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In super-resolution (SR) reconstruction of images, regularization becomes crucial when insufficient

number of measured low-resolution images is supplied. Beyond making the problem algebraically

well posed, a properly chosen regularization can direct the solution toward a better quality

outcome. Even the extreme case—a SR reconstruction from a single measured image—can be

made successful with a well-chosen regularization. Much of the progress made in the past two

decades on inverse problems in image processing can be attributed to the advances in forming or

choosing the way to practice the regularization. A Bayesian point of view interpret this as a way

of including the prior distribution of images, which sheds some light on the complications involved.

This paper reviews an emerging powerful family of regularization techniques that is drawing atten-

tion in recent years—the example-based approach. We describe how examples can and have been

used effectively for regularization of inverse problems, reviewing the main contributions along

these lines in the literature, and organizing this information into major trends and directions.

A description of the state-of-the-art in this field, along with supporting simulation results on the

image scale-up problem are given. This paper concludes with an outline of the outstanding

challenges this field faces today.
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1. INTRODUCTION

The conventional super-resolution (SR) process uses a multi-

tude of measured low-quality images to produce the super-

resolved outcome. It is well known that such SR process

may lead to higher optical (i.e. true) resolution. The higher-

frequencies in the resulting image, which represent the newly-

introduced details, are in fact available in the measurements in

an aliased form. The SR process recovers these high frequen-

cies by exploiting the various given images, each exhibiting a

different aliasing effect. This explains why such resolution

improvement is possible in the first place. However, for such

a process to succeed, sufficient number of low-resolution

images are needed, so as to enable the recovery of the

aliased frequencies uniquely [1–3].

Based on the above reasoning, one might be led to the natural

conclusion that SR based on a single measured image is

impossible. Is it indeed so? The answer depends on the avail-

able information the reconstruction process has access to.

Clearly, one type of information that is made available to the

reconstruction process is the measured image(s). Those alone

could suffice if enough of them are available, as described

above. If only one image is given, an alternative source of

information is necessary, so as to compensate for the lack of

data. An a priori knowledge about the objects in the image

could be proposed as such source of information. This leads

naturally to the concept of regularization [4, 5].

Regularization plays a vital role in inverse problems, and

especially in ill-posed ones, where insufficient data are avail-

able. One way to interpret the regularization is a way of

gaining an algebraic stability in the reconstruction process.

However, regularization is much more than a mere stabiliz-

ation technique. A Bayesian point of view interprets such

addition to inverse problems as a way of exploiting the prob-

ability density function (PDF) of images—the prior. This way,

a properly chosen regularization can direct the solution toward

a better quality outcome, by bringing into account the proper

behavior of the desired image. Indeed, in the extreme case,

SR from a single measured image—the image scale-up
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problem—can be made possible and successful due to such

well-chosen prior.

Much of the progress made in the past two decades on inverse

problems in image processing can be attributed to the advances

in forming or choosing the way to practice the regularization.

The simplest regularization practiced was based on Tikhonov’s

idea, enforcing spatial smoothness uniformly on the output

image [6]. This option leads to the well-known Wiener filter

for image restoration, and is known to over-smooth image

edges [4, 5]. Introduction of spatially adaptive smoothness

priors was shown to lead to better results, leaning first on a

weighted least-squares scheme, and later on robust statistics

techniques [7]. In fact, much of the activity that brought

partial differential equations (PDE) to the realm of image pro-

cessing has to do with ways of defining edge-preserving regular-

ization terms [8]. In parallel to those techniques, sparsity of

transform coefficients (e.g. wavelet) has also been used as a

way of forming regularization in inverse problems [9].

Common to all the above regularization methods is the use

of closed-form simplistic mathematical expressions in defin-

ing the PDF of images. One must ask: can the wealth of

image content be grasped by such simple expressions?

Judging by the quality of results obtained in challenging

inverse problems (e.g. deblurring and SR) that employ these

regularization methods, the answer is unfortunately negative.

While such methods perform much better than previously

practiced reconstruction algorithms, the quality of the results

is typically far from being satisfactory. Realizing this, in

recent years, there has been a trend of seeking better and

more complex priors of various sorts.

One fascinating and promising such direction is the use of

examples, basically suggesting that instead of arbitrarily and

intuitively defining the PDF, let image examples help in defin-

ing it. This paper focuses on this example-based approach,

describing how examples can and have been used effectively

for regularization, reviewing the main contributions along these

lines in the literature. As it turns out, there are three main

effective ways to exploit examples in inverse problems—

use them to fine-tune the parameters of previously defined

regularization expressions [10–17], use them directly for the

reconstruction procedure [18–23] or fuse the above two tech-

niques somehow [20, 21, 24, 25]. These options are presented

in detail in this paper.

The use of examples becomes much more effective when

handling narrow family of images, such as scanned documents

or face images. Beyond the offered review on the use of

examples in inverse problems, this paper also presents a

description of our recent efforts in developing effective algor-

ithms for image scale-up, focusing on the above two families

of images. We show how effective pruning of examples can

lead to better results, both visually and in mean squared

error (MSE). Along side to the description of the

state-of-the-art in this arena, we outline the outstanding chal-

lenges of this fiefld.

This paper is organized as follows: Section 2 gives the

necessary background, describing the maximum-likelihood

estimator (MLE) that solves inverse problems based on

measurements alone, the Bayesian approach that introduces

the image prior and the evolution of regularization expressions

in the past decades. In Section 3, we describe how examples

can be used, surveying the various contributions in the litera-

ture along these lines and putting some order to these tech-

niques, based on their rationale. In Section 4, we describe

our recent work on scanned documents and face images, con-

centrating on a holistic way of defining the prior based on

examples and how those examples can be pruned to fine-tune

the results. This section includes also supporting simulation

results. Section 5 concludes this paper with an attempt to

clearly define the grand challenges this field faces today.

2. BACKGROUND ON REGULARIZATION

2.1. The maximum-likelihood estimator (MLE)

A fundamental signal processing problem is the recovery of a

signal x e IRN from a measurement vector, y e IRM, related to it

through

y ¼ Hxþ v: ð1Þ

In this equation, the matrix H e IRM� N represents some linear

degradation operation (it may include blur, decimation, geo-

metrical warp and more), and v e IRM stands for an additive

noise, assumed to be a zero-mean and white (with a standard

deviation s) Gaussian random vector with probability

pðvÞ ¼
1

ð2pÞM=2sM
� exp �

vTv

2s2

� �
: ð2Þ

The discussion brought in this and the next section on how

the above-described problem is addressed belongs now to the

classics of signal and image processing. For more information,

the reader is referred to [4, 5].

The MLE suggests to choose x that leads p(yjx), known as

the likelihood function, to maximum. This means that we

choose the signal that makes the measurements the most

likely to take place, and thus the name of this method.

Clearly, such method exploits the measurements alone in

forming the estimated result.

Considering the model in Equation (1), based on the

Gaussianity of the noise and the fact that x is assumed to be

known, the measurement vector is also a Gaussian random

vector with a shifted mean. Thus, the likelihood function

becomes

pðyjxÞ ¼
1

ð2pÞM=2sM
� exp �

1

2s2
� ky�Hxk2

2

� �
: ð3Þ
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Therefore, the MLE result is given by

x̂ML ¼ Arg max
x

pðyjxÞ ¼ Arg min
x
ky�Hxk22: ð4Þ

In cases where the Gram matrix HTH is positive definite, the

problem is considered well posed, and there is a unique solu-

tion to the above minimization, being

x̂ML ¼ ðH
THÞ�1HTy: ð5Þ

In cases where HTH is singular, there are infinitely many pos-

sible solutions, caused by the null-space of the matrix H. In

such a case, the problem is considered ill-posed, and more

information is necessary to tune the reconstruction toward a

unique solution. This leads naturally to the notion of regular-

ization. From a pure algebraic point of view, regularization of

the MLE is done by turning the penalty function into a strictly

convex one, thus guaranteeing a unique solution. A simple

way of achieving this goal is via Tikhonov’s approach,

x̂RML ¼ Arg min
x
ky�Hxk2

2 þ lkSxk2
2

� �

¼ ðHTH þ lSTSÞ�1HTy; ð6Þ

where STS is assumed to be positive definite. The new solution

corresponds to a regularized ML (RML) approach. Notice that

an arbitrary quadratic term kSXk2
2 has been added here, and

while it removes the ill-posedness of the original problem, it

is unclear at all whether it helps in getting a proper result.

The above discussion might lead to the wrong impression

that regularization is necessary only if the problem is ill-posed.

Considering the signal denoising problem, where H ¼ I, the

matrix HTH is positive definite and thus, the problem is well-

posed. Nevertheless, the MLE result due to Equation (5) is

x̂ML ¼ y, which unveils the weakness of the MLE.

2.2. The Bayesian point of view and regularization

The Bayesian approach starts with the replacement of the likeli-

hood function with the posterior probability p(xjy). With this see-

mingly minor change comes a revolutionary perception of the

problem at hand, because now x is assumed to be random as

well. The Bayes rule ties the above two conditional probabilities by

pðxjyÞ ¼
pðyjxÞpðxÞ

pðyÞ
: ð7Þ

Generally speaking, there are two ways to practice the Bayesian

approach and lead to a constructive point1 estimate of x—the

maximum a posteriori probability (MAP) and the minimum

mean-squared error (MMSE) methods. The simpler method is

the MAP method, choosing the x that maximizes p(xjy). Using

Equation (7), this reads

x̂MAP ¼ Arg max
x

pðxjyÞ ¼ Arg max
x

pðyjxÞpðxÞ: ð8Þ

Observe that the denominator p(y) has been removed from con-

sideration, since it is considered as constant with respect to the

optimization task. For reasons to be made clear shortly, a con-

venient way to describe the PDF of x is the Gibbs distribution,

which represents p(x) in an exponential form

pðxÞ ¼ Const � expf�aAðxÞg: ð9Þ

Such a description loses no generality, as every non-negative func-

tion can be written in such a format. The constant in front of the

exponential is a normalization factor, guaranteeing that the integral

over all x is 1. The term A(x) is a non-negative energy function,

supposed to be low for highly probable signals and high otherwise.

Using this, and the expression we already have for the likelihood

function in Equation (3), we obtain

x̂MAP ¼ Arg max
x

pðyjxÞpðxÞ

¼ Arg min
x
fky�Hxk22 þ 2s2a � AðxÞg: ð10Þ

We see that the MAP method leads naturally to the concept of

regularization as already described in Equation (6), only this

time giving a probabilistic meaning to the additional expression

A(x), rather than settling with the gained algebraic stability.

A second, more involved, way to practice the Bayesian

approach is the MMSE estimator. This option chooses the

expected value of x based on its conditional density p(xjy), i.e.

x̂MMSE ¼ Efxjyg ¼

ð
x1

ð
x2

� � �

ð
xN

x � pðxjyÞdx: ð11Þ

It is easily seen that this solution leads to the minimizer of the

expression

Efkx� xk22yg ¼

ð
x1

ð
x2

� � �

ð
xN

kx̂� xk22 � pðxjyÞdx; ð12Þ

which is the MSE measure. This explains the name chosen for

this estimator. Since the integral is n-dimensional (as the

dimension of x), such an approach is typically prohibitive

for non-scalar cases.

Whichever method chosen, MMSE or MAP, the estimation

of x using the Bayesian approach requires a clear definition of

the energy function A(x). When dealing with images, this

energy function is essentially describing how natural images

behave. In the next section, we describe the main choices

1The methods we describe here provide a point estimate, as opposed to

techniques that estimate the entire posterior distribution or sample from it,

such as Markov Chain Monte–Carlo methods [26].
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made for A(x) in the past 2–3 decades, showing the evolution

of ideas on this matter.

2.3. Evolution of image priors

Assuming the Gibbs distribution for images, as in Equation

(9), what should A(x) be so as to reflect the distribution of

natural images? This question poses one of the most funda-

mental problems in image processing. This enigma has

drawn a considerable research attention in the past 2–3

decades, and is still considered an open question. In this

section, we briefly describe the main milestones in this

arena, showing how priors are getting smarter and more

complex, all in the attempt to better describe image content.

The Tikhonov regularization presented earlier was among

the first to be practiced [35]. Choosing A(x) ¼ kLxk2
2 with L

chosen as the Laplacian operator, this prior promotes spatial

smoothness across the image in a uniform way. The uniform-

ity is a key feature of this choice, as it leads to numerical con-

venience in the classic deblurring problem, where H is a linear

space-invariant blurring operation. In such a case, the matrix

inversion required in Equation (6) can be easily done in the

frequency domain, since HTH þ lLTL is block-circulant (or

could be approximated as such, after proper boundary treat-

ment). This becomes the well-known Wiener filter algorithm,

which for many years was the leading approach in image

deblurring [4, 5].

The choice of the Laplacian operation for measuring

smoothness, both here and in later priors proposed, is not the

only possibility, and similar regularization expressions can

be practiced with other derivatives. For example, the choice

A(x) ¼ kDhxk2
2
þ kDvxk2

2, with Dh and Dv being horizontal

and vertical derivatives, respectively, can also be used. The

difference is in the kind of smoothness that is expected from

the outcome—while first-order derivatives promote constant

values, second derivatives such as the Laplacian allow tilted

planes (and saddle points) as well.

By the late 1980s and early 1990s, it became clear that the

Wiener filter is not producing good enough results, and better

ones are within reach when avoiding the enforced spatial uni-

formity. This basic idea of forcing smoothness adaptively

across the image found many manifestations in various pro-

posed image priors. One of the simplest ways is the weighted

least-squares expression—A(x) ¼ (Lx)TW(Lx). The matrix W
is a diagonal one with positive entries along the main diag-

onal being 1 for smooth regions, and close to 0 for edge or

texture zones. This matrix can be built based directly on

the measurements y, assumed to contain enough information

to yield such a segmentation. One positive feature of this

choice is the fact that the MAP estimator remains linear,

although frequency domain solutions are no longer possible.

Thus, iterative restoration techniques came to be prevalent

and unavoidable [5].

Since the reconstruction process is iterative, one could

update the weight matrix W based on the current solution

(assumed to be better than the measurements), and this way

direct the solution toward a better result. As it turns out, this

option is effectively obtained when exploiting concepts from

robust-statistics. The field of robust statistics focuses on esti-

mation in the presence of outliers. In the regularization

expressions we have seen above, edges appear as outliers in

the associated prior. While most of the regions in an image

provide low energy after the Laplacian operation (due to

their smoothness), edges cause very high and exceptionally

different values. Penalizing those using the ‘2-norm leads to

a very strong penalty, which is avoided by smoothing out

the edges, as indeed happens. The alternative is to use

robust measures such as ‘1-norm [9], the Huber–Markov or

the Cauchy functions, etc. [5]. Then the choice of A(x)

becomes A(x) ¼ 1T r(Lx), where r(.) is a scalar robust

(having a sub-linear derivative) function. When operating on

a vector it is applied entry-wise, and thus, the above is

simply the sum over all the entries. Clearly, with this choice

of prior, the overall reconstruction algorithm becomes non-

linear. If A(x) is convex then a unique solution is guaranteed,

and can be found via an iterative procedure. This leads to sys-

tematic ways of designing non-linear filtering techniques, as

indeed required in images due to their non-homogeneity [7].

A vast amount of activity in image processing, which seems

to be independent of the above discussion, is the introduction

of PDEs filtering techniques into image processing. As it so

happens, contributions such as the total variation (TV) by

Rudin et al. [27], the Beltrami flow due to Sochen et al. [28,

29], the directional filter due to Weickert [8] and many

more, are directly coupled with the robust-statistics tech-

niques, although formulated in the continuum. For example,

the TV suggests the energy function A(x) ¼ kjrxjk1, which

clearly uses a derivative and a robust integration measure.

To this date, the TV and its variants are considered among

the best regularization techniques available, and are often

used in image processing.

In parallel to the impressive progress made on the use of

PDEs in image processing in defining regularization

expressions, the field of approximation theory contributed its

own techniques for this purpose, and in particular via the

use of the wavelet transform. Empirical observations

suggested that after a wavelet transform, the coefficients of

signals tend to sparsity, i.e. many of them are zero or near

zero. This led to a proposed regularization expression of the

form A(x) ¼ kTxkp
p, where T the wavelet transform operator

in matrix form, and the ‘p-norm (with p � 1) comes to sum

over these coefficients in a way that promotes sparsity [9, 30].

While substantially different from the previous options dis-

cussed, this regularization also applies some sort of deriva-

tives, followed by a robust measure. The wavelet transform

performs an inner product of the signal with zero-mean

vectors that can be interpreted as multi-scale derivatives.
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While the TV and the-like use a fixed scale and shift-invariant

derivative (i.e. a derivative that applies uniformly across the

signal), the wavelet option suggests a multi-scale set of deriva-

tives, but without the shift-invariance property. More recent

works deploy redundant transforms, leading to longer

sequence of coefficients, so as to obtain both scale and shift

invariance. Such constructions are considered among the

best available methods today.

In summary, the quest for better regularization expressions

for images is very much active today, with many new contri-

butions that extend the above list of options and improve on

them. Using the above rationale in forming regularization,

one must question the fundamental ability of a simple analyti-

cal expression A(x) to grasp the complexity and wealth of

general image content. This brings us to the main part of

this paper, presenting a new way of forming the regularization,

based on image examples.

3. USING EXAMPLES—SURVEY OF TECHNIQUES

An emerging powerful regularization methodology that has

been drawing research attention in recent years is the use of

examples. Rather than guessing the image PDF and forcing

a simple expression to be used to describe it, we let image

examples guide us in the construction of the prior. Examples

can be used in a variety of ways, and the various proposed

methods can be roughly divided into three categories:

(1) Learning prior parameters: If we are generally pleased

with the above-described analytical priors, those can be

further improved by learning their parameters.

(2) Learning the posterior directly: Rather than learn the

image prior and then plug it in a MAP/MMSE recon-

struction penalty term, one can use the examples to

directly learn the posterior PDF, and then use it for

the reconstruction.

(3) Building a regularization expression with examples:

This is a fusion of the above two techniques, where

examples are found as part of the reconstruction

process, and then plugged directly into an explicit regu-

larization expression.

In the following sections, we expand on each of those families of

methods, and describe related work found in the literature.

3.1. Learning prior parameters via examples

Considering the vast progress made on the formation of regu-

larization expressions, as described above, the most natural

way to introduce examples into inverse problems is to keep

the use of those expressions, and exploit examples to tune

some parameters that control these priors. Thus, the regulariz-

ation expression is A(x, u) where u are the parameters to be

found.

A pioneering work by Zhu and Mumford [11] considered

this approach, where a Markov random field prior is trained

from the examples. The energy function considered is

AðxÞ ¼
Xn

i¼1

liriðLixÞ: ð13Þ

This function leans on a weighted average of robust

measures of smoothness, using different robust functions

ri(.), analysing filters Li, and weights li. All these can be

learned in principle using a large body of high-quality image

examples, fxkgk¼ 1
K .

There can be many ways to tune the prior parameters, each

considering a different objective. The work reported in [11]

suggests to learn the parameters such that the marginals of

the prior fit empirical observations, while maximizing the

entropy of the PDF, so as to consider a worst case scenario

[39]. A different method of similar flavor has been proposed

recently by Roth and Black [14], addressing the same energy

function. Their approach, termed fields of experts, aims to

minimize the Kulback–Leibler distance between the empiri-

cal distribution of the example set and the prior trained.

Still using a database of high-quality images, the work by

Buccigrossi and Simoncelli [31] propose a prior learning for

natural images, based on the statistics of such images in the

wavelet domain. While the classic use of wavelets promotes

sparsity and assumes an independence between the coeffi-

cients, their work considered learning of the joint probability

of neighboring wavelet coefficients (space, orientation, or

scale-neighborhoods). Their algorithm is far simpler than the

ones in [11, 14], owing to the simplicity gained by the

wavelet transform that allows for simple marginals to describe

the required addition.

An entirely different approach for learning prior parameters

is the one reported by Haber and Tenorio [13]. Whereas the

previous methods learned the prior and based this on a set of

K high-quality images, the work in [13] uses K pairs of

images, fxi, ykgk¼ 1
K , representing the high-quality image and

its degraded version, using the same degradation (and noise)

to be overcome in the inverse problem at hand. Thus,

the images yk are generated by simulating the degradation

effects,

yk ¼ Hxk þ vk: ð14Þ

Since the role of regularization is primarily to get better recon-

struction, Haber’s way of finding the parameters is to mini-

mize the reconstruction error on the above training set.

Considering a MAP reconstruction formula

x̂k
MAPðuÞ ¼ Arg min

x
fkyk �Hxk22 þ l � Aðx; uÞg; ð15Þ
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the results are functions of the parameters u. By minimizing

XK

k¼1

kx̂k
MAPðuÞ � xik

2
2 ð16Þ

with respect to u, we tune the parameters to lead to the

minimal MSE in an empirical sense. Such interesting

mixture of MMSE and MAP methods is very effective, and

breaks the pure Bayesian interpretation of the energy function

A(x), since now it is related to the degradation operation. Just

as before, here one also faces a complicated optimization task,

which can be handled only in simple parametric forms.

One last family of techniques that falls under the same regu-

larization learning methodology is the one that targets the

quest for a dictionary that yields sparse representations [10,

12, 15–17]. These methods are based on the assumption that

the signal in mind, x, could be created as a sparse linear com-

bination of columns from the dictionary D, namely, x ¼ Da.

The matrix D is full-rank, having more columns than rows.

This implies that there are infinitely many ways to construct

x as linear combination of columns from D. Among all these

possibilities, we consider the sparsest—the one that fuses the

smallest number of columns in such construction. Thus, hand-

ling the general inverse problem posed in Section 2, the MAP

approach in this case leads to [7],

x̂MAP ¼ D � Arg min
a
fky�HDak22 þ l � kakg: ð17Þ

In this penalty function, we describe the desired signal as x ¼
Da and force its representation vector a to be sparse. All the

work reported in [10, 12, 15–17] considers the question of

training the dictionary D to perform best in such inverse pro-

blems, with differences in the numerical methods proposed, or

the way to fuse local and global relationships in the spatial

domain.

Common to all the above methods is the fact that a para-

metric energy function is used and its parameters are tuned

by the examples. Also, all these methods call for an involved

optimization procedure, but one that should be done off-line.

Once the regularization expression is ready, it can be deployed

for use in the inverse problem in mind. Haber’s work restricts

the parameters to the same inverse problem trained on, while

the other techniques are more general, allowing the use of the

prior found in every inverse problem.

3.2. Learning the posterior directly via examples

The above-described approach uses examples indirectly, by

training the regularization parameters. An entirely different

way of exploiting examples is to use them directly within

the reconstruction process. In such an approach, the examples

are gathered to a database and used explicitly in the on-line

reconstruction algorithm. These gathered examples may be

regarded as samples from the posterior p(xjy), and as such

they offer a direct way of performing reconstruction.

The example database organization is similar to the way

described in Haber’s method described above—gathering a

set of high-quality images and a corresponding set of degraded

versions thereof, obtained by applying H on each and adding

noise. This gives us the set of image pairs fxk, ykgk¼ 1
K . Thus, the

obtained database is tightly coupled to the type of degradation

H that characterizes the inverse problem to be solved.

The basic idea behind the direct use of examples is one of

pattern matching, i.e. given a low-quality image y, seek in

the database similar low-quality examples. Taking their corre-

sponding high-quality pairs, those could be used for the recon-

struction as they provide the high-quality content that fits the

measurements. Clearly, such a process cannot be operated on

large size images, since this implies an impossibly large data-

base, so as to guarantee that every possible content encoun-

tered can be found. Therefore, the above method is

applicable for small patches of images, with typical size of

the low-quality images ranging between 5 � 5 and 25 � 25

pixels. This also implies that the above process is operated

locally, or even on a pixel-by-pixel basis. Thus, given the

image pairs described above, we sweep through the low-

quality image set, and extract all image patches of size n �

n (possibly with overlaps). This gives a very large set of

example patches, denoted as Y ¼ fykgk¼ 1
Ks (with Ks�K—a

typical database should contain at least Ks ¼ 106 examples,

and often much more). Per patch yk e Y, there is a correspond-

ing patch of size m � m in the high-quality images. We denote

the corresponding patches as X ¼ fxkgk¼ 1
Ks .

The choice of n (and hence m) is not trivial—choosing too

small n means that the low-resolution patch is too small, and

thus many irrelevant examples join the reconstruction

process and divert it. Too large n may lead to no adequate

examples in the database, and thus, to failure again. As to

the choice of m, it depends on n, and on the degradation oper-

ation. A critical value of m is the one that contains all the

pixels in xk that are involved in constructing the measurement

yk. For example, for n ¼ 5, and a degradation that includes a

3 � 3 blur followed by 2:1 decimation in each axis, we get

m ¼ 11 (see a figure that illustrates this in [25]). Choosing a

smaller value for m wastes an information within the corre-

sponding measurements, and choosing a larger value for m

implies that the high-resolution patch relies on the spatial

context, rather than the measurements alone, and as such, it

may be misleading. Interestingly, the various works reported

in [5, 18–21, 23] all assume much smaller m. In [25] it has

been shown that using the critical value of m leads to best

results.

Once the database fX,Yg ¼ fxk, ykgk¼ 1
Ks is ready, it can be

used directly in the reconstruction algorithm. Note that this

data set may contain the original gray-scale images, as

described in [25], or high-pass (and possibly multi-scale)
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versions as has been commonly used in [20–22, 24]. This

choice of representation is tightly coupled with the type of

images we target.

Turning to the reconstruction process, consider a given low-

quality image y, known to be damaged by H and by additive

white Gaussian noise of strength s2. Per every location [i, j]

in the image, we extract a patch of size n � n, denoted as y[i,

j]. At the heart of the reconstruction process lies the need to

find the nearest neighbors of y[i, j] from Y. We consider all

the candidate all examples yk in Y satisfying

ky½i;j� � ykk
2
2 � T ð18Þ

as possible matches (or the single nearest among them, if only

one is desired). The threshold T depends on the patch size and

the noise variance (e.g. T ¼ 4n2s2). Having found this subset

of examples, Y[i, j] ¼ fyk
[i, j]
gke V[i, j], their corresponding pairs

X[i, j] ¼ fxk
[i, j]
gk[ V[i, j] are the candidate patches to be used for

the reconstruction.

Given the reference vector y[i, j] of length n2 and the data-

base Y that contains Ks examples, the above-described

search should be done efficiently, as it is part of the on-line

algorithm. One way to accelerate this search is by the K–D

tree algorithm [32], which organizes the database off-line to

enable a fast search, by defining an optimal binary tree of

thresholds on the input coordinates. This pre-organization

requires Ofn2 . Ks log Ksg in computations and OfKsg in

memory. The thresholds in this algorithm are chosen optimally

so as to expedite the search, and indeed, the K–D tree algor-

ithm leads to anOflog Ksg expected number of distance evalu-

ations in the quest for any predetermined number of the closest

neighbors. By choosing a large number of neighbors, we guar-

antee to find all the relevant ones, satisfying (18). Alternative

methods that have been considered in the literature for

speeding-up the search include clustering techniques, princi-

pal component analysis and other fast nearest-neighbor

methods [33].

The above process is performed for every location [i, j] in y,

or with jumps to reduce computational complexity. Assuming

a full-overlap approach, for every location there is a set of can-

didate high-resolution m � m patches X[i, j] ¼ fxk
[i, j]
gke V[i, j].

There are several ways one can use these results. Defining

an output canvas x̂ as expanding the low-resolution image,

we need to fill-in the pixel values. Every example found, xk
[i,

j], has a known footprint on this canvas, and thus there are

several intuitive ways to proceed:

(1) Scalar MMSE Estimate: Considering the pixel [I, J] in

the output canvas x̂, it has many contributions, coming

from all patches inX[i, j] that overlap it. By simply aver-

aging these values we essentially perform an approxi-

mate MMSE estimate. This is because these values

can be considered as samplings from the posterior

p(xjy). By creating a histogram of these values, we

get a 1D approximate description of this posterior,

and the expected value can be computed by a simple

mean of the samples.

(2) Scalar MAP estimate: The above procedure is suscep-

tible to outliers. Using the very same histogram of

those values, one can seek it’s peak, and this will be

the MAP estimation for the desired output. From a prac-

tical point of view, it is likely that this histogram is too

poor to work with because of insufficient data, and

curve fitting or smoothing will be needed.

(3) A special case—non-overlap and 1-NN: If this algor-

ithm extracts only the nearest neighbor, and if the

patches used are taken with no overlap, we get only

one value per location [I, J], and then the above two

methods coincide, suggesting that the output at this

location is simply the candidate value.

All these are pixel-based reconstructions, and as such, they are

easy to implement. However, their simplicity comes with a

price—the examples found contain many outliers, and those

may divert the desired result. As we shall see in the next

section, in some cases, the number of outliers may exceed

the number of proper ones, and in those cases, even the

MAP method may deteriorate.

The works reported in [20–22] employ the non-overlapping

option with 1-NN. Freeman et al. [20, 21] also considered

some (not full) overlaps, in the spirit of the MMSE approach

described above. Other algorithms that lean on similar rational

for texture synthesis, denoising or inpainting (filling in holes)

are found in [18, 19, 23, 34]. This set of works is also markedly

different in the origin of the examples—rather than taking

them from a separate set of images, the examples are drawn

from the given image itself. Another very related recent

example-based work of extreme importance is the one

reported in [35, 36]. These papers present an example-based

image denoising algorithm, using examples from the cor-

rupted image itself, averaged via weighting to obtain

denoising.

3.3. Building the regularization expression with
examples

The last family of techniques is one that fuses the above two

approaches, and thus improves on both. On one hand, a regu-

larization expression that considers the entire unknown image

as a whole is better than a local treatment, and as such, should

be preferred. Furthermore, when joined to the likelihood term,

the influence of the measurements and the regularization can

be merged in a clear way to define the objective of the recon-

struction procedure. On the other hand, a local treatment

enables parallelization and simplification of the algorithms,

and providing a direct way to use the examples in the recon-

struction, rather than leaning on a guessed expression.
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One can enjoy both worlds when merging the two tech-

niques. First, operate locally as described above, and find

per every pixel y[i,j] its relevant nearest-neighbor patches X[i,

j]. However, instead of a simple operation such as voting or

averaging, as proposed above, plug these examples into an

especially tailored regularization expression. Such expression

would represent a tighter description of the forces the

unknown image is supposed to satisfy, and in a holistic way

that considers all the image. This idea has been practiced suc-

cessfully in several recent works [20, 21, 24, 25, 37]. Beyond

the expected improvement caused by handling the reconstruc-

tion process globally, such an approach is able to better handle

outliers in the found examples.

Interestingly, the regularization obtained in the above-fused

technique deviates from the classic Bayesian point of view.

The above-proposed regularization cannot be considered as

a general image prior, because it is a much narrower point

of view of the image in mind. Furthermore, this expression

is heavily dependent on the measurements, from which we

have obtained the high-resolution nearest neighbors, and as

such, this expression ‘sees’ much more than just the ideal

signal behavior. One could consider this prior term as an

attempt to model the true image prior in the vicinity of its

true values, and as such being local in the signal space.

The pioneering work by Baker and Kanade [24] was the one

to fully practice the above set of ideas. In handling the SR

problem, Baker and Kanade formed an explicit regularization

expression that requires proximity between the spatial deriva-

tives of the unknown image to those of the found examples.

The examples in their work are found by a pyramidal deriva-

tive set of features, which means that rather than using the raw

data directly and an ‘2 measure of distance, a weighted ‘2 is

effectively used. Every location obtains one example, being

the nearest-neighbor, and all these forces are merged into

one global expression. A similar and simpler method

appears in [37], where direct gray-values are used, as we

shall consider in the next section.

Freeman et al. [20, 21] also considered a similar approach,

but with some important differences. Rather than forming an

explicit regularization expression, their MAP method adopts

a Bayesian network point of view. Their algorithm defines

local probabilities that take into account the proximity

between the low-resolution measurements and the database

patches (these parallel the likelihood term), and the agreement

between high resolution neighboring patches between them-

selves (which parallel the regularization). The proposed algor-

ithm remains local, as it does not consider the unknown image

as a whole. Indeed, rather than concentrating on the true

unknown x, the focus is on the network interpretation of

the data, discovering the nearest–neighbors that survive a

Bayesian belief propagation (BPP) algorithm, using those in

the formation of the solution. A similar technique with BBP

is also described in [38], although leaning on examples from

the image built.

Our recent work reported in [25] was inspired by the above

algorithms, and considered a simplified MAP method that

targets scanned document images. Similar to [24], an explicit

regularization expression is formed, although using the raw

data directly, instead of complicated features. It was shown

that for the specific images handled (scanned documents),

this approach leads to better results. Also, instead of using a

single example per location, the work in [25] uses a multitude

of them, and then pruning those based on the very same MAP

formulation. More on this and new results in face images are

given in the next section.

3.4. Using examples in inverse problems: a summary

In this section, we have seen many ways to practice the use of

examples in forming a regularization for inverse problems.

The major questions one faces when designing such algor-

ithms are:

(i) Which examples to use? The examples can be taken

from the corrupted image(s) itself or from other

images. Also, one could work with pairs of low and

high-quality images, or only high-quality images.

(ii) Which estimator to use? We have seen the MMSE and

MAP being used, and a related question is whether to

work globally or locally.

(iii) How to use the examples? We have seen them used

indirectly by training a regularization parameters,

directly in constructing the reconstruction result or

plugged into a tailored regularization expression.

(iv) How to represent examples? Beyond the natural use of

raw data, one can extract features, as high frequencies,

multi-scale derivatives and more.

(v) How to organize the examples? In algorithms that

employ on-line searches for the nearest–neighbor a

pre-organization is mandatory for a fast search. We

have mentioned the K–D tree, clustering methods

and PCA brought to use.

(vi) What is specific to the inverse problem being con-

sidered? The overall algorithm depends on the type

of inverse problem addressed.

We now turn to describe our own recent efforts in using

examples for the image scale-up problem.

4. RECENT RESULTS

In this section, we briefly summarize the method described in

[25] for scanned documents, and then show how it is extend-

able with some modifications to facial images.
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4.1. General algorithm

Figure 1 describes a low-resolution (the degradation details

are as those described at the beginning of Section 4.2) patch

of size 5 � 5 taken from a text image. The figure also presents

the original high-resolution corresponding patch. Searching in

a database with 197,000 examples, taken from a similarly

scanned printed page, Figure 1 shows the closest 50 examples.

All are well within the required distance to assure a proper

proximity (in the low-resolution domain). However, when

computing the root-mean-squared error (RMSE) between the

chosen high-resolution patches and the original content, we

see that most of the chosen examples are outliers with irrele-

vant content.

The remedy to the above-described outliers problem is to

exploit the coherence we expect to have between adjacent

patches. However, to exploit this potential, we have to

abandon the pixel-based methods. As mentioned above,

using a global penalty function that ties the examples to

each other may help in addressing this problem. The

method proposed uses the found examples to define a

global image regularization. This by itself is not sufficient

for robustness against outliers. Thus, we use the emerging

MAP penalty function to choose the problematic patches

and prune them out. As opposed to the work described in

[20, 21] (where high-pass filtered images are used),

gray-scale values are used directly; this simplifies the

overall algorithm.

Given the chosen examples, we can propose the following

MAP penalty functional:

eðx̂Þ ¼ kHx̂� yk22 þ l
X

i;j

X
k[V½i;j�

kR½i;j�x̂� x
½i;j�
k k

2
2: ð19Þ

In this functional, the first term stands for the log-likelihood,

with the assumption that the noise is white and Gaussian.

The second is the regularization term, and it is defined via

the use of the examples found per location [i, j]. The operator

R[i, j] extracts a block of size m � m pixels from the image x̂
that matches the footprint of the corresponding examples.

The inner summation is done over all found nearest–

neighbors, their indices taken from the set V[i, j]. The outer

summation runs through all pixels in the high-resolution

image, using the indices (i, j). Thus, this expression suggests

that the reconstructed image should agree with every found

example and in every location. A similar concept appears in

[24], where multi-scale derivatives are matched, rather than

direct gray-values, as done here.

The above-proposed penalty functional in Equation (19)

uses the local examples to define a global regularization for

the unknown image. However, unfortunately this is not

enough. To get an intuition for this expression, when l!

1, its minimization leads to the simple pixel-based averaging

algorithm described earlier. Furthermore, for a general value

of l and when considering the denoising problem (where

H ¼ I), the minimizing result is also a simple averaging,

including the measurement at this pixel. While it is an

improvement over the MMSE algorithm we had before, we

have clearly failed to force spatial coherence between the

patches, as desired. In fact, this also implies that the algorithm

described in [24] has no robustness to outliers as well.

Some degree of outlier-resistance can be achieved by repla-

cing the ‘2 norm in the prior terms with an ‘1 one. However,

considering the denoising problem again, such change

replaces the mean by a median, and for too many outliers as

often happens, this method still fails. Furthermore, rather

than discarding complete patches, upon discovering that they

are misleading, the outliers will be handled on a pixel-by-pixel

basis, which loses much of the existing potential.

The solution we propose is to assign a weight to every

example, so that those examples ‘living in harmony’ with

their surroundings are weighted high, while others are down-

weighted. Thus, the alternative MAP penalty becomes

eðx̂Þ ¼ kHx̂� yk2
2 þ l

X
½i;j�

X
k[V½i;j�

w
½i;j�
k kR½i;j�x̂� x

½i;j�
k k

2
2: ð20Þ

There are many ways to estimate or choose these weights.

Indeed, the work in [20, 21] offers a BPP as an attempt to

prune the various examples. The work presented in [25] con-

centrates on a simplified and yet very effective case, where the

FIGURE 1. Outliers in searching nearest-neighbor. Top: The high

quality image (left), and the corresponding measurements (right).

Both 11 � 11 and 9 � 9 blocks are marked. Bottom: The 50 nearest-

neighbors found, their RMSE in the low-resolution and the high-

resolution (9 � 9) domains. As can be seen, while all examples are

close in the low-resolution, many of them are in fact outliers.
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weights are binary: ‘0’ for a bad example and ‘1’ for a good

one. One has to make sure, however, that not all the examples

in a specific location get a zero weight, because then we may

get a hole in our reconstruction. As has been shown, the MAP

functional itself serves in evaluating these weights.

The proposed algorithm starts with the assignment wk
[i, j] ¼

1 for all i, j and k. In a sequential process, these examples are

pruned one patch at a time. For the current choice of weights,

the minimizer of (20) is computed, and the value of e(x̂) at the

minimum, e(x̂MAP) serves as a reference value. Per patch xk
[i,j]

with wk
[i,j] ¼ 1 (i.e. still active), we compute the optimal output

image minimizing the modified MAP function

~eðx̂; i; j; kÞ ¼ eðx̂Þ � lkR½i;j�x̂� x
½i;j�
k k

2
2: ð21Þ

Clearly, the value of this penalty term is necessarily smaller

than the reference one. Among all these examined patches,

we prune the one that gives the largest difference between

the reference penalty value and the modified MAP penalty

value. We denote those differences as Dk
[i,j]. The patch dis-

carded is considered to be the least compatible with the

remaining patches.

While the above description implies a computationally

heavy algorithm, several ways to speed it up dramatically

can be proposed. First, in assessing Dk
[i,j] per patch, rather

than recompute the minimizer of the modified penalty term,

it can be updated only locally, in the vicinity of the removed

patch. This local processing is based on the assumption that

the effect of a removed patch is local, and exponentially

decreasing outside its support, as empirically verified.

Secondly, the update of the minimizer can be obtained by

applying 2–5 conjugate gradient iterations only on such

reduced support, using the previous image as initialization.

Since the optimal solution changes slightly, such simple algor-

ithm is sufficient. Finally, the same update of the solution is

applicable for updating the optimal output image after the

removal of an outlier patch.

A side benefit of this process is that we obtain a sequence of

output images, one after each pruning step. Thus, beyond the

first step that computes the optimal output image globally, all

remaining steps are local and of low-complexity. As the

punning process proceeds, the value of the MAP penalty in

(20) is consistently decreasing. An efficient stopping rule for

this process is the dynamic range found in the set Dk
[i,j]—we

consider the ratio between the maximal value of Dk
[i,j] to its

median, and compare this to a fixed threshold. When this

ratio gets below C (chosen as 0.25 the initial value in our

experiments), all remaining patches are considered as positive

contributors, and the algorithm is stopped. Alternatively, the

removal of patches can be stopped when per location [i, j]

we have one example remaining. Since the algorithm prunes

sequentially patches from the found set, and since their

number is finite, the proposed process necessarily stops at

some point.

4.2. Examples on scanned documents

The above algorithm has been tested on scanned documents,

where the use of raw gray values in representing the examples

seems to perform the best [25]. Here, we provide two new

examples to illustrate the behavior of the algorithm, one on

a text image and the other on a drawing.

The first experiment involves a text image. The images

shown in Figure 2 were used for extracting nearest-neighbor

examples. In this and later experiments, we used m ¼ 11

(high-quality patch size) and n ¼ 5 (low-quality patch size).

The degradation operator used is a 2D low-pass separable

3-tap blur [0.25, 0.5, 0.25], a scale factor of 2, and an additive

white Gaussian noise with s ¼ 8.

Figure 3 presents the original image, its degraded version,

and its reconstruction results using bi-cubic interpolation,

MMSE estimator (i.e. averaging the examples per pixel as

described in Section 3.2) and the result after pruning. In this

and later experiment, we have used one example per location

with full overlaps, implying that per every pixel we have 25

candidate values. We fixed l ¼ 1.6e 2 2, and performed

1090 pruning stages out of the overall 6860 initial examples.2

Figures 4 and 5 show similar training information and

reconstruction results for the second experiment that considers

a drawn cartoon. In this experiment, the noise power was

chosen to be s ¼ 2, and thus l ¼ 1e – 3, as l is supposed to

be proportional to s2. The algorithm performed 288 pruning

stages out of the initial 1650 examples.

As can be seen in these two experiments, examples can lead

to surprisingly good results, even with a simple averaging of

the nearest examples. Nevertheless, we also see that when

pruning is performed as proposed above, a further improve-

ment is obtained.

FIGURE 2. Experiment #1 – a text image: Patches of size 11 � 11

taken from these two images form the example database for Exper-

iment #1 of text image reconstruction. The patch pairs are obtained

by creating a degraded image using a separable 3-tap blur with the

kernel [0.25, 0.5, 0.25], a scale factor of 2, and using patches of

size 5 � 5 in the low-resolution image. Overall, there are Ks ¼

47,000 examples in the database.

2Here and elsewhere, the number of pruning stages is governed by a stop-

ping rule as described in [25].
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4.3. Treatment of facial images

When turning to handle facial images, a change is needed in

the way the examples are fitted. Using the raw gray-values

directly leads to no feasible neighbors in many cases, as the

diversity of the image patches is large. Following the idea of

using high-pass operators such as spatial derivatives as pro-

moted in [20, 21, 24], we consider the image patches with

their mean removed. This means that in the database construc-

tion stage, the pairs fyk, xkgk¼ 1
Ks are gathered without their

mean, i.e. 1T yk ¼ 0 and 1Txk ¼ 0 for all k. Given the measured

low-quality patch y[i,j], its mean

d½i;j� ¼
1

n2
1Ty½i;j� ð22Þ

is also removed and kept aside for later use. The nearest neigh-

bors are found as before with the meanless patches, and we

obtain the sub-set of high-quality patches X[i,j] as before.

Those are used in our formulation in Equation (20), with a

constant d[i, j] added to them.

The above method resembles the example-search technique

proposed in [20, 21], but there are a few differences. Their

method suggests an application of a low-pass filter on the

measured image y to obtain the low-frequencies of the recon-

struction yLPF. This image is up-sampled by a plain (e.g.

bi-cubic) interpolation to the high-resolution canvas, and

serves as the low-frequencies in the destination image. The

reconstruction process is applied on the residual, by interpolat-

ing also y – yLPF to the higher grid, and fitting examples to

patches in this image. Thus, their method requires more com-

putations, as it works on a wider image and larger patch sizes.

We tested the above-described algorithm on the ORL face

image database, which contains 400 images of 40 people, as

shown in Figure 6.

FIGURE 4. Experiment #2—a drawing image. Patches of size 11 �

11 taken form these four images and rotated versions of them in 58
increments (around a full circle) form the example database for

Experiment #2 of drawn cartoon image reconstruction. The image

pairs are obtained by creating a degraded image using a separable

3-tap blur with the kernel [0.25, 0.5, 0.25], a scale factor of 2, and

using patches of size 5 � 5 in the low-resolution image. Overall,

there are Ks � 3e þ 6 examples in the database.

FIGURE 3. Experiment #1—a text image.
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FIGURE 5. Experiment #2—a drawing image.(a) Original image of size 119 � 69.(b) Degraded image.(c) Bi-cubic interpolation result (MSE ¼

1118.9).(d) MMSE reconstruction (MSE ¼ 463.2).(e) Reconstruction after 288 pruning iterations (MSE ¼ 366.0).

FIGURE 6. The ORL face database, containing 40 different people, each with 10 images of size 112 � 92 pixels.
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As before, the reconstruction tests include a bi-cubic interp-

olation, the MMSE (averaging the gray-values of the found

examples per location), and the pruned result. The tests reported

here assume a Gaussian blur of width 5 � 5 pixels withs ¼ 1.5,

a down-scaling factor of 3:1 and an additive noise with s ¼ 2

gray values. The reconstruction is based on 10 nearest-neighbor

patches per pixel, using l ¼ 2e – 4, and patch sizes n ¼ 4 and

m ¼ 12. In the example-based reconstruction tests, we tested

three options: (i) using all 399 remaining faces; (ii) using the 9

images of the same person; and (iii) using 390 images of all

other people in the database, excluding the same person. The

results for two different people (chosen in random) in the data-

base are shown in Figures 7 and 8, and support the need for

pruning as proposed here.

FIGURE 7. Face 1.(a) Original image.(b) Degraded image.(c) Bi-cubic interpolation result (MSE ¼ 149.64).(d) MMSE reconstruction (MSE ¼

75.4) based on nine images.(e) MMSE reconstruction (MSE ¼ 97.1) based on 390 images.(f) MMSE reconstruction (MSE ¼ 79.9) based on 399

images.(g) Pruned (1970 steps) reconstruction (MSE ¼ 62.38) based on nine images.(h) Pruned (3060 steps) reconstruction (MSE ¼ 88.01) based

on 390 images.(i) Pruned (2030 steps) reconstruction (MSE ¼ 72.71) based on 399 images.
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5. CONCLUSIONS

Examples can be used for obtaining an effective regularization

in inverse problems involving images. This is especially true

for specific type of images, such as faces or scanned documents,

as demonstrated in this paper. The use of examples provides a

step forward in reconstruction quality, compared to the classic

priors or regularizations that have been proposed in the past

decade. There are several ways to exploit examples in inverse

problems: three techniques have been described in this

paper—learning parameters of the regularization expression, a

direct use of the examples in forming the posterior, or in

merging these techniques. This paper describes a specific

method that belongs to the later family of algorithms, focusing

on the need to prune outlier examples to fine-tune the outcome.

FIGURE 8. Face 2.(a) Original image.(b) Degraded image.(c) Bi-cubic interpolation result (MSE ¼ 159.25).(d) MMSE reconstruction (MSE ¼

65.24) based on nine images.(e) MMSE reconstruction (MSE ¼ 102.97) based on 390 images.(f) MMSE reconstruction (MSE ¼ 68.90) based on

399 images.(g) Pruned (2280 steps) reconstruction (MSE ¼ 60.08) based on nine images.(h) Pruned (5320 steps) reconstruction (MSE ¼ 92.66)

based on 390 images.(i) Pruned (3780 steps) reconstruction (MSE ¼ 65.61) based on 399 images.
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In deploying the above set of ideas to inverse problems,

there are many open questions that are yet to be addressed.

Here we list few of those:

(i) Multi-scale treatment? It seems natural to consider a

multi-scale method that considers image patches of

varying sizes in seeking fitting examples. One way to

implement this idea is by choosing the maximal size

that gives sufficient number of examples. However, a

fast nearest-neighbor algorithm that can cope with

varying patch sizes should be devised.

(ii) Theoretical foundations? While all the above discus-

sion makes a lot of sense and seems intuitive, using

examples should be strengthen by a supporting theor-

etical study. No such study has been proposed as of

yet.

(iii) How big should the database be? This question is

tightly coupled with the previous one. We are

sampling a specific distribution, and we need sufficient

number of examples so as to claim reasonable proxi-

mity to every instance that can be encountered. Thus,

the richness (or entropy) of the image distribution

should be taken into account in gathering the database.

(iv) Regularization or prior? We have seen examples used

both as a way to drive a prior (i.e. practice a pure

Bayesian approach), or for forming a measurement-

dependent regularization expression. It is unclear at

all which of the two techniques is better, and how

these two methods could be compared.

(v) What about general content images? When the inverse

problem deals with a general content image, the

amount of examples should grow dramatically, and

perhaps leading to the point of requiring an impractical

algorithm. Are example-based techniques at all fitted

for handling general images?

These and many more related questions will be probably

studied by researchers in the coming years. The potential of

examples in handling inverse problems better is unquestion-

able, and as such, the interest in this field is expected to grow.
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