowest representation error while
achieving noise reduction by a factor of 1.6. Furthermore, a
gradual improvement is demonstrated between the different
versions of our algorithm, indicating that each component has
a significant contribution to the overall outcome.

Next we compare the graph Laplacian learned by our
graph2DL algorithm (denoted LD), with the one learned
directly from the data signals [26] (denoted LY) and with
the initial graph Li.

For a quantitative evaluation, we compare the sparsity of the
learned graphs and assess the recovery of the edges positions
using the F-measure achieved by each algorithm with respect
to the ground truth graph. We use the relation:

F-measure =
2 · Precision · Recall
Precision + Recall

(26)

where

Precision =
TP

TP + FP
; Recall =

TP

TP + FN
(27)

such that TP, FP, FN represent the true-positive, false-positive
and false-negative percentages.

To further evaluate the estimated edge weights, we compare
the Frobenius norm ‖L − LGT ‖F for each learned L with
respect to the ground truth Laplacian LGT . The results are
summarized in Table II, indicating that our algorithm success-
fully recovers 86% of the edges and is thus comparable to and
even slightly outperforms the other methods in terms of the
evaluation criteria.

TABLE II: Graph learning performance. The number of edges
in the learned graphs should be compared with the ground
truth graph having 855 (17.27%) edges.

LD LY Li

No. edges (%) 870 (17.58) 886 (17.90) 9874 (49.87)
F-measure 0.861 0.858 0.307
‖L− LGT ‖F 2.13 2.25 3.22

Therefore, we conclude that our joint learning approach is
able to capture the underlying structure of the data in terms
of both the generating dictionary and the graph Laplacian.

B. Traffic Network Data
The proposed approach was further evaluated on the Cal-

trans Performance Measurement System (PeMS) database that

8

TABLE I: Dictionary comparison in terms of atom recovery percentage, representation error (with respect to the given noisy
signals) and denoising error (with respect to the ground truth clean signals). Errors are presented in units of RMSE

σn
.

Pol graphSC KSVD graphDL graphDL
(learned L) graph2DL

atom recovery % 0 84 82.5 83.5 86.5 87
recovered atoms

(out of 200) 0 168 165 167 173 174

representation error 2.317 1.189 1.141 1.134 1.12 1.098
denoising factor 2.178 0.769 0.706 0.691 0.664 0.625

provides traffic information throughout all major metropolitan
areas of California [33]. The dataset consists of 2892 signals,
representing the daily average bottlenecks measured at N =
578 predefined locations in Alameda County’s transportation
network, over the time period spanned from 2007 to 2014.

In particular, the nodes of the graph consist of detector
stations where bottlenecks were identified over the period
under consideration. The initial graph Laplacian L is designed
by connecting stations when the distance between them is
smaller than a threshold of θ = 0.08, corresponding to
approximately 13 kilometers. The distance is set to be the
Euclidean distance of the GPS coordinates of the stations and
the edge weights are set to be inversely proportional to the
distance.

A bottleneck could be any location where there is a per-
sistent drop in speed, such as merges, large on-ramps, and
incidents. The signal on the graph is the average duration in
minutes that a bottleneck was active for each specific day.
Some exemplary signals are depicted in Figure 3.

The data manifold graph Lc is constructed using
an RBF kernel (5) for the Euclidean distance function
d(i, j) = ‖yi − yj‖2, where yi, yj are the signals measured at
the i-th and j-th days respectively.

The proposed approach is compared with the parametric
polynomial dictionary [10] and with the non-regularized K-
SVD [3].

A random subset of 1500 signals constitutes the training
set, and the rest are used for testing. The added regularization
parameters in Equation (24) were empirically chosen to
be α = 0.2, β = 1, µ = 0.16. For consistency with [10],
the learned polynomial dictionary consists of S = 2 sub-
dictionaries, each of which is a tenth order polynomial of
the normalized graph Laplacian. For the training phase, a
sparsity threshold of T = 6 was used across all methods, and
all signals were normalized with respect to the one having
the maximal energy.

We start by evaluating the fit of the learned dictionaries
by sparsely representing the testing set signals over each of
these dictionaries for different sparsity levels (number of used
atoms). The obtained representation errors are presented in
Figure 5a. It can be observed that the proposed graph2DL
yields lower errors compared with the other evaluated
methods.

Henceforth we challenge the learned models and assume
that the observed measurements Y are the outcome of some

corruption of the underlying signals Z, manifested as additive
noise and missing samples. Put formally,

yi = Mizi + ηi ∀i (28)

where the mask matrices Mi indicate the missing samples
(which may differ between signal observations) and
ηi ∼ N (0, σ2

n) is an additive Gaussian noise.

For assessing the potential benefit of the new dictionary
for the common signal denoising problem, Gaussian noise of
different levels σn was added to the test signals (assuming
Mi = I ∀i) and recovery using the previously learned
dictionaries was compared in terms of the Root Mean
Squared Error (RMSE). Since the noise is random and does
not adhere to the graph topology, the regularized dictionary
is more likely to separate it from the signal. Indeed, the
proposed dictionary outperforms the other methods for all the
different noise levels, as illustrated in Figure 5b.

Next, we evaluate the performance for the signal inpainting
(data completion) problem. In practice, missing samples may
arise either from a budget restricted data acquisition, or from
faulty sensors. For this scenario, we set σn = 0 and draw Mi

to randomly subsample the test signals, preserving various
predefined percentages of samples. The results presented in
Figure 5c are similar to those obtained in the reconstruction
and denoising experiments, and it can be observed that the
regularized dictionary yields lower errors even in the extreme
case where only 10% of the samples remain.

Finally, we compare the atoms of the different learned
dictionaries. Figure 4 visualizes the 3 atoms in each of those
dictionaries that were most commonly included by OMP in
sparse decomposition of the testing signals.

It can be observed that the atoms learned by our approach
are smoother over the graph compared with those learned
by K-SVD [3], though not as smooth or localized as those
learned for the polynomial dictionary [10].

In conclusion, our results demonstrate that the graph regu-
larized dictionary outperforms the other dictionaries in terms
of both representation error and signal recovery from noisy or
missing samples. Integrating the Laplacian optimization, an
additional improvement over the basic graphDL method can
be observed in all simulated scenarios. Intuitively, the learned
Laplacian in this example may reflect the road lengths connect-
ing each pair of sensors rather than the plain Euclidean dis-
tances assumed in the initial graph construction, hence it better
coincides with the smoothness of traffic load propagation. It is

9

-122.4 -122.3 -122.2 -122.1 -122 -121.9 -121.8 -121.7 -121.6

37.4

37.5

37.6

37.7

37.8

37.9

50

100

150

200

250

300

350

(a) -122.4 -122.3 -122.2 -122.1 -122 -121.9 -121.8 -121.7 -121.6

37.4

37.5

37.6

37.7

37.8

37.9

50

100

150

200

250

(b) -122.4 -122.3 -122.2 -122.1 -122 -121.9 -121.8 -121.7 -121.6

37.4

37.5

37.6

37.7

37.8

37.9

50

100

150

200

250

300

350

400

(c)

Fig. 3: Characteristic graph signals demonstrating the daily traffic level (minutes of bottlenecks) across Alameda County,
California, on three different days. The graph nodes are the detector stations and the connectivity is defined based on the
Euclidean distance between the GPS coordinates of the stations. The size and color of each ball indicate the value of the graph
signal at that node.

also evident that the dual regularized graph2DL, incorporating
both smoothness constraints in the learning process, further
improves the performance of the proposed method and results
in an overall significant enhancement compared with the two
reference methods.

C. Temperature Data
We consider a dataset of daily temperature measurements

collected during the years 2011 to 2013 by N = 150 weather
stations across the mainland United States [34]. Each graph
signal represents the average temperatures (in degrees Fahren-
heit) measured across the sensor network on a single day. The
dataset contains M = 1096 graph signals, constituting three
full years of measurements.

We construct a graph whose nodes represent the sensors,
with the edge weights set to be inversely proportional to the ge-
ographic distances between sensors. The graph is then pruned
such that stations are connected when the distance between
them is smaller than a threshold of θ = 5, corresponding to
approximately 450 kilometers. The underlying assumption is
that nearby sensors will have highly correlated temperatures.
The temperature graph with some typical graph signals are
illustrated in Figure 6.

The manifold graph Lc is constructed in a similar manner
to the procedure described for the previous dataset.

The proposed approach was again compared with K-
SVD [3] for reconstruction error, noise removal and data
completion applications, following the same procedure
adopted in the previous subsection. Due to the previous
results, the polynomial dictionary was omitted from this
comparison. A random subset of 730 signals constitutes the
training set, and the rest are used for testing. For the training
phase, a sparsity threshold of T = 2 was used across all
methods, and all signals were normalized with respect to the
one having the maximal energy.

In accordance with the previous experiments, the results
presented in Figure 7 demonstrate that the dual regularized
dictionary yields lower errors for all the simulated scenarios.

D. A Glimpse at Image Processing

We conclude the section by revisiting the task of image
denoising. However, the objective of this experiment is not
achieving optimal denoising, but rather being able to better
identify the inner structure of the data and exploit it to improve
denoising performance in challenging conditions.

A 512× 512 image was contaminated by random Gaussian
noise with standard deviation σ = 25 and divided into
overlapping 8 × 8 patches that constitute the columns of the
data matrix. An evaluation of the proposed approach on this
data shows that for a limited training set of 1000 patches, the
added structure constraint slightly improves the performance
of K-SVD denoising [35]. The results obtained for two differ-
ent images are presented in Figure 8, demonstrating PSNR
improvement of 0.15[dB]. Obviously, the more limited the
training set, the more significant the improvement of graphDL
over K-SVD denoising, however the overall final outcome is
of lower quality.

More importantly, the learned Laplacian, having been ini-
tialized with L = I , captures the internal patch structure rather
well. Figure 9 displays the learned graphs for both synthetic
and natural images. The adjacency matrix corresponding to the
learned graph Laplacian is presented in the form of a 8 × 8
patch, for convenience.

These results indicate that our algorithm successfully recov-
ers a recurring pattern from its noisy observations and learns
the pattern orientation instead of the local neighborhood cor-
relations. In a natural image containing a mixture of textures,
the learned graph is biased towards the included orientations.
Moreover, when the image does not include a dominant
texture, the learned graph structure is almost accurately the
8-nearest-neighbor relation between pixels within the patch.

We emphasize that Figure 9 does not display the learned
dictionary atoms but rather the estimated underlying graph
whose nodes are the 64 pixels within a patch. The dictionary
itself is quite similar to the one learned by K-SVD, as
demonstrated for example in Figure 10.

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(i)

Fig. 4: Comparison of the top used atoms in each of the learned dictionaries. The first row displays atoms of the Polynomial
dictionary [10], the second - atoms learned by K-SVD [3], and the third - atoms learned by graphDL. The size and color of
each ball indicates the value of the atom at that graph node.

11

-120 -110 -100 -90 -80 -70

20

25

30

35

40

45

50

55

20130629

55

60

65

70

75

80

85

90

95

100

105

(a)
-120 -110 -100 -90 -80 -70

20

25

30

35

40

45

50

55

20120906

50

55

60

65

70

75

80

85

90

(b)
-120 -110 -100 -90 -80 -70

20

25

30

35

40

45

50

55

20131206

-10

0

10

20

30

40

50

60

70

(c)

Fig. 6: Characteristic graph signals demonstrating the daily mean temperature (in degrees Fahrenheit) across the United States
for 3 different days. The graph nodes are the detector stations and the connectivity is defined based on the Euclidean distance
between the GPS coordinates of the stations. The color of each ball indicates the value of the graph signal at that node.

Original Image

(a)

Noisy Image (PSNR=20.18[dB])

(b)

K-SVD (PSNR=28.35[dB])

(c)

graphDL (PSNR=28.50[dB])

(d)

Original Image

(e)

Noisy Image (PSNR=20.18[dB])

(f)

K-SVD (PSNR=30.56[dB])

(g)

graphDL (PSNR=30.71[dB])

(h)

Fig. 8: Image denoising results for the images barbara and peppers: (a),(e) Original image, (b),(f) Noisy image, (c),(g) K-SVD
denoising, (d),(h) graphDL denoising with optimized L.

12

(a) (b) (c) (d)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

A
D

(e) 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

A
D

(f) 1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8
A

D

(g) 1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8
A

D

(h)

Fig. 9: Learned graphs for different images. The top row shows the original (clean) images, and the bottom row - the
corresponding patch structure graphs learned from a limited sample of noisy patches.

K-SVD Trained dictionary

(a)

graphDL Trained dictionary

(b)

Fig. 10: Learned dictionaries for the image Barbara, using K-SVD (left) and graphDL (right).

VII. CONCLUSIONS

This work presented a dictionary learning algorithm for
graph signals that incorporates the underlying topological
prior.

The first contribution is the introduction of a Laplacian
based regularization that is applied directly to the learned dic-
tionary. This constraint, combined with the common manifold
regularization that is applied to the sparse codes, leads to a
symmetric problem formulation. Additional novelty therefore
lies in the resulting unified framework considering the data
matrix rows to be of equal significance to its columns, and

treating them both in a similar manner by promoting smooth-
ness using a Laplacian based regularization. In the network
data used for our simulations, these two axes/dimensions
represent the spatial and temporal domains. The dual graph
regularized formulation thus captures both spatial dependence
among nodes through the network topology, and the temporal
evolution of the individual processes occurring at each node
through the manifold structure of the training data.

Furthermore, we proposed an extended setting in which
the graph Laplacian is learned jointly with the dictionary, to
overcome errors resulting from inaccurate graph construction
where the underlying topology is not readily known. The

13

Number of atoms used in the representation
0 2 4 6 8 10 12 14 16 18 20

R
M

S
E

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Polynomial
K-SVD
graphDL
graphDL (learned L)

graph2DL

(a)

σ
n
/σ

d

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
M

S
E

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

Polynomial
K-SVD
graphDL
graphDL (learned L)

graph2DL

(b)

Percentage of remaining samples
10 20 30 40 50 60 70 80 90 100

R
M

S
E

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Polynomial
K-SVD
graphDL
graphDL (learned L)

graph2DL

(c)

Fig. 5: Comparison of the learned dictionaries in terms of
RMSE for three different applications tested on the traffic
dataset: (a) representation error for different sparsity levels,
(b) denoising error for different noise levels σn (with respect
to the data STD σd), (c) data completion error for different
percentages of remaining samples.

Number of atoms used in the representation
0 2 4 6 8 10 12 14 16 18 20

R
M

S
E

×10-3

3

4

5

6

7

8

9

10

11

K-SVD
graphDL
graphDL (learned L)

graph2DL

(a)

σ
n
/σ

d

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
M

S
E

×10-3

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

K-SVD
graphDL
graphDL (learned L)

graph2DL

(b)

Percentage of remaining samples
10 20 30 40 50 60 70 80 90 100

R
M

S
E

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

K-SVD
graphDL
graphDL (learned L)

graph2DL

(c)

Fig. 7: Comparison of the learned dictionaries in terms of
RMSE for three different applications tested on the temper-
ature dataset: (a) representation error for different sparsity
levels, (b) denoising error for different noise levels σn (with
respect to the data STD σd), (c) data completion error for
different percentages of remaining samples.

14

Laplacian learning problem bears similarity to other highly
researched problems, such as sparse inverse covariance esti-
mation for Gaussian graphical models and metric learning. The
former may provide a probabilistic interpretation to the learned
dictionary, as a Gaussian Markov Random Field (GMRF) with
respect to a graph whose Laplacian is the inverse covariance
matrix. We plan to further study these relations in our future
work.

The effectiveness of the proposed method was demonstrated
on synthetic data as well as on real network data, and com-
pared with the parametric polynomial dictionary [10] and with
K-SVD [3]. Our simulations indicate that while resulting in
a relatively simple and efficient algorithm, this approach suc-
cessfully infers the underlying topology, and is advantageous
in the achieved representation error over a collection of graph
signals, and in typical signal processing applications such as
denoising and inpainting.

ACKNOWLEDGMENTS

We thank the authors of [10] for providing the code for the
Polynomial dictionary learning.

The research leading to these results has received fund-
ing from the European Research Council under European
Union’s Seventh Framework Program, ERC Grant agreement
no. 320649, and from the Israel Science Foundation (ISF)
grant number 1770/14.

REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The Emerging Field of Signal Processing on Graphs:
Extending High-Dimensional Data Analysis to Networks and Other
Irregular Domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–
98, May 2013.

[2] K. Engan, S. O. Aase, and J. Hakon Husoy, “Method of Optimal
Directions for Frame Design,” in ICASSP, vol. 5, 1999, pp. 2443–2446.

[3] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An Algorithm for
Designing Overcomplete Dictionaries for Sparse Representation,” IEEE
Trans. Signal Proc., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[4] A. Sandryhaila and J. M. F. Moura, “Discrete Signal Processing on
Graphs: Graph Fourier Transform,” in ICASSP, 2013, pp. 6167–6170.

[5] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “A Windowed Graph
Fourier Transform,” in IEEE Statistical Signal Processing Workshop
(SSP), Aug. 2012, pp. 133–136.

[6] R. R. Coifman and M. Maggioni, “Diffusion Wavelets,” Applied and
Computational Harmonic Analysis, vol. 21, no. 1, pp. 53–94, 2006.

[7] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
Graphs via Spectral Graph Theory,” Applied and Computational Har-
monic Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[8] X. Zhang, X. Dong, and P. Frossard, “Learning of Structured Graph
Dictionaries,” in ICASSP, 2012, pp. 3373–3376.

[9] D. Thanou, D. I. Shuman, and P. Frossard, “Parametric Dictionary
Learning for Graph Signals,” in Proceedings of the IEEE Global
Conference on Signal and Information Processing (GlobalSIP), Austin,
Texas, Dec. 2013.

[10] ——, “Learning Parametric Dictionaries for Signals on Graphs,” IEEE
Trans. Signal Proc., vol. 62, no. 15, pp. 3849–3862, Aug. 2014.

[11] S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by
Locally Linear Embedding,” SCIENCE, vol. 290, no. 5500, pp. 2323–
2326, 2000.

[12] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Comput., vol. 15, no. 6, pp.
1373–1396, Jun. 2003.

[13] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and Computa-
tional Harmonic Analysis, vol. 21, no. 1, pp. 5 – 30, 2006.

[14] A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal Discrete Regu-
larization on Weighted Graphs: A Framework for Image and Manifold
Processing,” IEEE Trans. Image Proc., vol. 17, no. 7, pp. 1047–1060,
July 2008.

[15] S. Bougleux, A. Elmoataz, and M. Melkemi, “Local and Nonlocal
Discrete Regularization on Weighted Graphs for Image and Mesh
Processing,” International Journal of Computer Vision, vol. 84, no. 2,
pp. 220–236, 2009.

[16] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai,
“Graph Regularized Sparse Coding for Image Representation,” IEEE
Trans. Image Proc., vol. 20, no. 5, pp. 1327–1336, May 2011.

[17] P. Milanfar, “A Tour of Modern Image Filtering: New Insights and
Methods, Both Practical and Theoretical,” IEEE Signal Processing
Magazine, vol. 30, no. 1, pp. 106–128, Jan 2013.

[18] A. Kheradmand and P. Milanfar, “A General Framework for Regularized,
Similarity-Based Image Restoration,” IEEE Trans. Image Proc., vol. 23,
no. 12, pp. 5136–5151, Dec 2014.

[19] S. M. Haque, G. Pai, and V. M. Govindu, “Symmetric Smoothing Filters
from Global Consistency Constraints,” IEEE Trans. Image Proc., 2014.

[20] X. Liu, D. Zhai, D. Zhao, G. Zhai, and W. Gao, “Progressive Image
Denoising Through Hybrid Graph Laplacian Regularization: A Unified
Framework,” IEEE Trans. Image Proc., vol. 23, no. 4, pp. 1491–1503,
Apr. 2014.

[21] K. Ramamurthy, J. Thiagarajan, P. Sattigeri, and A. Spanias, “Learning
Dictionaries with Graph Embedding Constraints,” in Signals, Systems
and Computers (ASILOMAR), Nov. 2012, pp. 1974–1978.

[22] P. A. Forero, K. Rajawat, and G. B. Giannakis, “Prediction of Partially
Observed Dynamical Processes Over Networks via Dictionary Learn-
ing,” IEEE Trans. Signal Proc., vol. 62, no. 13, pp. 3305–3320, July
2014.

[23] A. Buades, B. Coll, and J.-M. Morel, “A Non-Local Algorithm for
Image Denoising,” in Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, ser. CVPR,
Washington, DC, USA, 2005, pp. 60–65.

[24] C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray and Color
Images,” in Proceedings of the Sixth International Conference on
Computer Vision, ser. ICCV. IEEE Computer Society, 1998, pp. 839–
846.

[25] C. Hu, L. Cheng, J. Sepulcre, G. E. Fakhri, Y. M. Lu, and Q. Li, “A
Graph Theoretical Regression Model for Brain Connectivity Learning of
Alzheimer’s Disease,” in Proc. International Symposium on Biomedical
Imaging (ISBI), San Francisco, CA, 7-11 Apr. 2013.

[26] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Laplacian
Matrix Learning for Smooth Graph Signal Representation,” in ICASSP,
2015.

[27] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp.
1–122, Jan. 2011.

[28] J. Sylvester, “Sur l’equations en matrices px = xq,” Comptes Rendus
Acad. Sci. Paris, vol. 99, no. 2, pp. 67–71,115–116, 1884.

[29] R. Bhatia and P. Rosenthal, “How and why to solve the operator equation
axxb = y,” Bull. London Math. Soc., vol. 29, no. 1, pp. 1–21, 1997.

[30] R. Bhatia, Matrix Analysis. Springer-Verlag, New York, 1997.
[31] R. H. Bartels and G. W. Stewart, “Solution of the matrix equation ax +

xb = c,” Comm. ACM, vol. 15, no. 9, pp. 820–826, Sep. 1972.
[32] G. Golub, S. Nash, and C. Van Loan, “A hessenberg-schur method for

the problem ax + xb= c,” IEEE Transactions on Automatic Control,
vol. 24, no. 6, pp. 909–913, Dec 1979.

[33] T. Choe, A. Skabardonis, and P. Varaiya, “Freeway Performance Mea-
surement System (PeMS): An Operational Analysis Tool,” in Pro-
ceedings of the 81st Transportation Research Board Annual Meeting,
National Academies, Washington, D.C., Jan 2002.

[34] “National climatic data center,” ftp://ftp.ncdc.noaa.gov/pub/data/gsod/.
[35] M. Elad and M. Aharon, “Image Denoising via Sparse and Redundant

Representations Over Learned Dictionaries,” IEEE Trans. Image Proc.,
vol. 15, no. 12, pp. 3736–3745, Dec 2006.

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/

	Introduction
	Preliminaries
	Graph Regularized Dictionary Learning
	Laplacian Learning
	Data Manifold Regularization
	Experiments and Applications
	A Synthetic Experiment
	Traffic Network Data
	Temperature Data
	A Glimpse at Image Processing

	Conclusions
	References

