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ABSTRACT
This paper provides theoretical guarantees for denoising per-
formance of greedy-like methods. Those include Compres-
sive Sampling Matching Pursuit (CoSaMP), Subspace Pur-
suit (SP), and Iterative Hard Thresholding (IHT). Our results
show that the denoising obtained with these algorithms is
a constant and a log-factor away from the oracle’s perfor-
mance, if the signal’s representation is sufficiently sparse.
Turning to practice, we show how to convert these algorithms
to work without knowing the target cardinality, and instead
constrain the solution to an error-budget. Denoising tests on
synthetic data and image patches show the potential in this
stagewise technique as a replacement of the classical OMP.

1. INTRODUCTION

Signal denoising is a long-studied problem: We are given a
signal y ∈ Rm, which is a result of contamination of an un-
known clean signal y0 with additive noise e, i.e. y= y0 +e.
The most popular denoising problem assumes the case where
the noise is i.i.d., white and Gaussian with known variance
σ2. The task is to recover y0 from y.

In order to be able to denoise the signal, a model for the
ideal data should be added. We shall assume that the ideal
signal is created as y0 = Dx, where D ∈ Rm×n is a redun-
dant dictionary (a matrix with m ≤ n), and x is the signal’s
representation, known to have K dominant elements (almost
K-sparse). Thus,

y =Dx+e. (1.1)

We shall further assume that the columns of D are ℓ2-
normalized, in order to simplify the analysis that follows.

Denoising of y requires finding a sparse vector that could
explain the measurements. Put differently, we need to find
(or, more practically, approximate) the representation vector,
obtaining x̂. There are many pursuit methods that aim to do
just that, and in this paper we shall concentrate on three such
algorithms, the CoSaMP [1], the SP [2], and the IHT [3].
These are greedy-like methods that estimate x̂ by a series of
iterations that detect/cancel likely non-zeros in x.

In our recent work, [4], we have analyzed the perfor-
mance of these algorithms, focusing on the error obtained
in estimating the representation x̂ compared to its true value
x, i.e., studying the error1 ∥x̂−x∥. However, as described
above, our goal is signal denoising, and thus, we should in-
stead focus on the error these methods yield in the signal
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1Here and elsewhere in the paper, such norm corresponds to ℓ2.

(and not the representation) domain, ∥D(x̂−x)∥. In this pa-
per we extend our earlier results and obtain theoretical guar-
antees for denoising performance of these greedy-like meth-
ods. Our results show that the denoising obtained with these
algorithms is a constant and a log-factor away from the ora-
cle’s performance, if the signal’s representation is sufficiently
sparse.

Turning to practice, the CoSaMP, SP, and IHT algorithms
suffer from a shortcoming that limits their usability. All
three assume that the ideal representation’s cardinality, K, is
known, whcih is rarely the case. Instead, since σ2 is assumed
known, it is more natural to use pursuit techniques that aim
to find x̂ such that the representation error of the found sig-
nal is below the noise energy. In this paper we propose a way
to convert these three algorithms to work without knowing
the target cardinality, instead constraining the solution to an
error-budget. We refer to these as stagewise algorithms, as
their support cardinality varies from one iteration to the next.

In order to demonstrate the stagewise variation in prac-
tice, we introduce denoising tests on synthetic data and im-
age patches, both showing the potential in this technique as a
replacement of the Orthogonal Matching Pursuit (OMP) [5].

The paper is organized as follows: In Section 2 we pro-
vide background theoretical results on the CoSaMP, SP, and
IHT. Section 3 presents a guarantees obtained for the recon-
struction of the signal using the three greedy-like methods.
In Section 4 we present a variation of the greedy-like tech-
niques that do not require the knowledge of the cardinality
K. In Section 5 we present some simulations results, and in
Section 6 we conclude the paper.

2. BACKGROUND

The analysis in this work uses the Restricted Isometry Prop-
erty (RIP) [6]. We say that a matrix D satisfies the RIP with
parameter δK if for every K-sparse (have at most K non-zero
entries) vector v

(1−δK)∥v∥2 ≤ ∥Dv∥2 ≤ (1+δK)∥v∥2 , (2.1)

where ∥·∥ is the ℓ2 norm.
When the support, T (of cardinality K), of x is known

beforehand, the oracle estimator is given by x̂Oracle = D†
Ty,

where DT is a sub-matrix of D, containing the columns re-
lated to the support T . The oracle approximation satisfies the
upper bound [3, 4]

E ∥x− x̂Oracle∥ ≤ K
1−δk

σ2 (2.2)

+
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and the lower bound [4]

E ∥x− x̂Oracle∥2
2 ≥

Kσ2
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+
∥∥∥x−xT −D†
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2
,

where xT is the true representation vector, containing its
leading K entries, and zeroing the rest.2 Thus, for a truly
K-sparse representation, the second terms vanish and we get
Kσ2

1+δk
≤ E ∥x− x̂Oracle∥2 ≤ Kσ2

1−δk
.

Since the oracle is an impossible tool in practice, it is in-
teresting to ask how practical methods do in this case. Can-
des and Tao have shown that, when D satisfies the RIP with
δ2K + δ3K < 1, the Dantiz Selector’s (DS) performance is
similar to the oracle’s up to a constant and log(N) factor with
high probability [7]. These factors are unavoidable accord-
ing to [8]. Similar results were presented in [9] for the Basis
Pursuit (BP). Mutual-Coherence based results for these al-
gorithms were presented in [10, 11]. The work in [10] also
presented parallel and somewhat weaker results for the OMP
and a thresholding algorithm.

The relaxation based techniques are high complexity al-
gorithms. On the other hand, classical greedy methods, as the
OMP are known to be much simpler. Unfortunately, Mutual-
Coherence based bounds for the OMP and the Thresholding
algorithms in [10] show a dependency on the values of the
entries of x, implying weaker performance guarantees.

The CoSaMP, SP, and IHT stand as a midway between
the simpler and weaker greedy methods and the more com-
plex but better performing relaxation techniques. CoSaMP
and SP are described in Algorithm 1. IHT is simpler, using
the following iterative formula,

x̂ℓ
IHT = x̂ℓ−1

IHT +
[
DT (y−Dx̂ℓ−1

IHT )
]

K
(2.3)

where [·]K is a hard thresholding operator that takes the K
largest elements and zeros the rest.

Algorithm 1 Subspace Pursuit (SP) and CoSaMP
Require: K,D,y where y = Dx+ e, K is the cardinality

of x and e is the additive noise. α = 1 (SP), α = 2
(CoSaMP).

Ensure: x̂CoSaMP or x̂SP: K-sparse approximation of x.
Initialize the support and the residual: T 0 = /0, y0

r = y.
Set ℓ= 0.
while halting criterion is not satisfied do
ℓ= ℓ+1.
Find new support elements: T∆ = supp(D∗yℓ−1

r ,αK).
Update the support: T̃ ℓ = T ℓ−1 ∪T∆.
Compute the representation: xp =D†

T̃ ℓy.
Prune small entries: T ℓ = supp(xp,K).
Update the residual: yℓ

r = y−DT ℓ(xp)T ℓ for CoSaMP,
and yℓ

r = y−DT ℓD
†
T ℓy for SP.

end while
Form the final solution:
x̂CoSaMP,T ℓ = (xp)T ℓ for CoSaMP and x̂SP,T ℓ =D†

T ℓy for SP.

In our earlier work, [4], RIP-based performance results
were presented for these greedy-like methods. While these

2Abusing notation, D†
Ty and xT may refer to vectors of length K or

vectors with K non-zero elements padded with zeros. The meaning will be
clear from the context.

algorithms’ complexity is comparable to that of the greedy
techniques, their performance is similar to the one obtained
by relaxation based methods (BP and DS). The main theorem
in [4] paper states that:

Theorem 2.1 (Theorem 5.1 in [4]) If the conditions δ3K ≤
0.139, δ4K ≤ 0.1 and δ3K ≤ 1/

√
32 hold for SP, CoSaMP

and IHT respectively, then with probability exceeding 1 −
(
√

π(1+a) logN ·Na)−1 we obtain

∥x− x̂∥2 ≤ 2 ·C2
(√

(1+a) logN ·K ·σ (2.4)

+∥x−xT∥+
1√
K
∥x−xT∥1

)2

.

where x̂ is the reconstruction result and C is a constant that
depends only on the RIP (and differs from one algorithm to
another – see [4]).

This theorem shows that the reconstruction result of the
greedy-like algorithms achieves the performance of the or-
acle up to a constant and a log(N) factor. We now turn to
derive a similar result for the error of the reconstructed sig-
nal Dx̂.

3. DENOISING GUARANTEES

Since the results we obtain are to be compared to the oracle
ones, we start by deriving the signal approximation-error ex-
pected by the oracle. The oracle estimator, Dx̂Oracle, satisfies

E ∥D(x− x̂Oracle)∥2 = (3.1)

= E
∥∥∥D(x−xT −D†

TD(x−xT )−D†
Te
)∥∥∥2

= E
∥∥∥(I−DTD

†
T

)
D(x−xT )

∥∥∥2
+E

∥∥∥DTD
†
Te
∥∥∥2

= E
∥∥∥(I−DTD

†
T

)
D(x−xT )

∥∥∥2
+Kσ2.

In the above derivation we have used the triangle inequality
and the facts that Ee= 0 and EeeT = σ2I. By observing that∥∥∥I−DTD

†
T

∥∥∥= 1 we have the upper bound

E ∥D(x− x̂Oracle)∥2 ≤ E ∥D(x−xT )∥2 +Kσ2. (3.2)

For a truly K-sparse representation, the oracle error is simply
Kσ2, as the first term drops.

We now turn to derive a similar bound for the greedy-
like methods. Theorem 2.1 have shown that these algorithms
have near oracle performance in the representation domain.
The following theorem shows that the same holds true for the
signal estimation:

Theorem 3.1 If the conditions δ3K ≤ 0.139, δ4K ≤ 0.1 and
δ3K ≤ 1/

√
32 hold for SP, CoSaMP and IHT respectively,

then with probability exceeding 1−(
√

π(1+a) logN ·Na)−1

we obtain

∥D(x− x̂)∥ ≤ ∥D(x−xT )∥+
√

2(1+δ2K)C · (3.3)(√
(1+a) logN

√
Kσ +∥D(x−xT )∥

)
.

where x̂ is the reconstruction result and C is a constant that
depends only on the RIP.



Proof: Using the triangle inequality and the fact that xT − x̂
is 2K-sparse at most we have that

∥D(x− x̂)∥ ≤
√

1+δ2K ∥(xT − x̂)∥+∥D(x−xT )∥ . (3.4)

Using the same technique used for the proof of Theorem 5.1
in [4], we get that the first term in the above inequality can
be bounded by

∥xT − x̂∥ ≤ C
√

2(1+a) logN
√

Kσ (3.5)

+C
√

1+δK ∥D(x−xT )∥ .

Plugging (3.5) into (3.4) and using the fact that the RIP con-
dition for all the algorithms satisfies δK ≤ 0.5 gives us the
desired result. �

In some cases the noise power is stronger than some of
the signal representation elements. In this case, the zero esti-
mation is more favorable and leads to a lower error. The or-
acle estimator that suites this case is the one that chooses the
support that minimizes the MSE, instead of using the origi-
nal support. Denoting by x̂T = D†

Ty, this oracle estimator
is:

x∗
Oracle = argminE

∥∥x̂T −x
∥∥2

. (3.6)

In the exact K-sparse case the representation error is bounded
from below by 1

2 ∑min(x2
i ,σ2), where xi is the i-th element

in x. Using the RIP, the bound for the signal is

E ∥D(x−xOracle)∥2 ≥ 1−δ2K

2 ∑min(x2
i ,σ2). (3.7)

We are apt to ask whether the greedy-like techniques’
performance are also proportional to this oracle. The follow-
ing theorem shows that by applying these algorithms with
K′ = ∑i I(|xi|> σ) ≤ K the reconstruction error is like the
better oracle up to a constant and a log(N) factor as before.
An equivalent result for the representation error appears in
Remark 3.2 in [4] without a proof.

Theorem 3.2 By applying SP, CoSaMP and IHT with K′ =
∑i I(|xi|>

√
logNσ) in the exact K-sparse case, if the con-

ditions δ3K ≤ 0.139, δ4K ≤ 0.1 and δ3K ≤ 1/
√

32 hold for
SP, CoSaMP and IHT respectively, then with probability ex-
ceeding 1− (

√
π(1+a) logN ·Na)−1 we obtain

∥D(x− x̂)∥2
2 ≤ 2(a+3)(1+δ2K)C2 · (3.8)

∑min(x2
i , logNσ2).

where x̂ is the reconstruction result and C is a constant that
depends only on the RIP.

Proof: We denote by T ′ the support of the K′ largest elements
in x. By looking at x as a nearly K′-sparse vector and using
the result of Theorem 3.1 we have

∥D(x− x̂)∥ ≤ ((1+δ2K)C+1)∥D(x−xT ′)∥ (3.9)

+C
√

2(1+δ2K)(1+a) logN
√

K′σ
≤C

√
2(1+δ2K)

(√
2∥x−xT ′∥

+
√
(1+a) logN

√
K′σ

)
.

The last step relies on the observation that x− xT is 2K-
sparse and thus ∥D(x− x̂)∥ ≤

√
1+δ2K ∥x− x̂∥, and the

observation that since C ≥ 2 and δ2K ≤ 0.5 we have that
(1+ δ2K)C + 1 ≤ 2C. Taking square on both sides of (3.9)
we have

∥D(x− x̂)∥2 (3.10)

≤ 2(1+δ2K)C2
(

2∥x−xT ′∥2 +(1+a) logNK′σ2

+2
√

(1+a) logN
√

K′σ
√

2∥x−xT ′∥
)

≤ 2(a+3)(1+δ2K)C2
(
∥x−xT ′∥2 + logNK′σ2

)
.

The last step follows from the fact that any three scalars a,b,c
satisfies ab≤ ca2

2 + b2

2c . In our case a=
√

(1+a) logN
√

K′σ ,
b =

√
2∥x−xT ′∥ and c = 2

1+a . Having the result in (3.10),
we get easily (3.8) by using the definition of K′. �

4. STAGEWISE GREEDY-LIKE ALGORITHMS

Theorems 3.1 and 3.2 seem promising for signal denoising
using greedy-like techniques. However, The problem with
the discussed algorithms is that they require the cardinali-
ties K or K′ to be known. This restriction limits their use
in denoising problems, where generally they are not known
beforehand. Thus we introduce a variation on the algorithms
that removes this restriction, replacing it with the knowledge
of σ . In this variation, the effective cardinality grows in each
iteration by a fixed value β . The stopping criterion used is
∥y−Dx̂∥ ≤ c

√
Nσ where c is a pre-chosen constant (typi-

cally c = 1.1). The stagewise variation on the CoSaMP and
SP, as shown in Algorithm 2.

Algorithm 2 Stagewise CoSaMP and SP Algorithms
Require: K,D,y,β where y=Dx+e, K is the cardinality

of x, e is the additive noise and β is the increase rate of
the cardinality. α = 1 (SP), α = 2 (CoSaMP).

Ensure: x̂CoSaMP or x̂SP: K-sparse approximation of x.
Initialize the support and the residual: T 0 = /0, y0

r = y.
Set ℓ= 0.
while halting criterion is not satisfied do

ℓ= ℓ+1.
Find new support elements: T∆ = supp(D∗yℓ−1

r ,αβℓ).
Update the support: T̃ ℓ = T ℓ−1 ∪T∆.
Compute the representation: xp =D†

T̃ ℓy.
Prune small entries: T ℓ = supp(xp,βℓ).
Update the residual: yℓ

r = y−DT ℓ(xp)T ℓ for CoSaMP,
and yℓ

r = y−DT ℓD
†
T ℓy for SP.

end while
Form the final solution:
x̂CoSaMP,T ℓ = (xp)T ℓ for CoSaMP and x̂SP,T ℓ =D†

T ℓy for SP.

An open question at this stage is a theoretical guarantee
for the denoising performance for these modified algorithms,
and this is part of our future work. Under the assumption that
these algorithms stop after O(K) iterations, their complexity
is O(K(K2m+mn)) as in the case of regular CoSaMP and
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Figure 1: The signal relative error (left) and representation error (right) as achieved by SP and StSP as a function of the
cardinality for SNR=4. The graphs also show the theoretical guarantees and the oracle performance.
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Figure 2: The signal relative error (left) and representation error (right) as achieved by SP and StSP as a function of the noise
variance for K = 50. The graphs also show the theoretical guarantees and the oracle performance.

SP. Generally K2 ≪ n and, therefore, the complexity is effec-
tively O(Kmn). For high dimensions, one can calculate the
pseudo-inverse in the algorithms using an iterative method
for reducing their complexity, as was done in [1].

In a similar way, stagewise IHT would be

x̂ℓ
IHT = x̂ℓ−1

IHT +
[
DT (y−Dx̂ℓ−1

IHT )
]

βℓ
, (4.1)

As before, by assuming that the algorithm stops after O(K)
iterations, the complexity is O(Kmn) and of the same order
of the original IHT.

Before moving to the next section we just note that a
thresholding operation can be performed on the result of each
of the algorithms using the rule for choosing K′ in Theo-
rem 3.2. All the entries in the representation that are smaller
than

√
logNσ can be pruned.

5. EXPERIMENTS

In this section we check the denoising results of the greedy-
like methods. Due to lack of space we present results only for
SP and StSP as representatives of the greedy-like techniques.

The first experiment compares the reconstruction results
of SP and StSP with the theoretical upper bound of SP and
the oracle error. Though we do not have yet a theoretical
bound for the stagewise methods, we compare also StSP to
the bound. In the experiment a random dictionary with en-
tries drawn from the canonic normal distribution is used. The
columns of the dictionary are normalized and the dimensions
are m = 512 and N = 1024. The vector x is normalized, its
non-zero entries are chosen from a white Gaussian distribu-
tion and its support is selected uniformly at random. The
support and the non-zero values are statistically independent.

Fig. 1 presents the relative (with respect to the initial
noise) MSE of each of the methods as a function of the cardi-
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Figure 3: The PSNR of OMP for image patches as a function of σ (left), and the PSNR improvement obtained using the StSP
(right).

nality where the noise power is set to satisfy an SNR (signal
to noise ratio) of 4. It can be seen that SP and StSP raise
linearly with the cardinality as predicted theoretically for SP.
For high cardinalities, StSP behaves better than SP despite
the fact that the last has an information about the support size.
This happens since StSP, unlike SP, is not restricted to the
support size and can throw elements smaller than the noise
power. For low cardinalities the significance of the number
of elements raises and thus the prior knowledge about the
support size grants SP a better performance results.

Fig. 2 presents he relative MSE of each of the methods as
a function of the noise power. The cardinality is set to K = 50
and σ ranges from 0.001 (high SNR) to 2√

m (SNR of 0.5).
For high SNR, SP and StSP have similar performance. For
lower SNR, StSP becomes better since it has the freedom, as
observed before, to select a smaller support size leaving out
elements that are smaller than the noise power.

The second experiment uses overlapping image patches
of size 8× 8, taken from the image Lenna. A denoising for
each patch is performed using error-driven OMP and StSP,
with the redundant DCT dictionary. Fig. 3 (left) shows the
average PSNR of all the patches for denoising using OMP as
a function of σ2. On the right, this figure presents the im-
provement obtained by replacing OMP by StSP. We can see
that StSP performs better, and especially so for weak noise.

6. CONCLUSION

In this paper we derive a theoretical guarantee for the denois-
ing performance of three greedy-like methods. This guaran-
tee, posed in the signal domain, suggests that CoSaMP, SP,
and IHT, have near-oracle denoising performance for suffi-
ciently sparse signals. On the practical side, we show that a
stagewise version of these algorithm can be posed, and used
in applications where the cardinality is unknown. More work
is required to close the gap and suggest a theoretical oracle-
like denoising guarantee for the stagewise version of these
algorithms.
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