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ABSTRACT 

PURPOSE: High spatial-temporal four-dimensional imaging with large volume 

coverage is necessary to accurately capture and characterize liver lesions. Traditionally, parallel 

imaging and adapted sampling are used towards this goal, but they typically result in a loss of 

signal to noise. Furthermore, residual under-sampling artifacts can be temporally varying and 

complicate the quantitative analysis of contrast enhancement curves needed for pharmacokinetic 

modeling. We propose to overcome these problems using a novel patch-based regularization 

approach called Patch-based Reconstruction Of Under-sampled Data (PROUD). 

METHODS:  PROUD produces high frame rate image reconstructions by exploiting the 

strong similarities in spatial patches between successive time frames to overcome the severe k-

space under-sampling. To validate PROUD, a numerical liver perfusion phantom was developed 

to characterize CNR performance compared to a previously proposed method, TRACER.  A 

second numerical phantom was constructed to evaluate the temporal footprint and lag of PROUD 

and TRACER reconstructions. Finally, PROUD and TRACER were evaluated in a cohort of five 

liver donors. 

RESULTS:  In the CNR phantom, PROUD, compared to TRACER, improved peak 

CNR by 3.66 times while maintaining or improving temporal fidelity. In vivo, PROUD 

demonstrated an average increase in CNR of 60% compared to TRACER.   

CONCLUSION: The results presented in this work demonstrate the feasibility of using a 

combination of patch based image constraints with temporal regularization to provide high SNR, 

high temporal frame rate and spatial resolution four dimensional imaging. 
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INTRODUCTION 

The ability to reliably capture the arterial phase in contrast enhanced imaging is crucial 

for the detection and characterization of liver lesions. Multiple phase imaging within a breath-

hold has shown promise towards achieving this goal (1-3). To retain both high spatial and 

temporal resolution, parallel imaging techniques with adapted sampling schemes have been used, 

both with Cartesian (4-8) and radial (9-12) trajectories. The success of these techniques lies in 

the particular balance chosen between undersampling artifacts, signal to noise ratio (SNR), 

volume coverage, spatial resolution and temporal fidelity. TRACER (13), a nonlinear parallel 

imaging reconstruction (14) of golden ratio ordered variable density spiral acquisition, allows the 

reconstruction of volume covering the whole liver with a sub-second frame rate. The high 

temporal frame rate (equal to the time to acquire a single spiral leaf for all slice encodings) was 

achieved by assuming small changes of image content between frames, an assumption which is 

increasingly satisfied as the frame rate increases. Both in simulations and phantom experiments, 

a high agreement between the reconstructed and the true contrast enhancement curves was 

observed. However, the reconstructed images are susceptible to noise in the rapid spiral 

acquisition; the measured temporal footprint of each frame was found to be larger than the 

apparent frame rate; and residual undersampling artifacts resulted in flickering artifacts visible 

when viewed in cine mode.  

Recently, patch-based image reconstruction methods using dictionary learning have 

shown promise in reconstructing both static and dynamic under-sampled MRI data (15-24) by 

exploiting local structure and similarity to a known dictionary. In these methods, an 

overcomplete basis is learned from prior measurements or the data itself during the 

reconstruction, using for instance the K-SVD algorithm (25-27). It is assumed that every patch in 



the unknown image can be written as a sparse linear combination – i.e. with very few non-zero 

coefficients – of elements in this basis, typically referred to as “atoms”.  In this work, the 

computationally expensive dictionary learning step is replaced by an explicit construction of the 

dictionary, based on the assumption that image patches change little in structure and location 

between successive time frames. For every patch, a number of sets with a fixed number of 

patches are constructed by taking a patch around the same location (allowing for some 

translation) in a number of reference images, one of which is the time frame immediately 

preceding the frame to be reconstructed. Combined with an L2 temporal regularization, the 

resulting method  is called Patch-based Reconstruction Of Under-sampled Data (PROUD) and is 

applied to dynamic imaging data with frames that are ~250ms apart. Through phantom and in 

vivo studies, it is shown that PROUD is able to maintain the high spatial and temporal frame rate 

obtained with TRACER while allowing for increased SNR, reduction of temporal footprint, and 

reduced undersampling artifacts. 

THEORY 

The PROUD algorithm reconstructs dynamic highly undersampled data: in this work a 

single spiral leaf is used to reconstruct each frame, assuming a fully sampled image is available 

for the first time frame (see below). To allow a reconstruction, the regularization used in 

PROUD is based on the observation that the local structure of the image is largely preserved 

between successive frames in high frame rate dynamic imaging. An additional temporal 

regularization is used to suppress temporally varying residual undersampling artifacts. In 

previous approaches (13,14), differences between successive frames were constrained on a 

global, image based level. To constrain differences on a local level, we use image patches. Patch 



based image regularization has proven very successful in image processing algorithms such as 

denoising (26).   

In this work, each     patch       around pixel (   ) of the unknown image   is 

assumed to be a linear combination of a small number of     patches taken from a dictionary 

of patches       specific to the pixel (   ). This dictionary is constructed by taking     patches 

from an     neighborhood around the pixel (   ) selected by       from a set   constructed 

from    reference images that are assumed to represent the local structure of the unknown image 

  well. For each pixel (   ), the dictionary    contains a set of patches     . Each set      has    

patches of size     selected around pixel (   ) in each of the    reference images. Therefore, 

the dictionary    has size (     )     (   ), where    and    are the number of 

columns and rows of   , respectively. Note that for pixels near the edge of the field of view, zero 

padding was used in the construction of patches when needed. Therefore, the following 

minimization problem was solved in order to obtain a solution   
  for each time        :                 
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   ∑ ‖                   ‖ 

 
      

            ‖      ‖  
   [1] 

where    is the sampled k-space data for all coils,   is the total number of time frames,   

is the operator that multiplies the image    with each of the coil sensitivities (  )        
,    is 

the number of coils,    is the spatial Fourier transform,    is the projection of k-space unto the 

spiral leaf acquired at time  . Each vector        has linear coefficients       (   ) with   

       and         , with    (     )  (     ) the number of overlapping 

patches of size     that fit within a     neigborhood. Note that, here, we index the vector 

       with two indices for clarity. On the vectors       , a composite    norm was defined as 
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   }. Therefore, the constraint in Eq. 1 

ensures that only one set of patches from the dictionary        is selected. This reflects the 

constraint that an image patch is expected to move only slightly between time frames and can 

change in scale (DC component) as well. The latter will be the case for contrast enhanced 

imaging. Note that, compared to conventional dictionary learning approaches, the number of 

non-zero linear coefficients is always set to    and that only certain combinations of patches are 

allowed, i.e., those that were derived from the same pixel location in the     reference images. In 

this work,    was constructed from the following reference images: the previously reconstructed 

image     
 

 and a composite image reconstructed from all acquired data, which in dynamic 

imaging is fully sampled or even oversampled. In vivo, to further improve robustness to through 

plane motion,     included reference images derived from         neighboring slices 

reconstructed from all acquired data as well. The minimization of the patch constraint term in 

Eq. 1 is simplified by orthonormalizing each set of patches from the dictionary       , such that 

the optimal linear combinations       (   ) can be computed using a simple projection (see last 

paragraph of Appendix B). A general depiction of Eq. 1 for one time frame is shown in Fig. 1. 

Note that in Fig. 1, the displayed set of patches is not orthonormalized for clarity of presentation 

only.  

 As in TRACER (13), an initial guess    for the first frame was reconstructed from the 

first fully sampled set of data, which is typically available in dynamic imaging. For the contrast 

enhanced imaging application, this assumes no contrast agent has entered the field of view until 

after the first fully sampled set of data is acquired. This requirement can be considerably relaxed 

by taking the same fully sampled reconstruction image and perform a PROUD (or TRACER, see 

below) reconstruction backwards in time from the end of the fully sampled data set towards the 



beginning, after which the reconstruction is again performed now going forward in time. This 

allows a better guess for the first time frame. The coil sensitivities (  )        
 are derived by 

dividing low resolution coil images by their root sum of squares. These low resolution coil 

images were obtained from all acquired data in the dynamic acquisition, which typically is long 

enough to provide a highly oversampled, high SNR reconstruction. The determination of the 

regularization parameter   is described below. 

For high temporal resolution imaging, a new frame is reconstructed for each newly 

acquired set of k-space data (13), which is assumed to be acquired in a small time interval in 

order to satisfy the assumption of smooth temporal changes. With PROUD (and TRACER, see 

below), a single spiral leaf (collected for all slice encodings in the case of 3D imaging) is used to 

update each temporal frame, typically at a rate of ~250 ms. The angle between two successive 

spiral leaves is based on the golden ratio (13,28,29).  

In a second step, temporal smoothness was enforced to overcome the temporally varying 

residual undersampling artifacts in the reconstructed images. This regularization provides 

smooth time courses for contrast enhancement curves simplifying post-processing. This was 

done by solving:  
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Eqs. 1&2 are solved by extending the method used in (24) to the multi-channel non-

Cartesian case. A detailed derivation is shown in Appendix B.  The solver algorithm iterates 

between solving for        and solving for   . Since spiral data was acquired in this study, non-



uniform fast Fourier transforms were performed using NUFFT (30,31).  The dictionary    for 

each frame    was constructed in the same way as for Eq. 1.   

The patch and temporal regularization parameters,   and  , were determined 

automatically by the solver. To find  , we estimated a solution for   
  by excluding the 

regularization term from Eq. 1: 
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  [3] 

Because of the severe undersampling by   , which projects onto a single leaf, this was 

iteratively solved by using    as the initial guess and halting the iterations when the image 

update between iterations no longer decreased, similar to the stopping criterium used in 

TRACER (13).  Next, a vector       
  was found by solving (see Appendix B): 
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Using the discrepancy principle (32), the regularization parameter   was then chosen 

such that the two terms in Eq. 1 were equal for the values of    
  and       

  obtained in Eqs 3 and 

4, respectively. The value of   was then kept constant for all remaining time frames. After Eq. 1 

was solved for all time frames, the regularization parameter   was obtained by demanding that 

the first term (data term) equaled the third term (temporal term) in Eq. 2 when   
  and       

  

(       ) were set to the solutions of Eq. 1.  Appendix A outlines the PROUD reconstruction 

algorithm in detail.  

In the experiments below, the performance of PROUD will be compared TRACER, a 

previous method to perform high frame rate reconstructions. For clarity, a brief description of 



this method is included here. Using the notation introduced above, TRACER aims to solve the 

following equation: 
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  [4a] 

which is similar to the data term in Eq. 1 for a single time frame, except for the fact that the coil 

sensitivities are now considered to be unknown as well and are allowed to vary over time. This 

makes Eq. 4a a non-linear least squares problem in the variable      {                     }. It 

is solved using the Levenberg–Marquardt (LM) algorithm, which iteratively determines an 

update       {                        } to an initial guess                        . To deal 

with the high undersampling, each frame    was reconstructed using the previous frame as the 

initial guess :           and the iteration was stopped when the norm of the update 

‖     ‖ stopped decreasing (13). The underlying assumption is the change in image content     

is small between successive time frames. Note that in contrast to PROUD the difference between 

successive frames is measured using  a single norm of the entire image update. All reconstruction 

parameters were automatically determined based on the data as described in (13). 

METHODS 

Optimization of reconstruction parameters 

To characterize the PROUD algorithm, a numerical phantom simulating dynamic liver 

perfusion was created (Fig. 2a) similar to the phantom in (13). The noiseless phantom   
   (  

     ) was multiplied by simulated coil sensitivity maps (eight channels), and sampled with a 

spiral trajectory. For each time frame, a cutoff of              with a maximum of 100 and 5 

iterations was used for the first (Eq. 1) and the remaining temporal iterations (Eq. 2), 



respectively. Five temporal iterations were used in solving Eq. 2.The patch size was determined 

by solving Eq. 1 for a range of sizes: square patches of size              and    pixels were 

tested. The root mean square error     , defined as 

      √∑ ‖     
   ‖ 

 
   [5] 

 was calculated to determine the optimal patch size. The background of the phantom was 

excluded from the norm in Eq. 5. The neighborhood size was then set       to reduce the 

increase in computation time while still allowing small local translational motions of image 

patches between successive time frames. 

Numerical phantom SNR 

Thirty sets of randomly generated Gaussian noise was added to the numerical phantom 

described above. A fully sampled first frame was assumed. The phantoms were then 

reconstructed using PROUD with the reconstruction parameters obtained above and using the 

TRACER algorithm (1) for comparison.  A contrast-to-noise ratio     was computed as  

                –                 [6] 

where           and                 are the signal-to-noise ratios within a region of 

interest (ROI) in the respective anatomies.  Pixel-wise     was computed at each time-point by 

taking the mean of each pixel in an ROI over the 30 reconstructions divided by the standard 

deviation of each pixel. The mean of the pixel-wise     values was then taken over the ROI. 

Numerical phantom temporal footprint 

Temporal phantoms were developed (Fig. 2b) to characterize the temporal response of 

the PROUD algorithm compared to TRACER. Each phantom consists of a central disk with 



diameter (DIA) equal to 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 

0.75, 0.8125, 0.875, 0.9375, 1 times the FOV superimposed onto a larger disk with diameter 

equal to the FOV. The contrast in the central disk was changing over time, such that the 

enhancement curve was Gaussian. The temporal footprint (TF), used to characterize the length of 

the enhancement curves, was defined as the full width-half maximum (FWHM) of the Gaussian 

curves:     √       . The TF of the curves was varied between 0.5, 1, 2, 5, 7, 10, 15 and 20 

seconds. This resulted in 120 unique numerical phantoms. These noiseless phantoms were 

multiplied by simulated coil sensitivity maps and sampled along a spiral trajectory.  A fully 

sampled first frame was assumed and the phantom was reconstructed with PROUD and 

TRACER for comparison. For PROUD, the phantoms were reconstructed both with Eq. 1 and 2 

to allow for analysis of the effects of temporal regularization. The phantoms allowed for the 

estimation of the temporal footprint and lag. The reconstructed curve was temporally shifted and 

compressed to maximize its cross-correlation with respect to the true simulated curve. The 

measured temporal footprint (TFMEAS) of the reconstructed curve was taken as the true temporal 

footprint divided by the obtained compression factor. The measured temporal lag was defined as 

the obtained temporal shift (in sec). Differences in the amplitude of the measured curve 

compared to the true curve were not taken into account.  

In vivo liver MRI experiments 

 In vivo data were acquired using a golden angle 3D dynamic multi-phase spiral LAVA 

sequence using a stack of variable density spiral trajectory (1). Five candidate liver donors 

imaged with this acquisition were selected retrospectively in accordance with an institutionally 

approved IRB protocol. The acquisition acquired data continuously for 60 sec, while the patients 

were given repeated breath-hold instructions. Other imaging parameters were: 1.5T (Ge 



Healthcare, Waukesha, WI), 48 variable density spiral leaves (density of 2 in the center of k-

space, 0.7 at the periphery), acquisition matrix 256x256x(34-60), slice thickness 5 mm, FOV 32-

48cm, bandwidth ±62kHz, fat suppression, 8 channel cardiac coil, and Magnevist/Eovist (Bayer 

Healthcare) injected at a dose based on patient weight. Since breathing motion was present, 

additional high SNR images created from all sampled data at 3 slices above and below the 

reconstructed slice were added to the dictionary Dt. 

CNR was computed in vivo as 

       (       –             )       ⁄  [7] 

 where        and                 is the mean signal in a ROI in the aorta and portal vein, 

respectively, and          the signal standard deviation in an ROI of homogenous liver tissue 

near both the aorta and portal vein ROIs. This is computed for each time frame and is a surrogate 

measure for how well the arterial phase is visualized (13). 

All PROUD and TRACER reconstructions were done either on a Dell Studio XPS 8100 

(Intel i7 2.8 GHz processor, 16 GB RAM, Windows 7, Matlab R2011b) or a Dell PowerEdge 

R910 Server (64 cores, 64 GB RAM, Red Hat Linux, Matlab R2009a). Statistical significance 

(      ) was determined by using a paired two-tailed student’s t-test in Microsoft Excel 2013. 

RESULTS 

Parameter selection 

Optimal patch size was determined to be 7x7 pixels as it resulted in the smallest RMSE 

(Figure 3) and neighborhood size was then set to be 9x9 pixels. 



Phantom SNR test 

Both algorithms provided similar contrast enhancement curves (Fig 4a). The PROUD 

aorta curve slightly preceded the TRACER aorta curve (Fig. 4a&b), but both lag the reference 

aorta curve. PROUD provided almost 3.66x higher peak     compared to TRACER (Fig. 4c). 

PROUD without the temporal regularization (denoted by PROUD    ) obtained essentially 

the same peak    . The dip in the PROUD     was due to increased undersampling artifacts 

associated with rapid signal changes, such as the enhancing aorta and portal vein. 

Phantom temporal footprint 

Fig. 5 shows the results from the testing of the temporal response of PROUD compared 

to TRACER. For larger objects (>50% FOV) and longer temporal footprint (> 5 sec) – indicated 

by a black dot in Fig. 5 – the curves reconstructed with TRACER and PROUD had measured 

temporal footprints that were very close to those of the reference curves and temporal lags below 

0.5 seconds.  

For all methods, temporal lag decreased for larger objects and increased for larger 

temporal footprint. Overall TRACER had a higher temporal lag than PROUD.  In addition, there 

was a larger discrepancy between TRACER and PROUD for smaller objects (FOV 12.5%-

43.8%).  For larger objects (FOV = 81.3% and greater) with very short temporal events (0.5  - 1 

sec temporal footprint), PROUD had a longer temporal lag than TRACER. 

The measured temporal footprint for TRACER and PROUD were similar for objects of 

size 37.5% of the FOV and greater. The PROUD reconstruction using temporal regularization 

(Eq. 2) had a slightly larger measured temporal footprint compared to the PROUD reconstruction 

without (Eq. 1). In addition, for fast temporal events (~ 5 sec temporal footprint and less), there 



was some discrepancy in the methods. In general, for smaller objects TRACER had an increased 

measured temporal footprint. However, from objects sized equal or greater than 50% of the 

FOV, the temporal regularization of Eq. 2 made the measured temporal footprint larger than both 

TRACER and PROUD without the temporal regularization, with the largest difference around 1 

sec. Finally for the three smallest objects (FOV = 12.5 – 25%), the measured TRACER temporal 

footprint is smaller than the true temporal footprint, when the latter exceeds 2 to 3 sec. 

Fig. 6 shows examples for three of the curves analyzed in Fig. 5. In Fig. 6A for a short 

TF with small DIA, TRACER (TFMEAS =7.5s , Temp. Lag =1.9s ), PROUD No Temp. Constr. 

(TFMEAS = 1.6s, Temp. Lag =1.6s) and PROUD w/ Temp. Constr. (TFMEAS =2.4s , Temp. Lag 

=1.4s) had large errors in reconstructing the true curve.  In Fig. 6B as the TF and DIA grow, 

TRACER (TFMEAS =5.1s , Temp. Lag =1.8s), PROUD No Temp. Constr. (TFMEAS = 5.1s, Temp. 

Lag =1.4s) and PROUD w/ Temp. Constr. (TFMEAS = 5.3s, Temp. Lag =1.3s), had improved 

performance compared to the smaller DIA/TF. Finally in Fig. 6C with a large TF and DIA, all 

methods provided curves similar to the truth: TRACER (TFMEAS = 20.0, Temp. Lag =0.1s), 

PROUD No Temp. Constr. (TFMEAS = 20.0s, Temp. Lag =0.3s) and PROUD w/ Temp. Constr. 

(TFMEAS =20.1s , Temp. Lag =0.3s). 

In vivo testing 

Over the 5 in vivo datasets, the images reconstructed using PROUD had a peak     of 

42 ± 18 compared to 26 ± 12 using TRACER resulting in a 60% improvement in peak     (p = 

0.008). Fig. 7 shows a single temporal frame reconstructed with the PROUD and TRACER 

methods in two patients. Improvements in SNR were seen using PROUD, while TRACER 

clearly suffered from increased noise in the reconstruction. The magnified regions of interest for 

each of the liver images indicates that PROUD allowed preservation of image detail. A video 



comparing PROUD and TRACER reconstructions in the same subject is available as online 

supplementary material. 

Fig. 8 shows the signal and     curves for patient in Fig. 7. In-vivo for Eq. 1, the 

preliminary pure Matlab (Natick , MA) implementation of PROUD took an average of 4.3 ± 0.1 

minutes to reconstruct one temporal frame resulting in a total reconstruction time of 10.3 hours 

for 144 frames (as measured in one volunteer). 

DISCUSSION 

The results presented in this work demonstrate the feasibility of using a combination of a 

patch based image constraint with a temporal regularization to provide improved CNR in 

phantoms while maintaining or improving temporal fidelity and to provide an increase in CNR of 

up to 60% in vivo compared to TRACER.  This reduction in noise (as seen by the increase in 

CNR) can be attributed to the patch-based dictionary methods employed in the PROUD method. 

Patch level dictionary learning has previously been shown to be useful in de-noising problems 

(26,27) and has been shown to improve PSNR compared to a ground truth in MRI data (24). 

Temporal characterization of PROUD against TRACER gave similar performance for 

larger objects and slower temporal events. For short temporal events or small objects there were 

some discrepancies between the methods. TRACER had increased temporal lag and somewhat 

larger measured temporal footprint with smaller object size at shorter temporal events. This may 

be due to differences in the reconstruction methods of TRACER and PROUD. Importantly, 

TRACER is subject to blurring of edges during fast signal changes. This is shown in Fig. 4d of 

(13), where the blurring of the aorta edge around peak aorta enhancement increased its apparent 

diameter. This blurring will effect smaller objects more and is most likely the cause of the 



increase in the measured temporal footprint and some of the temporal lag. This artifact was 

reduced in PROUD, however, since the dictionary-based method allows for a better delineation 

of edges during contrast changes. This is because this edge information is available in the image 

reconstructed from all available data which was used in the dictionary for each frame. In 

addition, with PROUD regularization is done on a local level while TRACER implements global 

image regularization. In our analysis, the method of determining the temporal lag and 

compression factor via compression and cross-correlation may be affected by the fact that 

response function in TRACER only is non-zero for positive time, see Fig. 3a in (13), while, due 

the temporal smoothness constraint, PROUD has a bi-directional temporal spread. These reasons 

may also explain the reason why TRACER exhibits an apparent negative lag for the three 

smallest objects (FOV = 12.5 – 25%), which is likely an artifact of the specific way in which lag 

was measured in this work. Overall it is important to note, that for both methods, temporal 

response was a factor of both the temporal event length and the size of the feature being 

evaluated.  

Finally, in comparison to TRACER, PROUD is able to reduce residual temporal 

flickering artifacts due to the addition of Eq. 2. This temporal fidelity constraint forces 

neighboring frames to be similar over time therefore penalizing rapid temporal changes (e.g. 

flickering). There are differences to be noted however in the temporal performance of PROUD 

with Eq. 1 only and PROUD with Eq. 2. In general, Eq. 1 (and sometimes TRACER with larger 

objects) provided slightly better measured temporal footprint than Eq. 2. This is mainly due to 

the fact that the temporal term in Eq. 2. may introduce some degree of temporal blurring. The 

effect of temporal blurring was observed to be small, except in fast changing temporal signals. 

Improvement may be possible in future implementations replacing the   -norm on the temporal 



term with an    norm, as was done in (23). It should be noted, however, that a small degree of 

temporal blurring is still present for large acceleration factors using this norm (23).  

 There were some limitations in this work. The size of the neighborhood in constructing 

the atoms for the dictionary was relatively small: 2 pixels larger than the patch size itself. This 

was done two reasons: 1) the assumption was made that the motion between frames was small, 

and 2) increasing the neighborhood increased the computational cost of the algorithm, since each 

patch in the unknown image would have to be compared with a larger number of atoms in the 

dictionary. In vivo validation was only done in subjects that were assumed to be healthy. Further 

studies may be warranted to evaluate the performance of PROUD in patients presenting with 

liver dysfunction (i.e. fibrosis, hepatocellular carcinoma, etc.). In addition, reconstruction time 

for the current pure Matlab implementation of PROUD was long (4.3 minutes to reconstruct one 

frame of one slice with Eq. 1). However, reconstruction time can be reduced through 

implementation in C code and GPU parallelization. Future implementations of PROUD may 

warrant automatic patch and neighborhood size determination, which could be done by analyzing 

the residual in Eq. 10a for varying patch/neighborhood size.  

 CONCLUSION 

The proposed PROUD algorithm combines an image patch based regularization 

combined with a temporal regularization to enable high SNR, high temporal frame rate and 

spatial resolution 4D imaging that can improve in vivo peak     by up to 60% compared to 

previous methods while maintaining adequate temporal fidelity. 
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TABLES 

TABLE 1 Symbols Used in the Text 

  Time index 

    Image space pixel locations 

      K-space pixel locations 

   Image to be reconstructed at time   

   Number of columns of    

   Number of rows of    

  Patch size (in pixels) 

    vt Selects an     patch centered around a pixel     

  Neighborhood size (in pixels).     

   Image-based dictionary at time    

   Number of reference images used for the reconstruction of the dictionaries    

    vt-1 Selects all sets of    patches of size      with an     neighbourhood centered at pixel      

   Multi-channel spiral k-space data acquired at time   

   Number of RF coils used  

   Coil sensitivity map of the  th channel,          

  Operator that maps an image   to the coil images (   )        
 

  Fourier transform 

   Under-sampling operator projecting Cartesian k-space on the spiral k-space acquired at time   

       Vector of dictionary coefficients for a patch at time   around pixel      

   Number of spiral leaves needed for a Nyquist reconstruction 

        Relative change between successive solutions that will halt the iterative solver. 

     
  Number of temporal iterations for solving Eq. 2. 

   True temporal footprint (FWHM) of the numerical temporal phantoms 

       Measured temporal footprint of the numerical temporal phantoms 

    Diameter (as a % of the FOV) of the central disk in the numerical temporal phantoms 

 

  



FIGURES 

Figure 1. A diagram of the PROUD reconstruction algorithm for one temporal frame. 

Patch size is 5x5 with a neighborhood size of 7x7. 

 

Figure 2. (A) A numerical phantom simulating liver perfusion indicating the various 

simulated organs, including the inferior vena cava (IVC) (B). Temporal footprint phantom with 

inner diameter = 0.5*FOV. 

 

Figure 3 – Root Mean Squared Error (RMSE) vs. patch size. 7x7 pixels was chosen to be 

the optimal patch size.  

 

Figure 4 – Comparison of PROUD, PROUD     (i.e., without temporal regularization)  

and TRACER in a numerical liver phantom (A) Average signal intensity of various regions of 

interest in the numerical phantom with noise standard deviation = 0.003. (B) Magnified region of 

interest showing the aorta enhancement curves around their peak enhancement. (C) CNR 

averaged over 30 noisy phantoms. The dip in CNR of the PROUD curve is due to increased 

reconstruction errors at the edges of the aorta and portal vein, which increase the standard 

deviation in the ROIs near the edges. 

 

Figure 5 – (A) Temporal (Temp.) lag and (B) measured temporal footprint (TFMEAS) 

values determined using cross-correlations of the reconstructions from TRACER and PROUD 

compared to the true phantom curves with varying diameter (DIA) and temporal footprint (TF). 



PROUD     is the solution to Eq. 1 and PROUD to Eq. 2. A black dot indicates the position 

corresponding to DIA>50% FOV and TF>5sec in each of the plots. 

 

Figure 6 – Examples of curves analyzed in Fig. 5. (A) A very short temporal event (TF = 

0.5 sec) with a small diameter object (12.5% FOV). (B) A medium size temporal event (TF = 5 

sec) with a mid-sized diameter object (50% FOV). (C) A long temporal event (TF = 20 sec) with 

a large diameter object (100% FOV). 

 

Figure 7 –In vivo image reconstruction using PROUD and TRACER in two patients. 

Note the reduction in noise (increase in SNR) utilizing the PROUD method. The second row for 

each patient shows a magnified region of interest. Note that image details are preserved on 

PROUD compared to TRACER. 

 

Figure 8 – (A) In vivo perfusion curves for aorta, portal vein and liver and (B) aorta—

to—portal vein CNR curve for the same volunteer as in Fig. 7. A comparison is made between 

PROUD, PROUD     (i.e., without temporal regularization) and TRACER. 

 

 

 

  



APPENDIX A: PROUD Reconstruction Algorithm 

                (  )  

1) Reconstruct a reference    using the first    spiral leaves  

2) Reconstruct a composite image      using all spiral leaves  

3) Compute the coil sensitivity maps (  )        
 using      

4) Solve Eqs 3&4, obtaining initial estimates of   
  and       

   

5) Set   such that the two terms in Eq. 1 are equal for the solutions in step 4. 

6) Solve Eq. 1 for all time frames: 

 for          

   
               

 (             ) 
         

  and     

   ‖  
       ‖ ‖  

 ‖ 

              (         ) 
 while             

find       
  by fitting   

  against the patch dictionary    using Eq. 10a,b 

create the patch averaged image   
  ∑     

       
             

compute new image estimate   
  using Eq. 9a 

  ‖  
       ‖ ‖  

 ‖ 

        
  and       

 end 

      
  and              

  

 end 

7) Set   such that the terms 1 and 3 in Eq 2 are equal for the solutions obtained in step 5. 

8) Solve Eq. 2 using the solutions obtained in step 5 as initial guess: 

         and                 

 for              
  

 for          

                     
 (               ) 

      ⁄ (                ).  

               (           )  

find          by fitting      against the patch dictionary      using Eq. 10a&b 

 create the patch averaged image      ∑     
         

             

compute new image estimate      using Eq. 9b 

end 

end 

         and                 

 

            (        
)  

1) From each         
, take a patch of size     around pixel (   ) to form a set     .  

2) Orthonormalize each set       

3) For every pixel (   ) collect all sets      in an     neighborhood centered on pixel     



APPENDIX B  

In the following, we detail the solver used for Eqs. 1&2. The method goes back and 

forward between solving for   
  and solving for the patch weights        .     

Eqs. 1&2 are solved by extending the method in (24) to the multi-channel non-Cartesian 

case.  We start by assuming         to be fixed to some appropriate initial values. Then Eq. 1 

  
        

  

‖         ‖ 
   ∑‖                   ‖ 

  

   

  

A solution for   
  is obtained by setting the derivative of the cost function to zero, 

resulting in 

       
       ∑     

         
 

   

       
     ∑    

             

   

 

Where      
      is equal to    where   is a scaling factor equal to   , after appropriately 

taking into account patches at the edge of the FOV. Therefore: 

       
             

        
     ∑    

             

   

 

Note that              , by the fact that the Fourier transform is unitary and the 

fact that       is a diagonal matrix with entries equal to  ∑    
      (by construction). Therefore 

    (  
       )    

        
     ∑    

             

   

 

By applying    on both sides, we obtain 

 (  
       )    

    
           [8] 



where    
 

 
∑     

                 is the “patch averaged image”. Here   
     “zeroes out” 

any k-space that is not on the spiral trajectory corresponding to time frame  . By writing 

         
          (    

   )      , we can apply the inverse of the diagonal 

matrix on both sides of Eq. 8: 

    
  

 

    
(  

      
         )  

 

  
(    

   )       

   
    is simply the sampled k-space locations zero-padded to the matrix size.    can be 

incorporated into   such that we can substitute         as in (24) . This can be simplified to 

   
      

 

   
      

 (           ) [9a] 

The added temporal regularization term in Eq. 2 similarly leads to: 

    
   

       

   
 

 

     
      

 (       
       

   
  ) [9b] 

Where    
 

 
(     

      
 ). To speed up convergence, new estimates of   

  are used in the 

initialization and in the regularization term for subsequent time frames as soon as they become 

available. 

Once an updated guess for an image   is available, the patch weights        are updated as 

follows. For every pixel (   ), a set   of    patches is found that maximizes the projection of 

patch       onto the set   : 

                 
| (       )| [10a] 



where  (       )  ∑            . Note that, by construction, each set         is an 

orthonormal basis with    elements. Once the optimal patch set    is found, the patch weights 

are set equal to the linear coefficients in this basis: 

      {       }
     [10b] 

 

  



 

Figure 1. A diagram of the PROUD reconstruction algorithm for one temporal frame. Patch size 

is 5x5 with a neighborhood size of 7x7. 

  



 

Figure 2. (A) A numerical phantom simulating liver perfusion indicating the various simulated 

organs, including the inferior vena cava (IVC) (B). Temporal footprint phantom with inner 

diameter = 0.5*FOV. 

  



 

Figure 3 – Root Mean Squared Error (RMSE) vs. patch size. 7x7 pixels was chosen to be the 

optimal patch size.  



 

Figure 4 – Comparison of PROUD, PROUD γ=0 (i.e., without temporal regularization)  and 

TRACER in a numerical liver phantom (A) Average signal intensity of various regions of 

interest in the numerical phantom with noise standard deviation = 0.003. (B) Magnified region of 

interest showing the aorta enhancement curves around their peak enhancement. (C) CNR 

averaged over 30 noisy phantoms. The dip in CNR of the PROUD curve is due to increased 

reconstruction errors at the edges of the aorta and portal vein, which increase the standard 

deviation in the ROIs near the edges. 

  



 

Figure 5 – (A) Temporal (Temp.) lag and (B) measured temporal footprint (TFMEAS) values 

determined using cross-correlations of the reconstructions from TRACER and PROUD 

compared to the true phantom curves with varying diameter (DIA) and temporal footprint (TF). 

PROUD γ=0 is the solution to Eq. 1 and PROUD to Eq. 2. A black dot indicates the position 

corresponding to DIA>50% FOV and TF>5sec in each of the plots. 

  



 

Figure 6 – Examples of curves analyzed in Fig. 5. (A) A very short temporal event (TF = 0.5 sec) 

with a small diameter object (12.5% FOV). (B) A medium size temporal event (TF = 5 sec) with 

a mid-sized diameter object (50% FOV). (C) A long temporal event (TF = 20 sec) with a large 

diameter object (100% FOV). 



 

Figure 7 –In vivo image reconstruction using PROUD and TRACER in two patients. Note the 

reduction in noise (increase in SNR) utilizing the PROUD method. The second row for each 

patient shows a magnified region of interest. Note that image details are preserved on PROUD 

compared to TRACER. 

  



 

Figure 8 – (A) In vivo perfusion curves for aorta, portal vein and liver and (B) aorta—to—portal 

vein CNR curve for the same volunteer as in Fig. 7. A comparison is made between PROUD, 

PROUD γ=0 (i.e., without temporal regularization) and TRACER. 

 


