MMSE Estimation for Sparse Representation Modeling*

Michael Elad

The Computer Science Department The Technion – Israel Institute of technology Haifa 32000, Israel

Joint work with

Irad Yavneh & Matan Protter

École Polytechnique

April 6th, 2009

Noise Removal?

In this talk we focus on signal/image denoising ...

- Important: (i) Practical application; (ii) A convenient platform for testing basic ideas in signal/image processing.
- Many Considered Directions: Partial differential equations, Statistical estimators, Adaptive filters, Inverse problems & regularization, Wavelets, Example-based techniques, Sparse representations, ...
- Main Massage Today: Several sparse representations can be found and used for better denoising performance – we introduce, motivate, discuss, demonstrate, and explain this new idea.

Agenda

- 1. Background on Denoising with Sparse Representations
- 2. Using More than One Representation: Intuition
- 3. Using More than One Representation: Theory
- 4. A Closer Look At the Unitary Case
- 5. Summary and Conclusions

Part Background on Denoising with Sparse Representations

Denoising By Energy Minimization

Many of the proposed signal denoising algorithms are related to the minimization of an energy function of the form

$$f(\underline{x}) = \frac{1}{2} \|\underline{x} - \underline{y}\|_{2}^{2} + Pr(\underline{x})$$

 \underline{y} : Given measurements

 \underline{x} : Unknown to be recovered

Relation to measurements

Prior or regularization

- □ This is in-fact a Bayesian point of view, adopting the Maximum-A-posteriori Probability (MAP) estimation.
- Clearly, the wisdom in such an approach is within the choice of the prior modeling the signals of interest.

Thomas Bayes 1702 - 1761

Sparse Representation Modeling

 Every column in
 D (dictionary) is
 a prototype signal (atom).

The vector <u>α</u> is generated randomly with few (say L for now) non-zeros at random locations and with random values.

Back to Our MAP Energy Function

The Solver We Use: Greed Based

- □ The MP is one of the greedy algorithms that finds one atom at a time [Mallat & Zhang ('93)].
- Step 1: find the one atom that best matches the signal.

- Next steps: given the previously found atoms, find the next <u>one</u> to best fit the residual.
- □ The algorithm stops when the error $\|\mathbf{D}\underline{\alpha} \underline{y}\|_2$ is below the destination threshold.
- □ The Orthogonal MP (OMP) is an improved version that re-evaluates the coefficients by Least-Squares after each round.

Orthogonal Matching Pursuit

OMP finds one atom at a time for approximating the solution of $\min_{\underline{\alpha}} \|\underline{\alpha}\|_0^0 \text{ s.t. } \|\underline{D}\underline{\alpha} - \underline{y}\|_2^2 \le \varepsilon^2$

Part I Using More than One Representation: Intuition

Back to the Beginning. What If ...

Consider the denoising problem

$$\min_{\underline{\alpha}} \left\| \underline{\alpha} \right\|_{0}^{0} \text{ s.t. } \left\| \mathbf{D} \underline{\alpha} - \underline{y} \right\|_{2}^{2} \leq \epsilon^{2}$$

and suppose that we can find a group of J candidate solutions

$$\{ \underline{\alpha}_j \}_{j=1}^{J}$$

such that

$$\forall j \quad \left\{ \begin{aligned} \left\|\underline{\alpha}_{j}\right\|_{0}^{0} << N \\ \left\|\underline{D}\underline{\alpha}_{j} - \underline{y}\right\|_{2}^{2} \le \epsilon^{2} \end{aligned} \right\}$$

Basic Questions:

- ❑ What could we do with such a set of competing solutions in order to better denoise <u>y</u>?
- □ Why should this help?
- □ How shall we practically find such a set of solutions?

Relevant work: [Larsson & Selen ('07)] [Schintter et. al. (`08)]

[Elad and Yavneh ('08)]

Motivation – General

Why bother with such a set?

- Because each representation conveys a different story about the desired signal.
- Because pursuit algorithms are often wrong in finding the sparsest representation, and then relying on their solution is too sensitive.
- Maybe there are "deeper" reasons?

□ An intriguing relationship between this idea and the common-practice in example-based techniques, where several examples are merged.

Consider the Non-Local-Means [Buades, Coll, & Morel ('05)]. It uses
 (i) a local dictionary (the neighborhood patches),
 (ii) it builds several sparse representations (of cardinality 1), and
 (iii) it merges them.

□ Why not take it further, and use general sparse representations?

Generating Many Representations

Lets Try

Proposed Experiment :

- □ Form a random dictionary **D**.
- \Box Multiply by a sparse vector $\underline{\alpha}_0$ ($\|\underline{\alpha}_0\|_0^0 = 10$).
- □ Add Gaussian iid noise \underline{v} with $\sigma = 1$ and obtain \underline{y} .
- □ Solve the problem

 $\min_{\underline{\alpha}} \|\underline{\alpha}\|_{0}^{0} \text{ s.t. } \|\mathbf{D}\underline{\alpha} - \underline{y}\|_{2}^{2} \leq 100$ using OMP, and obtain $\underline{\alpha}^{OMP}$.

- \Box Use Random-OMP and obtain $\left\{ \underline{\alpha}_{j}^{\text{RandOMP}} \right\}_{i=1}^{1000}$
- □ Lets look at the obtained representations ...

Some Observations

We see that

- The OMP gives
 the sparsest
 solution
- Nevertheless, it is not the most effective for denoising.
- The cardinality of a representation does not reveal its efficiency.

The Surprise (at least for us) ...

Is It Consistent? ... Yes!

Here are the results of 1000 trials with the same parameters ...

Part III Using More than One Representation: Theory

Our Signal Model

D is fixed and known.

The vector $\underline{\alpha}$ is built by:

- Choosing the support s with probability P(s) from all the 2^κ possibilities Ω.
- For simplicity, assume that
 |s|=k is fixed and known.
- Choosing the <u>α</u>_s coefficients using iid Gaussian entries N(0,σ_x).

 \Box The ideal signal is $\underline{\mathbf{x}} = \mathbf{D}\underline{\alpha} = \mathbf{D}_{\mathbf{s}}\underline{\alpha}_{\mathbf{s}}$.

The p.d.f. $P(\alpha)$ and P(x) are clear and known

Adding Noise

Noise Assumed:

The noise \underline{v} is additive white Gaussian vector with probability $P_v(\underline{v})$

$$\mathsf{P}(\underline{\mathbf{y}}\,|\underline{\mathbf{x}}) = \mathsf{C} \cdot \mathsf{exp}\left\{-\frac{\left\|\underline{\mathbf{x}}-\underline{\mathbf{y}}\right\|^{2}}{2\sigma^{2}}\right\}$$

The conditional p.d.f.'s $P(\underline{y}|s)$, $P(s|\underline{y})$, and even also $P(\underline{x}|\underline{y})$ are all clear and well-defined (although they may appear nasty).

 \Box The estimation of $\underline{\alpha}$ and multiplication by **D** is equivalent to the above.

□ These two estimators are impossible to compute, as we show next.

Lets Start with The Oracle*

$$P(\underline{\alpha} \mid \underline{y}, s) = P(\underline{\alpha}_{s} \mid \underline{y})$$

$$P(\underline{y} \mid \underline{\alpha}_{S}) \propto \exp\left\{-\frac{\left\|\underline{y} - \mathbf{D}_{S} \underline{\alpha}_{S}\right\|^{2}}{2\sigma^{2}}\right\} P(\underline{\alpha}_{S}) \propto \exp\left\{-\frac{\left\|\underline{\alpha}_{S}\right\|^{2}}{2\sigma_{X}^{2}}\right\}$$

$$P(\underline{\alpha}_{s} | \underline{y}) \propto \exp\left\{-\frac{\left\|\underline{y} - \mathbf{D}_{s}\underline{\alpha}_{s}\right\|^{2}}{2\sigma^{2}} - \frac{\left\|\underline{\alpha}_{s}\right\|^{2}}{2\sigma_{x}^{2}}\right\}$$

$$\underline{\hat{\alpha}}_{S} = \left[\frac{1}{\sigma^{2}}\mathbf{D}_{S}^{\mathsf{T}}\mathbf{D}_{S} + \frac{1}{\sigma_{X}^{2}}\mathbf{I}\right]^{-1}\frac{1}{\sigma^{2}}\mathbf{D}_{S}^{\mathsf{T}}\underline{y}$$

Comments:

- This estimate is both the MAP and MMSE.
- The oracle estimate of <u>x</u> is obtained by multiplication by D_s.
 * When s is known

The MAP Estimation

$$\underline{\hat{\alpha}}^{\text{MAP}} = \operatorname{ArgMax} \underbrace{\mathbb{P}(\alpha P)}_{\alpha_{s} \underline{\alpha}_{s} \in \Omega} \underbrace{\mathbb{P}(\alpha P)}_{s \in \Omega} \underbrace{\mathbb{P}($$

The MAP Estimation

Implications:

$$\underline{\hat{s}}^{MAP} = \underset{s \in \Omega}{\operatorname{ArgMax}P(s) \cdot exp} \left\{ \frac{\underline{h}_{s}^{\mathsf{T}} \mathbf{Q}_{s}^{-1} \underline{h}_{s}}{2} + \frac{\operatorname{log}(\operatorname{det}(\mathbf{Q}_{s}^{-1}))}{2} \right\}$$

- The MAP estimator requires to test all the possible supports for the maximization. In typical problems, this is impossible as there is a combinatorial set of possibilities.
- □ This is why we rarely use exact MAP, and we typically replace it with approximation algorithms (e.g., OMP).

The MMSE Estimation

$$\underline{\hat{\alpha}}^{\text{MMSE}} = \mathsf{E}\left\{\underline{\alpha} \mid \underline{y}\right\} = \sum_{s \in \Omega} \mathsf{P}(s \mid \underline{y}) \cdot \mathsf{E}\left\{\underline{\alpha} \mid \underline{y}, s\right\}$$

 $P(s \mid \underline{y}) \propto P(s) \cdot P(\underline{y} \mid s) = \dots$ $\propto P(s) \cdot \exp\left\{\frac{\underline{h}_{s}^{T} \mathbf{Q}_{s}^{-1} \underline{h}_{s}}{2} + \frac{\log(\det(\mathbf{Q}_{s}^{-1}))}{2}\right\}^{-1}$ $\frac{\log(\det(\mathbf{Q}_{s}^{-1}))}{2}$ $\frac{\log(\det(\mathbf{Q}_{s}^{-1}))}{2}$

$$\underline{\hat{\alpha}}^{\mathsf{MMSE}} = \sum_{\mathsf{S}\in\Omega} \mathsf{P}(\mathsf{S} \mid \underline{\mathsf{y}}) \cdot \underline{\alpha}_{\mathsf{S}}$$

The MMSE Estimation

$$\underline{\hat{\alpha}}^{\text{MMSE}} = \mathsf{E}\left\{\underline{\alpha} \mid \underline{y}\right\} = \sum_{\mathsf{S} \in \Omega} \mathsf{P}(\mathsf{S} \mid \underline{y}) \cdot \mathsf{E}\left\{\underline{\alpha} \mid \underline{y}, \mathsf{S}\right\}$$

Implications:

$$\underline{\hat{\alpha}}^{\text{MMSE}} = \sum_{s \in \Omega} \mathsf{P}(s \mid \underline{y}) \cdot \underline{\alpha}_{s}$$

□ The best estimator (in terms of L₂ error) is a weighted average of many sparse representations!!!

❑ As in the MAP case, in typical problems one cannot compute this expression, as the summation is over a combinatorial set of possibilities. We should propose approximations here as well.

The Case of |s|=k=1

$$\mathsf{P}(\mathsf{s} \mid \underline{\mathsf{y}}) \propto \mathsf{P}(\mathsf{s}) \cdot \exp\left\{\frac{\underline{\mathsf{h}}_{\mathsf{s}}^{\mathsf{T}} \mathbf{Q}_{\mathsf{s}}^{-1} \underline{\mathsf{h}}_{\mathsf{s}}}{2} + \frac{\mathsf{log}(\mathsf{det}(\mathbf{Q}_{\mathsf{s}}^{-1}))}{2}\right\}$$

This is our c in the Random-OMP

- □ Based on this we can propose a greedy algorithm for both MAP and MMSE:
 - MAP choose the atom with the largest inner product (out of K), and do so one at a time, while freezing the previous ones (almost OMP).
 - MMSE draw at random an atom in a greedy algorithm, based on the above probability set, getting close to P(s|<u>y</u>) in the overall draw.

The k-th

atom in **D**

Bottom Line

- The MMSE estimation we got requires a sweep through all supports (i.e. combinatorial search) – impractical.
- □ Similarly, an explicit expression for $P(\underline{x}/\underline{y})$ can be derived and maximized this is the MAP estimation, and it also requires a sweep through all possible supports impractical too.
- □ The OMP is a (good) approximation for the MAP estimate.
- □ The Random-OMP is a (good) approximation of the Minimum-Mean-Squared-Error (MMSE) estimate. It is close to the Gibbs sampler of the probability P(s|y) from which we should draw the weights.

Back to the beginning: Why Use Several Representations? Because their average leads to a provable better noise suppression.

Comparative Results

The following results correspond to a small dictionary (20×30), where the combinatorial formulas can be evaluated as well.

Parameters:

- N=20, K=30
- True support=3
- $\sigma_x = 1$
- J=10 (RandOMP)
- Averaged over 1000
 experiments

Part IV A Closer Look At the Unitary Case $DD^{T} = D^{T}D = I$

Few Basic Observations

Let us denote $\beta = \mathbf{D}^{\mathsf{T}} \underline{\mathbf{y}}$

$$\mathbf{Q}_{S} = \frac{1}{\sigma^{2}} \mathbf{D}_{S}^{\mathsf{T}} \mathbf{D}_{S} + \frac{1}{\sigma_{X}^{2}} \mathbf{I} = \frac{\sigma^{2} + \sigma_{X}^{2}}{\sigma^{2} \sigma_{X}^{2}} \mathbf{I}$$

$$\underline{h}_{S} = \frac{1}{\sigma^{2}} \mathbf{D}_{S}^{\mathsf{T}} \underline{y} = \frac{1}{\sigma^{2}} \underline{\beta}_{S}$$

$$\underline{\hat{\boldsymbol{\Omega}}}_{S} = \mathbf{Q}_{S}^{-1} \underline{h}_{S} = \frac{\sigma^{2} \sigma_{X}^{2}}{\sigma^{2} + \sigma_{X}^{2}} \cdot \frac{1}{\sigma^{2}} \underline{\beta}_{S} = \mathbf{C} \cdot \underline{\beta}_{S} \quad \text{(The Oracle)}$$

Back to the MAP Estimation^{*}

$$\hat{\underline{S}}^{MAP} = \operatorname{ArgMax}_{S \in \Omega} \exp \left\{ \begin{array}{c} \underline{h}_{S}^{T} \underline{Q}_{S}^{-1} \underline{h}_{S} \\ 2 \end{array} \right\} \left[\begin{array}{c} \log(\det(\underline{Q}_{S}^{-1})) \\ 2 \end{array} \right]$$

$$\frac{1}{2} \left[\begin{array}{c} \underline{h}_{S}^{T} \underline{Q}_{S}^{-1} \underline{h}_{S} \\ \underline{h}_{S}^{T} \underline{Q}_{S}^{-1} \underline{h}_{S} \end{array} \right] = \left[\begin{array}{c} \underline{c} \\ \underline{c}^{2} \end{array} \right] \left[\begin{array}{c} \underline{\beta}_{S} \\ \underline{\beta}_{S} \end{array} \right]_{2}^{2} \end{array} \right]$$

$$This part becomes a constant, and thus can be discarded the second second$$

This means that MAP estimation can be easily evaluated by computing $\underline{\beta}$, sorting its entries in descending order, and choosing the k leading Verresume |s|=k fixed with equal probabilities

Closed-Form Estimation

- □ It is well-known that MAP enjoys a closed form and simple solution in the case of a unitary dictionary **D**.
- This closed-form solution takes the structure of thresholding or shrinkage. The specific structure depends on the fine details of the model assumed.
- □ It is also known that OMP in this case becomes exact.

What about the MMSE? Could it have a simple closed-form solution too ?

The MMSE ... Again

 $\hat{lpha}^{\mathsf{MMSE}}$ $= \mathbf{C} \cdot \sum \mathbf{P}(\mathbf{S} \mid \mathbf{y}) \cdot \boldsymbol{\beta}_{\mathbf{S}}$ This is the formula we got: $S \in \Omega$ The result is one effective representation \mathbf{O} (not sparse anymore)

We combine linearly many sparse representations (with proper weights)

The MMSE ... Again

This is the formula we got:

$$\underline{\hat{\alpha}}^{\mathsf{MMSE}} = \mathsf{C} \cdot \sum_{\mathsf{S} \in \Omega} \mathsf{P}(\mathsf{S} \mid \underline{\mathsf{y}}) \cdot \underline{\beta}_{\mathsf{S}}$$

□ We change the above summation to

$$\underline{\hat{\alpha}}^{MMSE} = \sum_{j=1}^{K} q_j^k \cdot \beta_j \cdot \underline{e}_j$$

where there are K contributions (one per each atom) to be found and used.

We have developed a closed-form recursive formula for computing the q coefficients.

Towards a Recursive Formula

We have seen that the governing probability for the weighted averaging is given by

$$\mathsf{P}(\mathsf{s} \mid \underline{\mathsf{y}}) = \dots \propto \exp\left\{\frac{\mathsf{c}}{2\sigma^2} \cdot \left\|\underline{\beta}_{\mathsf{s}}\right\|_2^2\right\}$$

$$\underline{\hat{\alpha}}^{\mathsf{MMSE}} = \mathsf{C} \cdot \sum_{\mathsf{S} \in \Omega} \mathsf{P}(\mathsf{S} \mid \underline{\mathsf{y}}) \cdot \underline{\beta}_{\mathsf{S}}$$

Qi

The Recursive Formula

$$q_j^k = \sum_{S \in \Omega} \left(\prod_{i \in S} q_i \right) \cdot I_S(j) = \ldots = k \cdot \frac{q_j^1 (1 - q_j^{k-1})}{1 - \sum_{\ell=1}^K q_\ell^1 q_\ell^{k-1}} \quad \text{where} \quad q_j^1 = q_j$$

An Example

This is a synthetic experiment resembling the previous one, but with few important changes:

- **D** is unitary
- The representation's cardinality is 5 (the higher it is, the weaker the Random-OMP becomes)
- Dimensions are different: N=K=64
- J=20 (RandOMP runs)

Part V Summary and Conclusions

Today We Have Seen that ...

Sparsity and Redundancy are used for denoising of signals/images

How ?

By finding the sparsest representation and using it to recover the clean signal

Today we have shown that averaging several sparse representations for a signal lead to better denoising, as it approximates the MMSE estimator.

More on these (including the slides and the relevant papers) can be found in http://www.cs.technion.ac.il/~elad

