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ABSTRACT
The concept of prior probability for signals plays a key role in the
successful solution of many inverse problems. Much of the lit-
erature on this topic can be divided between analysis-based and
synthesis-based priors. Analysis-based priors assign probability to a
signal through various forward measurements of it, while synthesis-
based priors seek a reconstruction of the signal as a combination of
atom signals. In this paper we describe these two prior classes, fo-
cusing on the distinction between them. We show that although
when reducing to the complete and under-complete formulations
the two become equivalent, in their more interesting over-complete
formulation the two types depart. Focusing on the `1 denoising
case, we present several ways of comparing the two types of priors,
establishing the existence of an unbridgeable gap between them.

1. INTRODUCTION

The general inverse problem seeks the recovery of an unknown sig-
nal X ∈ RN (a vector of dimension N over the real numbers) based
on indirect measurements of it given in the vector Y ∈RM . A typical
model for describing the relation between X and Y is

Y = T{X}+V , (1)
where T : RN → RM is a (possibly non-linear) known operator,
and V ∈ RM is a zero-mean white Gaussian additive noise vector
(other models for the noise can also be considered, but here we re-
strict our discussion to the assumptions made above for simplicity).
The structure (1) represents many important problems in signal and
image processing; in this paper we focus on the denoising problem,
corresponding to the choice T{X} = X . Many of our conclusions
for this simplified case will remain relevant when considering the
more general inverse problem.

Inverting the above process in (1) can be done in many dif-
ferent ways. When lacking any a-priori knowledge about the un-
known, Maximum Likelihood (ML) estimation suggests finding the
X that leads to the most probable set of measurements Y . How-
ever, this option is often problematic, as most inverse problems are
ill-posed. A stabilized solution to the inverse problem posed above
comes from the Maximum-A-posteriori Probability (MAP) estima-
tor, which regularizes the estimation process using an assumed prior
distribution on the signal space. Indeed, such signal priors are im-
plicitly used in many other signal processing applications such as
compression, signal decomposition, recognition, and more.

MAP-Analysis Approach. When studying the variety of published
work in the field, two main prior types emerge. The first utilizes an
analysis-based approach, deriving the likelihood of a signal from a
set of forward transforms applied to it. Such priors are the backbone
of many classic as well as more recent algorithms, and most com-
monly appear as regularizing elements in optimization problems or
PDE methods.

In this paper, we focus on a robust Gibbs-like distribution, of
the form

P{X}= Const · exp{−α · ‖ΩX‖p
p}

where Ω ∈M[L×N] is some pre-specified matrix, and ‖ ·‖p
p is the `p

norm. The term ‖ΩX‖p
p is an energy functional that is supposed to
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be low for highly probable signals, and higher as the signal is less
probable. We refer to Ω as the analyzing operator. Merged with the
Gaussianity assumption on the additive noise, this poses the MAP
denoising process as the minimization problem

X̂MAP−A = Argmin
X

‖Y −X‖2
2 +λ · ‖ΩX‖p

p . (2)

If robust norms are used (p < 2 or some robust M-function [1]),
an iterative algorithm is typically employed for the minimization of
this penalty function. Preference should be given to p ≥ 1 so that
the overall penalty function is convex, thus guaranteeing a unique
solution. We name this method the MAP-Analysis approach since
the prior is based on a sequence of linear filters applied to the signal,
essentially analyzing its behavior.

MAP-Synthesis Approach. The second type of prior arises from
employing a synthesis-based approach. Synthesis-based methods
are a more recent contribution, and stem in a large part from the
Basis Pursuit method pioneered by Chen, Donoho & Saunders [2].

Suppose that a signal X ∈ RN is to be represented as a linear
combination of “building-block” atoms taken as the columns of a
full-rank matrix D ∈M[N×L], with L ≥ N (notice the different size
compared to Ω); we refer to the columns of D as the atom signals.
This leads to the linear under-determined equation set X = Dγ ,
where γ ∈ RL is overcomplete. We assume for the idealized sig-
nal X that its representation γ is sparse, implying that only a few
atoms are involved in its construction. Assuming Y is a noisy ver-
sion of this signal, then the following is the MAP-synthesis option
for the recovery of X :

X̂MAP−S = D ·Argmin
γ

‖Y −Dγ‖2
2 +λ · ‖γ‖p

p . (3)

In this expression, the `p-norm with p < 2 seeks the sparsest rep-
resentation vector γ that explains Y in terms of the dictionary
columns. Note that if the solution of the optimization problem is
denoted as γ̂ , the estimated output signal is given by X̂MAP−S = Dγ̂ .

Through the MAP framework, this approach may be general-
ized to incomplete dictionaries. We let ΓX = {γ | X = Dγ} denote
the set of representations of X in D, where ΓX may be infinite,
empty, or a singleton. The a-priori probability assumed for X de-
pends on its sparsest representation in D; in this setting, signals not
spanned by the columns of D are assigned a-priori probability 0.

The MAP-Synthesis prior is given as a Gibbs distribution on
the optimal representations:

P{X} =

(
Const · exp{−α · ‖γ

BP
(X)‖p

p} if ΓX 6= /0
0 otherwise

. (4)

This prior, when plugged into the MAP formulation, leads precisely
to the process described in (3). From a practical point of view, an
iterative algorithm is required for the solution of (3), and there are
many methods to do so effectively. For p≥ 1, we are guaranteed to
have a unique solution.

Analysis versus Synthesis. Comparing the two recovery processes
in (2) and (3), we see that the two describe very similar structures.
The heuristic behind each remains sparsifying the representation of
the signal — be this its forward projection on the basis elements, or
its reconstruction as their linear combination.



Analysis-based methods, specifically in their robust form, are
a very common structure in image processing and computer vi-
sion applications. MAP-Analysis leads to a simple optimization
problem, which (in the overcomplete case) is considerably easier
to solve — due to the smaller unknown — compared to similar-
sized MAP-Synthesis. Nevertheless, a growing number of works
are utilizing the synthesis approach for inverse problem regulariza-
tion. Synthesis-based priors are an attractive choice due to their
more intuitive and versatile structure. This trend is strengthened by
a wealth of theoretical and practical advancements, making this ap-
proach both more appealing and computationally tractable [3, 4, 5].

Despite these achievements, MAP-Synthesis remains a pro-
hibitive option in many cases. This has led several works to seek al-
ternative approaches over direct minimization. One specific option
is to approximate the synthesis-based method by an analysis-based
one, as is done in [6] where the analysis operator is taken as the
pseudo-inverse of the synthesis dictionary. This approach is only
partially justified there; the algebraic viewpoint of this transform is
discussed in section 3.

In light of these recent developments, it is our goal in this pa-
per to clarify the distinction between the two approaches, and shed
some light on the conceptual and technical gaps between them.
We show that for specific cases, the two approaches are equiva-
lent, utilizing a pseudo-inverse relation between the analysis oper-
ator and synthesis dictionary. Such is the case for the the square
and under-complete formulations, as well as for the `2 (i.e. p = 2)
choice. However, as we go to the general over-complete formula-
tion (L > N), the equivalence between the two MAP options breaks.
In this paper we characterize this gap, and show that in the general
case the two methods can behave very differently. We concentrate
on the p = 1 case, which is often favored due to its convexity and
robustness, and provide theoretical as well as numerical results in-
dicating that the two methods are fundamentally distinct. Further
details of this work can be found in [7].

2. THE SQUARE AND UNDER-DETERMINED CASES

We begin the discussion by showing that in the (under-)determined
case (i.e., L≤ N), the two methods remain equivalent.

Theorem 1. Square Non-Singular Case – Complete Equiva-
lence. MAP-Analysis and MAP-Synthesis are equivalent if MAP-
Analysis utilizes a square and non-singular analyzing operator Ω.
The equivalent MAP-Synthesis method is obtained for the dictio-
nary D = Ω−1.

Proof. We start with the MAP-Analysis approach as posed in equa-
tion (2). Since Ω is square and non-singular, defining ΩX = γ leads
to X = Ω−1γ . Putting this into (2), we get an alternative optimiza-
tion problem with γ replacing X as unknown,

X̂ = Ω−1 ·Argmin
γ

‖Y −Ω−1γ‖2
2 +λ · ‖γ‖p

p ,

and the equivalence to the MAP-Synthesis method in (3) is evident.
Likewise, starting from the MAP-Synthesis formulation and using
the same argument, we can obtain a MAP-Analysis one — and thus
the two methods are equivalent.

An immediate consequence of this theorem is that the two
prior assumptions behind the two methods are essentially the same
for full-rank and L = N analyzing operator/dictionary. Choos-
ing a sparse representation over a square-non-singular dictionary
amounts to the same probability density as that obtained from using
the corresponding (inverse) analyzing operator and requiring spar-
sity of the filtered coefficients.

The generalization of Theorem 1 for the L ≤ N case requires
a more delicate analysis, but is based on similar arguments. We
point out that complete equivalence cannot be guaranteed in this
case, due to the property of MAP-Synthesis to only produce results
in the column-span of D, whereas MAP-Analysis poses no such
restriction. We arrive at the following result (stated without proof):

Theorem 2. Under-Complete Case – Near-Equivalence. MAP-
Analysis with a full-rank operator Ω ∈ M[L×N] (L≤ N) is nearly-
equivalent to MAP-Synthesis with D = Ω+. This is expressed by
the relation X̂MAP−A = X̂MAP−S +YD⊥, with YD⊥ representing the
component of the input orthogonal to the columns of D.

Theorem 2 represents, both conceptually and computationally,
a complete equivalence between the two approaches, as knowing
the solution to either one immediately fixes the solution to the other.
We also see that when the input is in the column-span of D (as in
the square non-singular case), we have X̂MAP−A = X̂MAP−S.

3. THE OVER-DETERMINED CASE

We have seen that the two methods are equivalent for the L≤ N
case. Our main interest however is in the overcomplete (L > N)
case, advocated strongly by the Basis Pursuit approach. To get
an idea of the difficulties arising when going to this overcomplete
case, we begin by considering the natural pseudo-inverse relation,
which has thus far been successful in achieving equivalence for the
(under-)complete case. We assume Ω has full column rank, and
hence Ω+Ω = I. Beginning with the MAP-Analysis formulation in
(2), we let ΩX = γ . Since Ω+Ω = I, recovering X from γ is done
by X = Ω+γ . However, in replacing the unknown from X to γ we
must add the constraint that γ is spanned by the columns of Ω, due
to its definition; this is represented by the constraint ΩΩ+γ = γ .
Thus we obtain the following equivalent MAP-Analysis form:

X̂MAP−A = Ω+ · Argmin
γ: ΩΩ+γ=γ

‖Y −Ω+γ‖2
2 +λ · ‖γ‖p

p . (5)

If the MAP-Synthesis solution (with D=Ω+) satisfies the con-
straint ΩΩ+γ = γ , then omitting it in (5) has no effect, and both
approaches arrive at the same solution. However, in the general
case this constraint is not satisfied, and thus the two methods lead
to different results. An interesting observation is that while the rep-
resentation results could differ vastly, the final estimators X̂ = Ω+γ̂
in both could be very similar; this is because in multiplying by Ω+

we null-out content not in the column-span of Ω, and essentially
satisfy the constraint. However, as we will see, this does not turn
out to close the gap between the two methods. An exception is the
non-robust `2 case, in which equivalence still holds true:

Theorem 3. Over-Complete Case – Equivalence for p = 2.
MAP-Analysis with a full-rank analyzing operator Ω ∈ ML×N

(L > N) is equivalent to MAP-Synthesis with D = Ω+ for p = 2.

Proof. From (5) the proof is trivial. When p = 2, the unknown γ can
be assumed to be the sum of two parts, γ = γΩ + γΩ⊥, where γΩ

comes from the column-span of Ω, and γΩ⊥ from the orthogonal
subspace. The second penalty term (‖γ‖2

2) clearly prefers γΩ⊥ to be
zero; as to the first term (‖Y −Ω+γ‖2

2), γΩ⊥ has no impact on it as
it is nulled down by Ω+. Thus, γΩ⊥ that violates the constraint in γ
is chosen as zero, and the two methods coincide.

3.1 MAP-Analysis and MAP-Synthesis in `1

In the remainder of this paper, we consider MAP methods with
p = 1. The use of the `1 norm for signal and image recovery has
received considerable attention beginning at the late 1980’s, with
the development of robust statistics; probably most notable of these
are the Total Variation -based methods [8] which are analysis-based,
and the later Basis Pursuit method which is synthesis-based. The `1

option is a favorable choice due to its combination of convexity,
robustness, and proximity to `0 in the synthesis case [3, 5].

Looking at the MAP formulations in (2) and (3), we see that
both depend on a weighting parameter λ to control the regulariz-
ing element; for λ = 0 both reproduce the input as the solution,
and as λ → ∞ they deviate from the input until finally converging



to 0. However, the rate at which this occurs may vary substantially
between the two methods, and thus this parameterization is incon-
venient for our purposes. Alternatively, we propose the following
reformulations of the two problems:

X̂MAP−A(a) = Argmin
X

‖ΩX‖1 s.t. ‖Y −X‖2 ≤ a

X̂MAP−S(a) = D ·Argmin
γ

‖γ‖1 s.t. ‖Y −Dγ‖2 ≤ a.

This formulation is conceptually simpler, with a directly controlling
the deviation from the input. We note that the original MAP target
functions are essentially the Lagrangian functionals of these con-
strained versions (with λ representing the inverse of the Lagrange
multipliers), and thus the two formulations are equivalent.

3.2 Geometry of MAP

In the modified formulation, the two MAP methods take a clear ge-
ometric structure. The solutions of both are obviously confined to a
ball of radius a about Y (this is true as we assume D is full rank).
We also assume this ball does not include the origin, or else the solu-
tion is trivially zero. Examining MAP-Analysis first, the level-sets
of its target function f (X) = ‖ΩX‖1 are a collection of concentric,
centro-symmetric polytopes {X | ‖ΩX‖1 ≤ c}. Graphically, the
solution can be obtained by taking a small level-set {‖ΩX‖1 ≤ c}
about the origin, and gradually inflating it (by increasing c) until
it first encounters the ball; the point of intersection constitutes the
MAP-Analysis solution.

As to MAP-Synthesis, a similar process may be described us-
ing the collection of concentric, centro-symmetric polytopes D ·
{γ | ‖γ‖1 ≤ c}1. A fact to note for both MAP methods is that
these ”inflations” we visualize are performed via simple scaling:
we have {‖ΩX‖1 ≤ c} = c · {‖ΩX‖1 ≤ 1}, and D{‖γ‖1 ≤ c} =
c ·D{‖γ‖1 ≤ 1}. This implies that given the canonical MAP defin-
ing polytopes ΨΩ

.= {‖ΩX‖1 ≤ 1} and ΦD
.= D · {‖γ‖1 ≤ 1},

the inflation processes are fully defined, and so are the MAP so-
lutions; in fact, specifying these polytopes is completely equivalent
to specifying Ω or D, respectively. We find that the behavior of
both methods is governed exclusively by the geometry of a single
high-dimensional polytope, and this provides us with the necessary
basis for comparing the two methods. We therefore continue by
characterizing the geometry of these polytopes; for the discussion,
we recall that a face of an N-dimensional polytope is any intersec-
tion of this polytope with a tangent hyperplane (e.g. a vertex, edge,
ridge etc.), and a facet is an N−1-dimensional face.

MAP-Analysis Defining Polytope. The MAP-Analysis defining
polytope is a level set of the target function fA(X) = ‖ΩX‖1. Ap-
plying the gradient operator to fA, we find that the normal to this
surface satisfies n(X) ∝ ΩT sign(ΩX). Evidently n(X) is defined
for any X in which all coordinates of ΩX are non-zero; where one
or more of these vanishes, n(X) exhibits a discontinuity arbitrarily
filled-in by the sign function. Intuitively, consider the signals X on
the boundary of the defining polytope, then the facets correspond to
the locations where n(X) is smooth, whereas the other faces corre-
spond to where n(X) is discontinuous. This formalizes as

Lemma 4. Let X ∈ ∂ΨΩ (the boundary of the defining polytope),
and let k denote the rank of the rows in Ω to which X is orthogonal
to. Then X resides strictly within2 a face of dimension (N− k−1)
of the MAP-Analysis defining polytope.

1Note that these sets exist in signal space, having the explicit form
{X | ∃γ , X = Dγ ∧ ‖γ‖1 ≤ c}

2We use the term strictly within a face in this paper to indicate a signal
located in the interior of a face, in the sense that there exists a finite ε-ball
about it — of the same dimension as the face — entirely contained within
this face (note that this covers signals that are vertices, who reside strictly
within themselves). Also, as opposed to standard residence, strict residence
is unique, as the faces are considered open and thus do not overlap.

This claim implies that to obtain a vertex of ΨΩ, we choose
N − 1 linearly-independent rows in Ω, determine their 1D null-
space v and normalize such that ‖Ωv‖1 = 1 (this defines two an-
tipodal vertices). Edges are similarly obtained, by choosing N−2
linearly-independent rows, and taking any properly normalized sig-
nal in their 2D null-space. This leads to an immediate conclusion
concerning the complexity of the MAP-Analysis defining polytope:
evidently its vertex count is equal to the number of choices of N−1
linearly-independent rows in Ω, and in the worst-case, this may
reach an exponential

` L
N−1
´
. In fact, there are examples where this

bound is met, and thus the bound is tight (for the worst-case). This
is also the expected number of vertices when the directions of the
rows in Ω are random, and uniformly distributed on the unit sphere.

Several conclusions can be drawn from Lemma 4 concerning
the structure of the MAP-Analysis defining polytope. For instance,
each set of edges, stemming from the same 2D null-space of some
N − 2 rows in Ω, forms a planar edge-loop of consecutive edges
all existing on this common plane. We thus find that the edges of
ΨΩ are arranged in loops about the origin. Similar arguments lead
to higher dimensional regularities, corresponding to the choices of
N− k independent rows from Ω, for k > 2. Other arguments reveal
a strict neighborliness pattern of this polytope, as each one of its
vertices has precisely 2(N−1) neighbors.

MAP-Synthesis Defining Polytope. The MAP-Synthesis defining
polytope is given by ΦD = D · {γ | ‖γ‖1 ≤ 1}. It is a known result
that this polytope is obtained as the convex hull of the columns of
D and −D:

Lemma 5. The MAP-Synthesis defining polytope ΦD = D ·
{‖γ‖1 ≤ 1} is obtained as the convex hull of {±di}i=1...L, where
{di} are the columns of D.

The proof is based on the fact that the set {‖γ‖1 ≤ 1} is the
convex hull of {±ei} (the standard basis elements and their an-
tipodes in RL), and multiplying by D we obtain the convex hull
of {±Dei} = {±di}. We find that the vertices of ΦD are those
columns of ±D which cannot be represented as a convex combi-
nation of any other columns (and their antipodes); the other faces
are the convex combinations of neighboring vertices. A vertex can
therefore be represented as V = Dγ where γ has a single non-zero
element γi = ±1, and a point on an edge can be represented sim-
ilarly with γ having two non-vanishing elements γi,γ j satisfying
|γi|+ |γ j| = 1. In general, a point on a k-dimensional face will
have a representation X = Dγ with γ having k + 1 non-vanishing
elements, and ‖γ‖1 = 1. We emphasize that this is not a sufficient
condition, so a signal X = Dγ synthesized from a sparse represen-
tation γ might not reside on a low-dimensional face of the polytope
(this trivially occurs, for instance, when synthesizing a single atom
signal X = Dei, where the corresponding column of D is in the
convex hull of the remaining ones).

3.3 MAP-Synthesis as a Superset of MAP-Analysis
The geometrical viewpoint leads to an interesting consequence con-
cerning the relation between the two MAP formulations. From the
geometrical description, it is clear that any `1 MAP-Analysis esti-
mator may be reformulated as an equivalent MAP-Synthesis one;
this is accomplished by simply taking all the MAP-Analysis defin-
ing polytope vertices — one of each antipodal pair — as the MAP-
Synthesis dictionary atoms. Since both methods will have the same
defining polytope, they will be completely equivalent. This estab-
lishes the generality of MAP-Synthesis over MAP-Analysis in `1:

Theorem 6. Over-Complete `1 Case – Generality of MAP-
Synthesis. For any `1 MAP-Analysis form with full-rank analyzing
operator Ω (L ≥ N), there exists a dictionary D(Ω) describing an
equivalent `1 MAP-Synthesis form. The reverse is not true.

The reverse direction fails due to the strict regularity imposed
on the MAP-Analysis defining polytopes. Since this regularity does



not apply to MAP-Synthesis, it may clearly describe structures not
represented in MAP-Analysis form.

We emphasize that the actual equivalence transform is of little
practical value; except for the special case of N = 2, where the size
of D(Ω) will be equal to (or even smaller than) that of ΩT , the
size of D(Ω) will generally grow exponentially. Nonetheless, the
theorem describes a definite one-way relationship between the two
formulations: the synthesis formulation is clearly more general than
the analysis one, with a vast collection of MAP-Synthesis priors
unrepresented by the stricter MAP-Analysis form.

The fact that the equivalence transform is impractical stems di-
rectly from the incompatibility between the two polytopal structures
in their vertex count. This is complemented by a parallel incompat-
ibility in the neighborliness of these polytopes. Our observation for
MAP-Analysis that every vertex has a linear number of neighbors,
while their total number is exponential, implies that the probabil-
ity of any two vertices to be neighbors approaches 0 as N → ∞.
In contrast, Donoho has recently presented opposite results [9] for
MAP-Synthesis defining polytopes; as it turns out, for these poly-
topes the probability of any 2 (non-antipodal) vertices to be neigh-
bors approaches 1 as N → ∞. 3 We therefore find that while MAP-
Analysis polytopes feature very large numbers of vertices with very
low neighborliness, MAP-Synthesis polytopes exhibit low vertex
counts and very high neighborliness. We see that the two structures
are in fact fundamentally different.

3.4 Assessing the Gap
The geometrical inconsistencies suggest a large gap between the
two formulations in the over-determined `1 case. In this section we
demonstrate how this gap is realized in practice.

Recoverability and Principal Signal. To compare the two meth-
ods, we will be interested in locating those signals which are fa-
vored in some sense by each of the priors. We confine ourselves to
a fixed-energy sphere, w.l.o.g. the unit sphere, and on this sphere
seek the signals most effectively recovered by the specific MAP
method. We use the term recoverability of a signal in a qualitative
manner, referring to the ability of the MAP method to recover this
signal successfully given noisy versions of it. More specifically, we
assume an energy-conserving variant of the MAP estimator, where
the denoised solution is post-processed by re-normalizing it to the
magnitude of the input (thus eliminating its decay to zero caused by
the low-energy preference of the prior). Under these conditions, the
MAP estimation essentially searches the neighborhood of the in-
put on the fixed-energy sphere, outputting a higher-probability (and
presumably less noisy) signal near the input. We thus consider a
signal as highly recoverable when its prior probability is maximal
relative to a significant enough part of the directions about it on the
fixed-energy sphere. Indeed, such signals are generally recovered
most successfully by the MAP method. The local maxima of the
distribution on the unit sphere, which are obviously the most highly
recoverable signals, will be referred to as the principal signals of
the distribution.

The geometry of the MAP defining polytope directly dictates
the behavior of the distribution on the unit sphere, and consequently
the recoverability of the signals on it. The relation may be described
as follows: For both MAP priors, the boundaries of the defining
polytopes define iso-surfaces of signals with equal a-priori proba-
bility. On a fixed-energy sphere, those signals whose projections on
the defining polytope are farthest from the origin correspond to the
more probable signals. It follows that the highly recoverable sig-
nals must be projected to the extreme points – the low-dimensional
faces – of the polytope. Specifically, the principal signals of the
distribution project to vertices of the MAP defining polytope.

It is important to note that projection onto a low-dimensional
face is only a necessary condition for high recoverability. For in-
stance, a vertex will not always lead to a principal signal, as demon-

3The dictionary is assumed to be of linear size in N, and to fulfill certain
randomness conditions; see Theorem 1 in [9].

(a) (b)

Figure 1: Principal signals and the MAP defining polytope. The dotted circles denote
the unit sphere in 2D signal space. The two polygons are different scales of the same
MAP defining polytope. (a) A principal signal, obtained at a vertex of the defining
polytope. (b) A vertex which does not represent a principal signal.

strated in figure (1). Simulation results show a dramatic difference
in the recovery performance of principal vs. non-principal vertices.

Locating Principal Signals. The principal signals of a MAP prior
are tightly related to the vertices of its defining polytope. However,
not every vertex necessarily implies a principal signal; for this, it
must be maximally distant from the origin relative to all the direc-
tions about it on the boundary of the defining polytope. We begin
with MAP-Synthesis, whose defining polytope is the convex hull of
the columns of ±D. We assume the vertices of this polytope to be
known — this can be achieved by solving a set of LP problems, or
alternatively by normalizing the dictionary atoms to a fixed-length,
in which case they all become vertices. Still, identifying those rep-
resenting principal signals is in general very difficult. We there-
fore limit the discussion to dictionaries with normalized columns
– which are very common in practice – and in this case it can be
shown that indeed all atoms constitute principal signals, hence lo-
cating these becomes trivial.

As to MAP-Analysis, the geometry of its defining polytope is
described in Lemma 4, which also provides a practical method for
generating vertices of this polytope. To locate those which represent
principal signals, we use a simple traversal algorithm: Beginning
with some initial vertex, we examine its incident edge-loops. If it is
found to be maximal relative to all its incident edges, then (and only
then) does it constitute a principal signal. Otherwise, it is not max-
imal relative to some incident edge. In this case we replace it with
a vertex with larger `2-norm from the violating edge loop, and con-
tinue the traversal. This swapping continues until a local maximum
is encountered, providing one MAP-Analysis principal signal. The
entire process can now be repeated using a new vertex as a starting
point. The traversal approach is obviously time-consuming relative
to the immediacy in the MAP-Synthesis case; on the other hand, it
poses no assumptions on the structure of the operator Ω.

Simulation Results. We provide some simulation results demon-
strating the theoretical gap we have described. For the experiment,
we selected the pseudo-inverse relation between the dictionary and
analysis operator; this is a natural choice for bridging the two meth-
ods, however in reality, it may lead to very different behaviors of the
two methods. We selected the 128×256 Identity-Hadamard dictio-
nary D = 1√

2
[I H ] and its pseudo-inverse Ω = DT = 1√

2

h
I

HT

i
as

the synthesis dictionary and analysis operator. This is an interesting
choice as the two feature the same two-ortho structure, and further-
more D is a near-optimal Grassmanian frame making it favorable
for MAP-Synthesis methods [10].

The dictionary size immediately limits the number of distinct
MAP-Synthesis principal signals to a mere 256. In contrast, MAP-
Analysis boasts an enormous amount of principal signals: our
traversal algorithm easily produced 10,000 such signals. Moreover,
the program was designed to reject new signals if these resided in
a radius of < .1 from any existing principal signal; however, af-
ter 10,000 generated signals, the rejection rate remained negligi-
ble, suggesting that the true number of such signals is much greater
(with an only known upper bound of order

` L
N−1
´

=
`256

127
´≈ 1075).

We note that in our case the MAP-Synthesis principal signals all
double as MAP-Analysis principal signals. To sharpen the compar-
ison, we therefore produced additional sets of highly recoverable
MAP-Synthesis signals, which were obtained on low-dimensional
faces of the MAP-Synthesis defining polytope. Of course, as we
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Figure 2: Denoising MAP principal signals. (a) Results for MAP-Analysis princi-
pal signal (10,000 examples). Distributions of optimal errors obtained using MAP-
Analysis (above) and MAP-Synthesis (below). (b) The same for MAP-Synthesis prin-
cipal signals (256 examples).
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Figure 3: Denoising signals on low-dimensional MAP-Synthesis faces. (a) Results for
signals on 2D faces (1,000 examples). Distributions of optimal errors obtained using
MAP-Analysis (above) and MAP-Synthesis (below). (b) The same for signals on 3D
faces (1,000 examples).

have mentioned earlier, this is only a necessary condition for high-
recoverability; however in many cases (specifically when the dictio-
nary is normalized) this indeed turns out to produce well-recovered
signals. For this experiment, we generated 1,000 signals on 2D
faces, 1,000 on 3D faces, and so on up to 12D faces.

To quantify the performance of a specific method on a set of sig-
nals, we applied that method (in its energy-preserving form), with
varying a values, to each of the signals in the set. We then selected,
for each signal individually, the optimal a value aopt and its asso-
ciated relative error erropt = ‖bXMAP(aopt)−X‖2/‖Y −X‖2 to rep-
resent the performance of the method on this signal. We collected
the optimal errors for all signals in the set, and these were used to
characterize the performance of the method on the entire set.

Figures (2)-(4) summarize the results. The first two present his-
tograms of the optimal errors obtained on the principal signal sets
and the MAP-Synthesis 2D and 3D signal sets. The final figure
summarizes the results for all 12 sets of MAP-Synthesis signals.

Examining these results, we find that as anticipated, each
method is successful in recovering its own sets of favorable sig-
nals; these therefore act to support the geometrical models we have
presented. It is also interesting to note that the two methods exhibit
comparable performance when evaluated each on their own set of
principal signals, an observation which is particularly evident in the
MAP-Synthesis principal signal test (figure 2(b)).

On the other hand, these results also depict a clear disparity be-
tween the two methods. We see that MAP-Analysis completely fails
in recovering the MAP-Synthesis favorable signals, while MAP-
Synthesis performs notably poorly compared to MAP-Analysis on
its massive number of principal signals. These acute inconsisten-
cies lead to the inevitable conclusion that the pseudo-inverse rela-
tion does not bridge between the two methods, as the theoretical
model has anticipated.

4. BEYOND DENOISING

Our discussion thus far was focused (for simplicity) on the denois-
ing problem. However, many of the points made in this paper are in
fact more general statements concerning the two classes of priors.
Theorem 1, which established equivalence between the two prior
types in the square case, is a general result which applies to the two
prior structures. Most of our statements for the over-complete case
are also general, as they stem directly from the geometry of the
distribution level-sets, and as such are independent of the specific
choice of problem. Specifically, the results provided in Theorem 6,
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Figure 4: Denoising MAP-Synthesis highly recoverable signals. The graphs show the
mean optimal errors obtained versus the MAP-Synthesis face dimension; error bars
correspond to the standard deviation of the errors.

as well as all conclusions which follow, still hold when considering
the more general case. Finally, the equivalence for the `2 case is a
general result as well.

The notable exception is the equivalence in the strict under-
complete case, which does not reproduce in general. As it turns
out, the fact that the MAP-Synthesis solution is constrained to the
column-span of D can become crucial in general, preventing the
possibility of an equivalence.

5. CONCLUSIONS

In this paper we have discussed and compared two popular MAP-
based methods for inverse problems — the MAP-Analysis and the
MAP-Synthesis formulations. We have shown that the two are es-
sentially identical in the (under-)complete case, utilizing a pseudo-
inverse relation between their characteristic operators. However,
in the over-complete case the two methods were shown to depart.
We concentrated on the over-complete `1 case, and found that the
geometrical structures underlying the two approaches exhibit very
different properties. This perspective has also led to a generality
relation of MAP-Synthesis over MAP-Analysis, though the actual
transform remains impractical. Our theoretical results were demon-
strated for the pseudo-inverse relation, where the two methods per-
formed dramatically differently on large families of signals. We
conclude that the two widely-used MAP-based methods retain a re-
spectable distance between them. Whether any one may be consid-
ered superior, however, remains an open question.
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