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Noise Removal?
In this talk we focus on signal/image denoising …

Important: (i) Practical application; (ii) A convenient platform          
for testing basic ideas in signal/image processing.

Many Considered Directions: Partial differential equations, Statistical 
estimators, Adaptive filters, Inverse problems & regularization,
Wavelets, Example-based techniques, Sparse representations, …

Main Massage Today: Several sparse representations can be                     
found and used for better denoising performance – we introduce, 
motivate, discuss, demonstrate, and explain this new idea. 

Remove 
Additive 

Noise ?
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1. Background on Denoising with  
Sparse Representations

2. Using More than One  
Representation: Intuition

3. Using More than One  
Representation: Theory

4. A Closer Look At the                               
Unitary Case

5. Summary and Conclusions 

Agenda
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Part I
Background on             

Denoising with Sparse       
Representations
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Relation to 
measurements

Denoising By Energy Minimization 

Thomas Bayes
1702 - 1761

Prior or regularizationy : Given measurements  

x : Unknown to be recovered

( ) ( )xPryx
2
1

xf
2
2

+−=

Many of the proposed signal denoising algorithms are related to the 
minimization of an energy function of the form

This is in-fact a Bayesian point of view, adopting the 
Maximum-A-posteriori Probability (MAP) estimation.

Clearly, the wisdom in such an approach is within the 
choice of the prior – modeling the signals of interest. 
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Sparse Representation Modeling

M K

N

D
A fixed Dictionary

Every column in    
D (dictionary) is    
a prototype signal 
(atom).

The vector α is 
generated 
randomly with few 
(say L for now) 
non-zeros at 
random locations 
and with random 
values. 

A sparse 
& random 
vector

=

α
x

N
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α=
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D

Dα-y=            -

Back to Our MAP Energy Function 

The L0 “norm” is effectively                                                 
counting the number of                                          
non-zeros in α. 

The vector α is the                                                         
representation (sparse/redundant).

Bottom line: Denoising of y is done by minimizing 

x

L.t.symin 0
0

2
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≤α−α
α

D 22
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0
0 y.t.smin ε≤−αα

α
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=

Next steps: given the previously found atoms, 
find the next one to best fit the residual.

The algorithm stops when the error            is below the destination 
threshold.

The MP  is one of the greedy 
algorithms that finds one atom 
at a time [Mallat & Zhang (’93)].

Step 1: find the one atom that  
best matches the signal. 

The Orthogonal MP (OMP) is an improved version that re-evaluates 
the coefficients by Least-Squares after each round.

2
y−αD

The Solver We Use: Greed Based 

22
2

0
0 y.t.smin ε≤−αα

α
D
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Orthogonal Matching Pursuit 
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OMP finds one atom at a time for 
approximating the solution of 
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Part II
Using More than One 

Representation: Intuition
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Back to the Beginning. What If …

Consider the denoising problem

and suppose that we can find a 
group of J candidate solutions

such that   

22
2

0
0 y.t.smin ε≤−αα
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1jj =

α
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<<α
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22
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0j
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j

D

Basic Questions:
What could we do with such a 
set of competing solutions in 
order to better denoise y? 

Why should this help? 

How shall we practically find 
such a set of solutions?

Relevant work: [Larsson & Selen (’07)]
[Schintter et. al. (`08)]

[Elad and Yavneh (’08)]
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Motivation – General 

Why bother with such a set? 

Because each representation     
conveys a different story about             
the desired signal.

Because pursuit algorithms are                   
often wrong in finding the sparsest 
representation, and then relying                         
on their solution is too sensitive.

… Maybe there are “deeper”
reasons? 

1α

2α

D

D

ε≤−

ε≤−
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Our Motivation

An intriguing relationship between this idea and the common-practice  
in example-based techniques, where several examples are merged.

Consider the Non-Local-Means [Buades, Coll, & Morel (‘05)]. It uses                
(i) a local dictionary (the neighborhood patches),                                    
(ii) it builds several sparse representations (of cardinality 1), and               
(iii) it merges them.

Why not take it further, and use general sparse representations?

2α

D ε≤−

1α

D ε≤−



MMSE Estimation for Sparse                                      
Representation Modeling
By: Michael Elad

14

Generating Many Representations 

Our  Answer: Randomizing the OMP

Ki1forrdzmin)i(ECompute 1n
i

z
≤≤−⋅= −

{ }=

=α−=

=α=

0

00

0

Sand

yyr

0,0n

D

ε≤
2

nr

1nn +=

Initialization

Main Iteration

1.

2.

3.

4.

5.

)i(E)i(E,Ki1.t.siChoose 00 ≤≤≤∀

{ } nn Spsup.t.symin:LS =α−α=α
α

D
nn yr:sidualReUpdate α−= D
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1nnn ∪= −

Stop

{ })i(EcexpyprobabilitwithiChoose 0 ⋅−∝

YesNo

* Larsson and Schnitter
propose a more            
complicated and 
deterministic tree          
pruning method

*

For now, lets set the parameter c 
manually for best performance. 

Later we shall define a way to set 
it automatically
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Lets Try 

100
00 =α

y

Proposed Experiment :

Form a random dictionary D. 

Multiply by a sparse vector α0 (             ).

Add Gaussian iid noise v with σ=1 and obtain  .

Solve the problem 

using OMP, and obtain       . 

Use Random-OMP and obtain                  .

Lets look at the obtained representations …

100
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D

{ }1000

1j
RandOMP
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Some Observations 
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Random-OMP denoising
OMP denoising
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Random-OMP denoising
OMP denoising
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We see that

• The OMP gives 
the sparsest 
solution

• Nevertheless, it  
is not the most 
effective for 
denoising.

• The cardinality of 
a representation 
does not reveal 
its efficiency. 
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The Surprise (at least for us) …
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Averaged Rep.
Original Rep.
OMP Rep.∑ α=α
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Lets propose the average 

as our representation

This representation             
IS NOT SPARSE AT ALL

but it gives
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Is It Consistent? … Yes!
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OMP versus RandOMP results
Mean Point

Here are the results of 
1000 trials with the 
same parameters …

Cases of 
zero 

solution
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Part III
Using More than One        

Representation: Theory  
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Our Signal Model

K

N

D
A fixed Dictionary

α

x
D is fixed and known.

The vector α is built by:
Choosing the support s with 
probability P(s) from all the 2K

possibilities Ω. 

For simplicity, assume that 
|s|=k is fixed and known.

Choosing the αs coefficients using   
iid Gaussian entries N(0,σx).

The ideal signal is x=Dα=Dsαs.

The p.d.f. P(α) and P(x) are clear and known
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Adding Noise

K

N

D
A fixed Dictionary

α

x

y
v

+
Noise Assumed:
The noise v is additive 
white Gaussian vector   
with probability Pv(v)

The conditional p.d.f.’s P(y|s), P(s|y), and   
even also P(x|y) are all clear and well-defined 

(although they may appear nasty).

( )
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The Key – The Posterior P(x|y)

( )y|xPWe have 
access to

MAP MMSE

)y|x(PArgMaxx̂
x

MAP = { }y|xEx̂MMSE =

The estimation of α and multiplication by D is equivalent to the above.

These two estimators are impossible to compute, as we show next.

Oracle       
known          

support s

oraclex̂
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Lets Start with The Oracle
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* When s is known

*

Comments: 

• This estimate is both 
the MAP and MMSE.

• The oracle estimate 
of x is obtained by 
multiplication by Ds. 
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We have seen this as the oracle’s 
probability for the support s:
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The MAP Estimation
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The MAP Estimation

Implications:

The MAP estimator requires to test all the possible supports for
the maximization. In typical problems, this is impossible as there 
is a combinatorial set of possibilities.

This is why we rarely use exact MAP, and we typically replace it
with approximation algorithms (e.g., OMP).
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{ } s
1

ss hˆs,y|E −=α=α Q

This is the oracle for s, as we 
have seen before

The MMSE Estimation
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The MMSE Estimation

{ } { }∑ α⋅=α=α
Ω∈s

MMSE s,y|E)y|s(Py|Eˆ

∑ α⋅=α
Ω∈s

s
MMSE )y|s(Pˆ

Implications:

The best estimator (in terms of L2 error) is a weighted average of 
many sparse representations!!! 

As in the MAP case, in typical problems one cannot compute this 
expression, as the summation is over a combinatorial set of 
possibilities.  We should propose approximations here as well. 
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This is our      
c in the    

Random-OMP

The Case of |s|=k=1 
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The k-th
atom in DBased on this we can propose a greedy                           

algorithm for both MAP and MMSE:

MAP – choose the atom with the largest inner product (out of K), and 
do so one at a time, while freezing the previous ones (almost OMP).

MMSE – draw at random an atom in a greedy algorithm, based on 
the above probability set, getting close to P(s|y) in the overall draw.
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Bottom Line

The MMSE estimation we got requires a sweep through all supports
(i.e. combinatorial search) – impractical. 

Similarly, an explicit expression for P(x/y) can be derived and 
maximized – this is the MAP estimation, and it also requires a 
sweep through all possible supports – impractical too.

The OMP is a (good) approximation for the MAP estimate. 

The Random-OMP is a (good) approximation of the Minimum-
Mean-Squared-Error (MMSE) estimate. It is close to the Gibbs 
sampler of the probability P(s|y) from which we should draw the 
weights. 

Back to the beginning: Why Use Several Representations?
Because their average leads to a provable better noise suppression. 
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Comparative Results 

The following results 
correspond to a small 
dictionary (20×30), 
where the combinatorial 
formulas can be 
evaluated as well.

Parameters: 

• N=20, K=30 

• True support=3

• σx=1

• J=10 (RandOMP)

• Averaged over 1000     
experiments

2
0

1. Emp. Oracle
2. Theor. Oracle
3. Emp. MMSE
4. Theor. MMSE
5. Emp. MAP
6. Theor. MAP
7. OMP
8. RandOMP

Known 
support
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Part IV
A Closer Look At the         

Unitary Case  
IDDDD == TT
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Few Basic Observations 
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Back to the MAP Estimation
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with equal probabilities 
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This part becomes a 
constant, and thus 
can be discarded
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This means that MAP estimation can 
be easily evaluated by computing β, 

sorting its entries in descending order, 
and choosing the k leading ones. 
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Closed-Form Estimation

It is well-known that MAP enjoys a closed form and 
simple solution in the case of a unitary dictionary D.

This closed-form solution takes the structure of 
thresholding or shrinkage. The specific structure 
depends on the fine details of the model assumed. 

It is also known that OMP in this case becomes exact. 

What about the MMSE?                         
Could it have a simple                          

closed-form solution too ?
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The MMSE … Again 

∑ β⋅⋅=α
Ω∈s s

MMSE )y|s(PcˆThis is the formula we got: 

=

We combine linearly many sparse                
representations (with proper weights) 

+ + + + + + +
The result is 
one effective  
representation 
(not sparse 
anymore)
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The MMSE … Again 

∑ β⋅⋅=α
Ω∈s s

MMSE )y|s(PcˆThis is the formula we got: 

We change the above summation to

∑ ⋅β⋅=α
=

K

1j
jj

k
j

MMSE eqˆ

where there are K contributions (one per each atom) to 
be found and used.

We have developed a closed-form recursive formula for 
computing the q coefficients.
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Towards a Recursive Formula 
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The Recursive Formula 
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This is a synthetic 
experiment resembling 
the previous one, but 
with few important 
changes:

2

OracleKnown 
support

An Example 

• D is unitary

• The representation’s 
cardinality is 5 (the 
higher it is, the weaker 
the Random-OMP 
becomes)

• Dimensions are 
different: N=K=64

• J=20 (RandOMP runs)

Theor. MAP
OMP

Recursive MMSE
Theor. MMSE

RandOMP
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Part V                     
Summary and              
Conclusions
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Today We Have Seen that …

By finding the sparsest 
representation and 

using it to recover the 
clean signal

How ?  

Sparsity and 
Redundancy are used 

for denoising of 
signals/images

Can we do 
better? Today we have shown that 

averaging several sparse 
representations for a signal lead to 

better denoising, as it 
approximates the MMSE estimator.

More on these (including the slides and the relevant papers) can be found in 
http://www.cs.technion.ac.il/~elad


