
Expected Patch Log Likelihood with a Sparse
Prior

Jeremias Sulam and Michael Elad

Computer Science Department, Technion, Israel

{jsulam,elad}@cs.technion.ac.il

Abstract. Image priors are of great importance in image restoration
tasks. These problems can be addressed by decomposing the degraded
image into overlapping patches, treating the patches individually and
averaging them back together. Recently, the Expected Patch Log Like-
lihood (EPLL) method has been introduced, arguing that the chosen
model should be enforced on the final reconstructed image patches. In
the context of a Gaussian Mixture Model (GMM), this idea has been
shown to lead to state-of-the-art results in image denoising and deblur-
ing. In this paper we combine the EPLL with a sparse-representation
prior. Our derivation leads to a close yet extended variant of the popular
K-SVD image denoising algorithm, where in order to effectively maxi-
mize the EPLL the denoising process should be iterated. This concept
lies at the core of the K-SVD formulation, but has not been addressed
before due the need to set different denoising thresholds in the successive
sparse coding stages. We present a method that intrinsically determines
these thresholds in order to improve the image estimate. Our results show
a notable improvement over K-SVD in image denoising and inpainting,
achieving comparable performance to that of EPLL with GMM in de-
noising.

Keywords: K-SVD, EPLL, MAP, Sparse Representations, Image Restora-
tion.

1 Introduction

Inverse problems in image processing consist of recovering an original image that
has been degraded. Denoising, debluring and inpaiting are specific and common
such examples. Put formally, these problems attempt to recover an underlying
image x given the measurement y such that

y = Ax + n, (1)

where A is a known linear operator and n represents measurement noise, as-
sumed to be independent and normally distributed. In dealing with this problem,
it is common to work with image priors as regularizers and develop a Maximum
a Posteriori (MAP) estimator for the unknown image x̂. This can be formulated
as an optimization problem where we look for an estimate which is close enough

to the measured image while being likely under this prior. Most state of the
art methods employ, either implicitly of explicitly, some prior knowledge of this
form [6, 10, 8, 4].

Learning specifics priors from real data has shown to enable better perfor-
mance under this approach [7, 12]. However, this learning process is computa-
tionally hard and it is usually restricted to small dimensions, which leads nat-
urally to the modeling of small image patches [1, 15]. Such methods attempt to
address the image restoration problem by breaking the image into small overlap-
ping patches, solving their MAP estimate, and tiling the results back together
by averaging them [6, 4, 3]. While this is a common and practical strategy, it is
also known to cause visible texture-like artifacts in the final image. Recently,
Zoran and Weiss [16] proposed a general framework based on the simple yet ap-
pealing idea that the resulting final patches should be likely under some specific
prior, and not the intermediate ones. Their approach is based on maximizing
the Expected Patch Log Likelihood (EPLL) which yields the average likelihood
of a patch on the final image under some prior. This idea is general in the sense
that it can be applied to any patch-based prior for which a MAP estimator can
be formulated. In particular, the authors in [16] employed the classic Gaussian
Mixture Model prior achieving state of the art results in image denoising and
deblurring.

The concept of sparsity is a recurring idea in most state of the art restoration
methods; namely, a natural signal or image patch can be well represented by a
linear combination of a few atoms from a dictionary [2, 8]. This leads to the
natural question, could we use the EPLL framework with a sparsity-inspired
prior? If so, how is this related to existing methods that explicitly target this
problem and what is there to gain from this approach? In this paper we explore
and formally address these questions, showing that indeed benefit can be found
in employing EPLL with a patch sparsity-based prior.

2 Expected Patch Log Likelihood

We begin by briefly reviewing the EPLL framework as described in [16]. Given
an image x, the Expected Patch Log Likelihood under some prior p is defined as

EPLLp(x) =
∑
i

log p(Pix), (2)

where Pi extracts the ith patch from x. Therefore, given the corruption model
in Eq. (1) we can propose to minimize the following cost function:

fp(x|y) =
λ

2
||Ax− y||22 − EPLLp(x), (3)

where the first term represents the log likelihood of the image. To get around
the hard optimization of this function, the authors in [16] propose to use a Half

Quadratic Splitting strategy by defining auxiliary patches {zi} for each patch
Pix, and then minimizing

cp,β(x, {zi}|y) =
λ

2
||Ax− y||22 +

∑
i

β

2
||Pix− zi||22 − log p(zi) (4)

iteratively, while increasing the value of β. Note that for β → ∞, zi → Pix,
so this parameter controls the distance between the auxiliary patches and the
patches of the image x. For a fixed value of β, the cost function is again broken
into a two step inner minimization: first fix {zi} and solve for x by

x =
λATy + β

∑
iP

T
i z

i

λATA + β
∑
iP

T
i Pi

.1 (5)

Then, fix x and solve for {zi} by solving the MAP estimate for each patch under
the prior in consideration. This process should be repeated 4-5 times, before
increasing β and repeating the whole process again. Each time, the patches are
taken from the image estimate at each iteration.

Within the EPLL scheme, the choice of β is crucial. In [16] the authors set this
parameter manually to be 1

σ2 [1, 4, 8, 16, 32, . . .], where σ is the noise standard
deviation. In the same work it is also suggested that β could be determined
as β = 1

σ2 , where σ is estimated in every iteration by an off-the-shelf white
Gaussian noise estimator.

3 EPLL with a Sparse Prior

In the original formulation, Zoran and Weiss propose to use a Gaussian Mixture
Model (GMM) prior which is learnt off-line from a large number of examples. In
their case, the MAP estimator for each patch is simply given by the Wiener filter
solution for the Gaussian component with the highest conditional weight [16].
However, the EPLL approach is a generic framework for potentially any patch-
based prior. We now turn to explore the formulation of an equivalent problem
with a sparsity inducing prior.

3.1 Cost function formulation

Consider the signal z = Dα, where D is a redundant dictionary of size n ×m
(n < m), and the vector α is sparse; i.e., ||α||0 � n, where the l0 pseudo-norm
|| · ||0 basically counts the non zero elements in α. Assuming that this is the
model we impose on our patches zi, Eq. (4) becomes

cµ,β(x, {αi}|y) =
λ

2
||Ax− y||22 +

∑
i

β

2
||Dαi −Pix||22 + µi||αi||0. (6)

1 Note that this an abuse of notation as the denominator is a diagonal matrix to be
inverted.

In this case, µi reflects the trade-off between the accuracy of the representation
and the sparsity of αi. For the case β = 1, this last expression corresponds exactly
to the formulation of the K-SVD denoising algorithm in [6], where A = I. In
this work, Elad and Aharon proposed to use a block-coordinate minimization
that starts by fixing x = y, and then seeking the optimal αi solving the MAP
estimator for each patch:

α̂i = arg min
α

µi||αi||0 + ||Dαi −Pix||22. (7)

Though this problem is NP-hard in general, its solution can be well approximated
by greedy or pursuit algorithms [5]. In particular, the Orthogonal Matching
Pursuit (OMP) [14] can be used with the noise energy as an error threshold
to yield an approximation of the solution to Problem (7), and we employ this
method in our work due to its simplicity and efficienty [13]. This way, µi is
handled implicitly by replacing the second term by a constraint of the form

min
α
||α||0 subject to ||Dα−Pix||22 ≤ ncσ2, (8)

where c is a constant factor set to 1.15 in [6]. Given the estimated sparse vectors
{α̂i}, the algorithm proceeds by updating for the unknown image x which results
in an equivalent expression to that in Eq. (5) - for a specific value of β. When
denoising is done locally (training the dictionary on the corrupted patches) the
dictionary gets updated together with the sparse vectors by using a K-SVD step.
This adaptive method that trains the dictionary on the noisy image itself has
proven to be better than using a dictionary trained offline.

The initial claim in [6] is that the above block-coordinate minimization should
be iterated. In practice, however, repeating this process is problematic since after
updating x, the noise level has changed and it is spatially varying. Therefore,
the sparse coding stage has no known thresholds to employ. Thus, the algorithm
in [6] does not iterate after updating x.

Increasing β, as practised in [16], forces the distance ||Dαi − Pix||2 to be
smaller. Therefore, iterating the above algorithm for increasing values of β is
equivalent to iterating the process described for the K-SVD with smaller thresh-
olds. As we see, the algorithm proposed in [6] applies only the first iteration
of the EPLL scheme with a sparse-enforcing prior, therefore losing important
denoising potential. A synthetic example is shown in Fig. 1, where we compare
the algorithms in [6] and [16] with the method proposed in this paper.

We now turn to address the matter of the threshold design for later stages
of the K-SVD in order to practice the EPLL concept in an effective way.

3.2 Sparse coding thresholds

Consider the threshold in the sparse coding stage, at each iteration k, to be ν2k .
Naturally, in the first iteration of the process that aims to minimize Eq. (6) we
set this threshold to be exactly the noise energy σ2 for all patches; i.e. ν21 = σ2.
In the following iterations, however, instead of trying to estimate the remaining

Original Image Noisy Image. PSNR = 18.59 dB K−SVD. PSNR = 34.45 dB EPLL + KSVD. PSNR = 42.26 dB EPLL + GMM. PSNR = 37.72 dB

Fig. 1. Denoising of a synthetic image (σ = 30). A similar demonstration was presented
in [16], showing the benefits of the EPLL framework under a GMM approach. Note
the texture-like resulting artifacts in the result by K-SVD. This problems is notably
reduced by the EPLL with a Sparse Prior, the method we present in this work. We
include for comparison the result by [16]. The evolution of the Peak Signal to Noise
Ratios are depicted in Fig 4.

noise with an off-the-shelf algorithm, we propose an intrinsic alternative by using
the information we already have about each patch.

Consider the general problem of estimating the remaining noise after applying
K-SVD on the noisy image; i.e., the first iteration of our method. From a global
perspective, the estimated image can be expressed as

x̂ =

(
λAT +

∑
iP

T
i DSi

D+
Si
Pi
)

λATA +
∑
iP

T
i Pi

y, (9)

where Si denotes the support of the sparse vector α̂i chosen in the OMP, and
DSi

is the set of the corresponding atoms in the dictionary. Leaving aside the
selection of the support of each sparse vector, we can represent this operation
by a linear operator as

x̂ = L(x + n). (10)

Assuming for a moment that x̂ ≈ Lx, we could express the remaining
noise as nr = Ln, from which we could obtain the full covariance matrix as
Cov(nr) = σ2LLT . Then, we could either take into consideration the full covari-
ance matrix, or make the simplifying assumption of white noise by considering
just the diagonal of Cov(nr). Though appealing, this approach does not work
in practice because ||x̂ − Lx||2 is considerably large, and thus the estimate of
the remaining noise is considerably low. Also, note that L is a band matrix of
size N2 × N2, where N is the number of pixels, and so the estimation of its
covariance matrix is computationally intractable for practical purposes.

We thus turn to a similar but local alternative that will enable a practi-
cal solution. Each patch consists of the true underlying vector z0i and a noise
component vi, zi = z0i + vi. Given the chosen support Si, ẑi is obtained as a
projection onto the span of the selected atoms:

ẑi = DSiD
+
Si
zi = DSiD

+
Si

(z0i + vi) . (11)

Assuming now that z0i ≈ DSi
D+
Si
z0i (if the correct support of the signal was

chosen by the OMP), the contribution of the noise to the patch estimate would

0

1

2

3

4

0

2

4

6

8

0

5

10

15

Fig. 2. Left: plot of the diagonal of the covariance matrix Cov(nr) after the first
iteration of denoising the image Lena (σ = 20). Center: the corresponding plot of
the estimated Rk in Eq. (13), and right: the corresponding average of the standard
deviation per patch of the true error image.

be given by v̂ri = DSi
D+
Si
vi. This is an analogue assumption to that made for Eq.

(10), but now for each patch instead of the global image. This way, considering
the covariance matrix of the remaining noise Cov(v̂ri), the mean squared error
estimate at the ith patch and iteration k will be given by 1

n tr{Cov(v̂ri)}, leading
to

(
σ̂ki
)2

= |Si|
ν2k
n
. (12)

Therefore, the estimate of the remaining noise in each patch is simply propor-
tional to the number of atoms used for that patch. Note that the remaining noise
is no longer white after the back projection step, but we make this assumption
in order to simplify further derivations.

Generalizing this patch analysis to the entire image, we can estimate the
average remaining noise in the image x by performing an estimate in the spirit
of Eq. (5), tilling back and averaging the local estimates as

Rk =
λν2kI +

∑
iP

T
i 1
(
σ̂ki
)2

λν2kI +
∑
iP

T
i Pi

= Φ
(
(σ̂ki)2

)
, (13)

where the operator Φ(·) relocates the local estimates σ̂ki with the corresponding
weighting. This way, Rk stands for an estimation of the energy of the remain-
ing noise pixel-wise, equivalent -but not equal- to the diagonal of Cov(nr). An
example is shown in Fig. 2 for the popular image Lena. We see that Rk pro-
vides a fair estimate of the information in the diagonal of the full covariance
matrix of the remaining noise Cov(nr), and that it is closer to the average of
the standard deviation per patch of the true error image. The reader should also
note that computing Rk is considerably cheaper than the computation of the
operator in (10), since we only compute the local covariance matrices and their
weighted average, and the matrix in the denominator of Eq. (13) is a diagonal
one. Therefore we use Rk to derive the threshold for the next iteration.

From this point two possibilities arise: use Rk to evaluate a local patch-
based noise energy, eventually denoising each patch with a different threshold,

0 1 2 3 4 5
22

24

26

28

30

32

34

Iterations

P
S

N
R

Constant threshold

Oracle threshold

Our threshold setting

Fig. 3. PSNR evolution of the EPLL scheme with a sparse-representation prior for
denoising the image Lena (σ = 20) and three different threshold settings: a) using a
constant threshold for all the iterations (equal to the initial noise energy σ2); b) using
an oracle threshold by setting it to be the variance of the real error image (having
access to the original image); and c) our threshold setting method.

or finding a new global and common threshold for all the patches. Adopting the
first alternative was found not to yield significant improvements in our results.
Thus, in the following we adopt the second global alternative.

The reader should bare in mind that the thresholds should tend to zero as
we iterate, corresponding to β →∞. Certainly, this implies that our thresholds
will not reflect the real remaning noise. As an example, in Fig. 3 we present the
evolution of the PSNR by the proposed method for the image Lena for different
thresholds. We see that if the threshold is not changed with the iterations, the
PSNR of the resulting image x decreases after the first iteration. On the other
hand, if we set the threshold to be the variance of the real remaining noise (by
having access to an oracle and the original image), the PSNR initially increases
but eventually decreases since the threshold do not tend to zero. We include for
comparison the results of our threshold-setting method.

This way, in what follows we propose a method that provides decreasing
thresholds and which has been proven to be robust. In the subsequent iterations,
we set the threshold ν2k to be the mode of the values in Rk . Furthermore, we have
found that the multiplication by a constant factor δ improves the performance
in our method. To this end, assuming independence between the remaining noise
and the patch estimate, and considering the residual per patch ri = zi − ẑi, we
have that σ̃2

i = σ2−V ar(ri)2. With these estimates we can perform an analogue
of Eq. (13) and obtain its mode, ν̃2. We then define the factor δ = ν̃2/ν2k , and set
the thresholds for the next iteration to be ν2k = δ ·mode(Rk). A full description
of our algorithm is depicted in Algorightm 1.

In the following iterations the assumption about the independence between
the remaining noise and the patch estimate will be very week, and so σ̃2

i will not

2 The variance is calculated as V ar(r) = 1
n−1

∑
j (rj − r)2, where r is the mean of r.

Algorithm 1: EPLL with a Sparse Prior, given the noisy image y with a
noise standard deviation of σ and an initial dictionary D0.

Initialization: x = y. D = D0, δ = 1, k = 1, ν2k = σ2.

for OuterIter = 1 : 3− 4 do

- {Dk+1,xk+1} = argmin
αi,D,x

λ||xk − y||22 +
∑
i ||D

kαi −Pix
k||22 + µi||αi||0, by

K-SVD with error threshold ν2k ;

- get local estimates
(
σ̂ki
)2

= |Si| ν
2
k
n
, ∀i;

- get global estimate Rk = Φ
(
(σ̂ki)2

)
with Eq. (13);

if k = 1 then

- ν2k+1 = mode(Rk);
- σ̃2

i = σ2 − V ar(ri), ∀i;
- ν̃2 = mode

(
Φ(σ̃2

i)
)
;

- δ = ν̃2/ν2k+1;

- ν2k+1 = δ ·mode(Rk);

- k = k + 1;

Output: x,D.

be accurate. Thus, δ is determined after the first iteration only and kept fixed
for the subsequent steps, while the estimate ν2k provides decreasing estimates
every time. An example of the obtained ν2k ’s can be seen in Fig. 4.

4 Results

To gain some insight into the performance of our method and as a motivating
example, in Fig. 1 we present the denoising results on a synthetic image obtained
by the regular K-SVD algorithm, and the one achieved by applying the EPLL
approach with the sparse-enforcing prior. A similar demonstration was presented
in [16], and we include the results of this method as well. The K-SVD denoised
image presents texture artifacts common to patch-based algorithms, while in the
image denoised with our method the final patches are far more likely under the
prior that we try to learn from the image itself.

Fig. 4 depicts the evolution of the PSNR of the denoised image in each
iteration for this experiment. Note that given a fixed dictionary, solving the
MAP estimate for each patch with a sparse prior implies applying OMP on each
of them. This corresponds to the EPLL+OMP curve. On the other hand, we
could minimize Eq. (8) w.r.t D as well by applying a K-SVD step, updating the
dictionary as well as the sparse vectors; this is the curve depicted as EPLL+K-
SVD. The constant dotted line corresponds to the original K-SVD algorithm.
Note that the result after the first iteration in our method is worse than the

0 1 2 3 4 5 6 7
15

20

25

30

35

40

45

Iteration

P
S

N
R

EPLL+KSVD
EPLL+OMP
K−SVD
EPLL+GMM

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

Iteration

νk
(
√

β)−1

Fig. 4. Left: PSNR evolution by EPLL with a sparsity inducing prior on the synthetic
image in Fig. 1, compared to the original K-SVD algorithm [6] and the EPLL-GMM
of [16]. Right: sequence of thresholds νk determined by the proposed method and the
equivalent 1/

√
β by the method of [16].

one obtained by K-SVD where c = 1.15. Choosing c = 1 in our case, however,
enables further improvement as we proceed maximizing the Expected Patch
Log Likelihood. Notice also that our method converges in considerable fewer
iterations than the method of [16]. The right side of Fig. 4 shows the evolution
of the thresholds νk used in the successive iterations, as well as the values 1/

√
β

used by EPLL-GMM.
The improvement obtained by training the dictionary in each iteration of our

method is both important and intuitive. It is known that applying K-SVD on a
noisy image achieves good denoising results but yields somewhat noisy atoms [6].
By training the dictionary D in the progressively cleaner estimates x we obtain
cleaner and more well defined atoms, which are later used to perform further
denoising. In the top row of Fig. 5 we present 8 atoms trained on a noisy version
of the image Lena after the first iteration, while the lower row shows the same
atoms after 4 iterations.

4.1 Inpaiting

We next present results on image inpainting. In this particular application of
image restoration, the signal is the outcome of a linear operator that deletes
a number of pixels from the original image x, plus the measurement noise. By
considering a sparse prior on the original signal, we can formulate an equivalent
problem to that of Eq. (6), where A is the missing-pixels mask. The correspond-
ing cost function can be minimized in a block coordinate manner, coding for the
unknown sparse representation and updating the dictionary. In this case, how-
ever, the threshold in the OMP has to consider only the energy of existing pixel
in each patch [9]. This again represents the first iteration of the Half Splitting

Fig. 5. Atoms from a dictionary trained on a noisy version of the image Lena. The top
row corresponds to the atoms after the first iteration of our method (essentially, after
applying K-SVD), while the lower row corresponds to the same atoms after 4 iterations
of the EPLL with a sparsity enforcing prior.

strategy proposed in [16], and we may perform the next iterations by estimating
the remaining noise as explained above. Furthermore, after the first iteration
our estimate includes values of the missing pixel. We can then make use of the
previous denoising strategy to tackle the next iteration, by having knowledge of
the supports used to inpaint each patch, as it was previously explained.

Table 1 shows the results on inpainting the popular images peppers and Lena
with 25%, 50% and 75% missing pixels, with additive white Gaussian noise
(σ = 20). As it can be seen, the EPLL scheme leads to a slight improvement
in the K-SVD inpainting results, with increased effect for higher missing pixels
rates. The same concept could be applied to more sophisticated algorithms that
use a sparsity-based prior, such as the state-of-the-art method of [11].

4.2 Denoising

We conclude this paper by presenting results on denoising of 12 images from the
Kodak database, for different noise levels. We compare here the performance of
the K-SVD denoising algorithm in [6] and our approach of the EPLL framework
with a sparse prior (EPLL-K-SVD, where the dictionary is also updated in each
iteration). In all cases we performed 4 iterations of this method, as this was found
to be a convenient compromise between runtime and performance. For both K-
SVD methods, an initial dictionary with 1024 atoms was trained on overlapping
8 × 8 patches from 9 training images using K-SVD. We include for completion
the results achieved by the EPLL with a Gaussian Mixture Model (GMM) as
the image prior from [16].

Missing Pixels 25% 50% 75%

K-SVD 29.67 28.81 27.92 27.27 23.64 23.86

EPLL+K-SVD 29.71 28.85 28.18 27.39 23.81 24.07

Table 1. Inpaiting results in terms of Peak Signal to Noise Ratio (PSNR) for 25%,
50% and 75% missing pixels for the images peppers (left subcolumns) and Lena (right
subcolumns), with additive white Gaussian noise (σ = 20).

10 15 20 25 30 35 40 45 50
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

σ

∆
P
S
N
R

K−SVD

EPLL−S.P.

EPPL−GMM

Fig. 6. Denoising results averaged over 12 images from the Kodak Dataset with respect
to K-SVD [6] by EPLL with GMM [16] and the method presented here: EPLL with
Sparse Prior, in terms of the Peak Signal to Noise Ratio (PSNR).

In Fig. 6 we present the relative increase in PSNR, averaged over all 12
images. The EPLL with a Sparse enforcing Prior shows a clear improvement over
the regular K-SVD. Furthermore, the complete implementation of the denoising
algorithm closes the gap between the original K-SVD and EPLL-GMM, having
comparable performance: our method achieves the best results for lower noise
energy while EPLL with GMM is better for higher noise levels. In Fig.7 and Fig.8
we present two examples of denoised images by the three methods. Note how
artifacts are notably reduced in the resulting images processed by our method.

5 Conclusion

Maximizing the Expected Patch Log Likelihood with a sparse inducing prior
leads naturally to a formulation of which the K-SVD algorithm represents the
first iteration. In its original form, this method performed only one update of
the image due to technical difficulties in assessing the remaining noise level. In
this paper we have shown how to go beyond this first iteration, intrinsically
determining the coding threshold in each step. This work completes the one in
[6], providing the full path to the numerical minimization of the original cost
function and exploiting all the potential of the sparse inducing prior.

Our algorithm shows a clear improvement over K-SVD in all the experiments.
In denoising in particular, EPLL with a sparse prior achieved comparable perfor-
mance to the state of the art method of EPLL with a GMM prior. Interestingly,
both priors yield comparable results when applied within the EPLL framework.
An approach like the one presented here could be employed in other applications
where a MAP estimator for a sparse prior is used for image restoration.

Fig. 7. Denoising results of an image from the Kodak Database corrupted with a noise
standard deviation of σ = 25. Top left: original image. Top right: K-SVD (PSNR =
32.14 dB). Bottom left: EPLL with Sparse Prior (PSNR = 32.42 dB). Bottom Right:
EPLL with GMM (PSNR = 32.25 dB).

Fig. 8. Denoising results of an image from the Kodak Database, initially corrupted
with additive white Gaussian nose (σ = 25). From left to right: Original Image, K-
SVD (PSNR = 31.42 dB), EPLL with Sparse Prior (PSNR = 31.83 dB), and EPLL
with GMM (PSNR = 31.85 dB).

Acknowledgment. This research was supported by the European Research
Council under European Union’s Seventh Framework Program, ERC Grant
agreement no. 320649, by the Intel Collaborative Research Institute for Compu-
tational Intelligence and by the J.D. Erteschik Fund for Practical Research.

References

1. Aharon, M., Elad, M., Bruckstein, A.M.: K-SVD: An Algorithm for Designing
Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal
Process. 54(11), 4311–4322 (2006)

2. Bruckstein, A.M., Donoho, D.L., Elad, M.: From Sparse Solutions of Systems of
Equations to Sparse Modeling of Signals and Images. SIAM Review. 51(1), 34–81
(Feb 2009)

3. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. Con-
ference on Computer Vision and Pattern Recognition, CVPR IEEE. pp. 60–65
(2005)

4. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising with block-
matching and 3D filtering. Proc. SPIE-IS&T Electron. Imaging 6064, 1–12 (2006)

5. Donoho, D., Elad, M., Temlyakov, V.: Stable recovery of sparse overcomplete rep-
resentations in the presence of noise. Information Theory, IEEE Transactions on
52(1), 6–18 (Jan 2006)

6. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (Dec
2006)

7. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online Dictionary Learning for Sparse
Coding. In: 26th International Conference on Machine Learning. Montreal, Canada
(2009)

8. Mairal, J., Bach, F., Sapiro, G.: Non-local Sparse Models for Image Restoration.
12th IEEE International Conference on Computer Vision. 2, 2272–2279 (2009)

9. Mairal, J., Elad, M., Sapiro, G., Member, S.: Sparse Representation for Color
Image Restoration. IEEE Transactions of Image Processing 17(1), 53–69 (2008)

10. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using
scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image
Processing. 12(11), 1338–51 (Jan 2003)

11. Romano, Y., Protter, M., Elad, M.: Single Image Interpolation via Adaptive Non-
Local Sparsity-Based Modeling. to appear in IEEE Transactions on Image Pro-
cessing.

12. Roth, S., Black, M.J.: Fields of Experts. International Journal of Computer Vision.
82(2), 205–229 (Jan 2009)

13. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient Implementation of the K-SVD
Algorithm using Batch Orthogonal Matching Pursuit. Tech. - Comput. Sci. Dep. -
Technical Report. pp. 1–15 (2008)

14. Tropp, J.: Greed is Good: Algorithmic Results for Sparse Approximation. IEEE
Transactions on Information Theory 50(10), 2231–2242 (Oct 2004)

15. Weiss, Y., Freeman, W.T.: What makes a good model of natural images? In: 2007
IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8. IEEE
(Jun 2007)

16. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole
image restoration. 2011 International Conference on Computer Vision, ICCV. pp.
479–486 (Nov 2011)

