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Super Resolution With Probabilistic Motion Estimation

Matan Protter and Michael Elad

Abstract—Super-resolution reconstruction (SRR) has long been relying
on very accurate motion estimation between the frames for a successful
process. However, recent works propose SRR that bypasses the need for an
explicit motion estimation [11], [15]. In this correspondence, we present
a new framework that ultimately leads to the same algorithm as in our
prior work [11]. The contribution of this paper is two-fold. First, the sug-
gested approach is much simpler and more intuitive, relying on the classic
SRR formulation, and using a probabilistic and crude motion estimation.
Second, the new approach offers various extensions not covered in our pre-
vious work, such as more general re-sampling tasks (e.g., de-interlacing).

Index Terms—Deinterlacing, probabilistic motion estimation, super
resolution.

I. INTRODUCTION

Super-resolution reconstruction (SRR) proposes a fusion of several
low quality images �������� into one higher quality result � with better
optical resolution. A wide variety of SRR algorithms have been devel-
oped in the past two decades—see [11] for a list of representatives of
this vast literature. A popular model used for relating the measurements
to the super-resolved image assumes that �������� are generated from
� through a sequence of operations that includes (i) geometrical warps
��, (ii) a linear space-invariant blur �, (iii) a decimation step repre-
sented by�, and finally (iv) an additive zero-mean white and Gaussian
noise�� that represents both measurements noise and model mismatch1

[6]. These are all linear operators, represented by a matrix multiplying
the image they operate on. We assume hereafter that� and� are iden-
tical for all images in the sequence. This model leads to the following
set of equations:

�� � ������ �� ��� � � �� �� � � � � �� (1)

The recovery of � from ����
�

��� is, thus, an inverse problem, com-
bining denoising, deblurring, scaling-up operation, and fusion of the
different images, all merged to one. By setting �� � �, we refer to
�� as the reference image, and aim to construct � as its super-resolved
version.

SRR relies on the assumption that �, �, and �� are known, or can
be reliably estimated from the given data. In particular, such recon-
struction relies on the ability to estimate the motion in the scene with
a sub-pixel accuracy, so as to enable the merger of the different image
sampling grids properly. Many SRR algorithms start with such an esti-
mating of the motion in the sequence (e.g., [1], [6], [7], [9], and [13]),
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1In [6], the model mismatches are modeled as Laplacian, with � penal-
ization as to obtain robustness to outliers. In our work, we choose a Gaussian
model, which simplifies the algorithmic development. Nevertheless, a robust-
ness to outliers is obtained by the probabilistic approach, as will be discussed
later, in Section III.

or couple it with the recovery process, as a joint-estimation task [8],
[14], [16].

Highly accurate general motion estimation, known as optical flow,
is a severely under-determined problem. When inaccurately estimated
motion is used within one of the existing SRR algorithms, it often leads
to disturbing artifacts that cause the output to be inferior even when
compared to the given measurements. For this reason, some simpli-
fying assumptions as to the structure of the motion are made, such as
global warps or rigid bodies. Only under these assumptions is the mo-
tion estimation in currently available SRR algorithms accurate enough
to lead to a successful reconstruction of a super-resolved image. This
had led to the commonly agreed and unavoidable conclusion that gen-
eral content movies are not likely to be handled well by classical SRR
techniques.

Recently, several papers have tried to circumvent this problem by
avoiding explicit motion estimation altogether [11], [15]. The method
in [15] relies on extending the steerable kernel method to multiframe
super-resolution. The method in [11] generalizes the very successful
nonlocal-means (NLM) [2] denoising method to performing super-res-
olution. The derivation of the SRR algorithm in [11] is done by defining
an energy functional that explains the NLM, and then modifying it to
serve the SRR task. Both methods do not explicitly estimate the mo-
tion, and both are shown to be able to handle general content video
sequences quite successfully.

In this correspondence, we approach the explicit-motion-estimation-
free SRR from a different perspective. Our starting point is the classic
SRR, as in [6], and the bijective motion between pixels in each pair of
images is replaced with a probabilistic motion field. This simple and al-
ternative derivation is shown to lead to the same line of algorithms that
are proposed in [11]. Furthermore, the framework proposed here allows
different extensions, such as a treatment of spatio-temporal re-sampling
problems. We show this adaptation in general, and demonstrate its ap-
plicability on the de-interlacing problem.

The structure of the paper is as follows. Section II describes a classic
SRR formulation, as used in [1], [6], [7], [9], and [13], on which we
build our eventual algorithm. Section III presents the use of proba-
bilistic motion with the classic SRR, and develops the proposed al-
gorithm. The adaptation to other re-sampling tasks is also described.
Section IV provides results for SRR and de-interlacing, demonstrating
the abilities of the proposed method. We conclude in Section V, out-
lining the key contributions of this work.

II. CLASSIC SUPER-RESOLUTION: BACKGROUND

Using the model in (1), the maximum-likelihood (ML) estimate of
� is obtained by minimizing the penalty function

�
�

�� 	�
 �
�

�

�

���

������� ���
�

�
(2)

with respect to �. This expression suggests that we should seek an
image � that explains best the set of measurements given. Minimiza-
tion of (2) leads to

�����	�


��
�

�

���

�
�

� �
�
�
� 	������ ��
 � �� (3)

Denoting � � �

���
��� �

������� and 	 �
�

���
��� �

�����, we face a linear system of equations
����� � 	.

In many cases, the measurements are not sufficient for recovering �.
This is manifested in a singular or possibly ill-conditioned matrix �.

1057-7149/$25.00 © 2009 IEEE

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on September 9, 2009 at 10:23 from IEEE Xplore.  Restrictions apply. 



1900 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 8, AUGUST 2009

In such cases, a regularization is required. The maximum a posteriori
probability (MAP) estimation proposes a penalty of the form

�
�

��� ��� � �
�

�� ��� � � ����� (4)

where the functional � is a regularization term that adds an algebraic
stability to the inversion of �. Beyond the gained stability, � also in-
troduces the means to incorporate prior knowledge about the sought �,
such as spatial smoothness, sparsity of its wavelet representation, min-
imum entropy, etc. In this correspondence, we shall use the total varia-
tion choice ���� � �� ��� that accumulates the gradients norms with
��, forcing (piece-wise) smoothness [12]. Thus, the MAP estimate in
our case becomes the minimizer of

�
�

��� ��� �
�

�

�

���

������ � ���
�

�
� � � �� ��� (5)

which is typically obtained by an iterative algorithm [1], [6]–[9], [13],
[14], [16]. This is the core technique we build upon.

In all of the above discussion, we assume that the operators �, �,
and �� are known. The decimation � is dependent on the resolution
scale-factor we aim to achieve, and as such, it is easily fixed. In this
work, we shall assume that this resolution factor is an integer � � �
on both axes. In most cases, the blur� refers to the camera PSF, and,
therefore, it is also accessible. Even if this is not the case, the blur is
typically dependent on few parameters, and those, in the worst case,
can be manually set.

As opposed to these operators, the matrices �� are harder to obtain.
They depend on the scene and require highly accurate motion estima-
tion for their construction. As such accuracy is hard to obtain in general,
classical SRR algorithms often assume a simple motion pattern, such
as pure translation or global affine warp. Attempts to embed the motion
estimation within the SRR process have been made, with little success
[8], [14], [16]. As already mentioned, inaccurately estimated motion
within SRR often leads to disturbing artifacts that cause the output to
be inferior even when compared to a simple interpolated version of ��.
This fact motivated a quest for bypassing explicit motion estimation,
as indeed practiced in [11] and [15].

III. PROPOSED ALGORITHM

A. New Formulation

We aim to introduce the notion of probabilistic motion estimation
to the above classic SRR formulation. Note that the warp operator ��
considers a bijective (one-to-one) correspondence between pixels in the
reference and the �th image, and as such, it introduces sensitivity to er-
rors. We replace this motion field with a probabilistic one that assigns
each pixel in the reference image with many possible correspondences
in all the images in the sequence (including itself), each with an as-
signed probability of being correct.

How could this become useful for super-resolution for handling gen-
eral motion patterns? Here we offer one possible way that illustrates
that such ideas could fit in SRR. The operator 	� represents the motion
field between the first image and image �, by indicating for each pixel in
the first image its destination in image �. This is equivalent to indepen-
dently listing a single 2-D translation vector for each pixel (where each
pixel is assigned a translation, independent of other pixels). Therefore,
the entire motion field is represented as a collection of various displace-
ment vectors.

If the size of the maximal translation is, at most, 
 pixels, then a set
of� � ��
���� displacements covers all the possible ones to be en-
countered. By defining ����

�

���
to be this set of global translations,2

we can write the following equation:

��� �

�

���

������� (6)

which describes the action of warping the image � based on the op-
erator ��. The matrices ������

�

�
are diagonal weighting ones, con-

taining 1-es along the main diagonal for pixels whose motion is the dis-
placement ��, namely ������ ������, and zeros otherwise. In such
a way, it is possible to represent the most complex of motion fields by
a linear combination of global translations.

In this formulation, we have replaced the single warping operator
with a linear combination of global translation representing the same
general motion field. Still, this notation implies a one-to-one relation-
ship between pixels in both images. The next natural step for intro-
ducing a probabilistic motion field is to relax the definition of ����,
enabling continuous values to reflect varying confidences per pixel and
per motion trajectory. This leads to a newly defined super-resolution
penalty that replaces the use of �� by their decompositions as in (6).

While this seems like a worthy path to consider, in this work we
slightly divert from this approach, in a quest for a yet simpler algorithm.
We modify the ML formulation posed in (2) by proposing the following
probabilistic ML (PML) penalty:3

�
�

��� ��� �
�

�

�

���

�

���

������� ���
�

�
� (7)

We rely on the same intuition as described above, but in a slightly dif-
ferent way. Rather than accumulate the various global translations to
form the effect of �� as in (6), we accumulate the squared errors that
result from such global displacements,4 and assign a weight matrix
���� to each. Notice that the weights used in (7) are different from
those introduced in (6). Whereas���� are defined for each pixel in the
high resolution image, ���� are also diagonal matrices, but defined
over the low-resolution grid. We shall proceed with the assumption that
���� are known, and revisit their computation in Section III-E.

It is important to note that although this formulation contains only
global translations, it is still able to process any complex motion field,
using the same rational that has led to (6). If the motion field is known,
it can be re-created by properly assigning the values of ���� to be
1-es for those pixels whose motion is 	� and zeros for all others.

One could interpret the above expression as a marginalization of the
squared error term with respect to the motion probability density func-
tion, in a way that resembles the concept proposed in [10]. The authors
of [10] perform such a marginalization in order to avoid inaccuracies
in the motion estimation, but their integration is performed over the
parameters of a global motion model. In our case, very similar to the
video denoising scenario, we handle local motion, and the probabilistic
view-point contributes both to a better handling of the estimated mo-
tion inaccuracies and to the noise reduction.

As a final point in this section, we return to the matter of robustness.
The usage of the above PML has another distinct advantage of robusti-
fying the algorithm to outliers. One such example could be a scenario
in which one of the images in the set is an outlier. In such a case, the
weights assigned to the pixels in this image will be zeros, since the
images do not match. Therefore, those pixels will effectively not be

2For simplicity, we shall use a set of integer displacements only.
3We use the notation ��� � � ��.
4It is possible to use other sets of warps, such as ones that allow rotations, as

well.
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considered in the minimization, or in other words, treated as outliers,
as required.

B. Separating the Blur Treatment

Our task is the minimization of a functional that has two terms in
it: ����� ��� and a regularization (e.g., TV). Rather than handling this
problem directly, we decompose it, following the methods developed
in [5]–[7]. Since both � and �� are space-invariant operators, they
can be assumed to have a block-circulant structure (assuming a cyclic
boundary treatment), and as such, they commute. Thus, defining � �
��, we concentrate first on estimating the “blurry” high resolution
image � by minimizing

����� ��� �
�

�

�

���

�

���

������ ���
�
�

(8)

which will be the fusion step. Then we apply a conventional deblurring
step, by minimizing

���� ��� � ���� ���� � � � �� ���� (9)

This two-step process is sub-optimal to the joint treatment, but never-
theless leads to a simplified algorithm. As the second step is conven-
tional and well-known, we focus hereafter on the fusion step. Note that
the deblurring mechanism chosen here is relatively simple and could
be replaced by more advanced techniques, thereby leading to better
results.

C. Algorithm: A Matrix-Vector Version

We focus now on the minimization of (8). The derivative of this func-
tional is given by

������ ���
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�
��	������� ��� (10)

which leads to a linear system of equations. We introduce the following
new notations, in order to simplify the obtained expressions
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��	� ��	 �� �

�

���

��	���� (11)

The matrix �� is a diagonal matrix, as it is the sum of diagonal ma-
trices. We obtain

�

���

�
�
��

�
����� � �

�

���

�
�
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�
��� (12)

This linear system of equations seems complicated. As we show next, it
can be rewritten for each pixel in � in a closed form, revealing a simple
structure that leads to a stable solution.

D. Algorithm: A Pixel-Wise Version

The right-hand-side (RHS) in (12) is an image of the same size as �.
Furthermore, as we are about to show, the matrix multiplying � on the
left-hand-side (LHS) is a diagonal positive definite matrix. Thus, we
can turn the above vector-matrix formulation into a pixel-wise one. Let
us consider a specific pixel at location 
�� 	� in �, and see its construc-
tion. As this pixel is dependent only on the 
�� 	�th pixel in the RHS
image (up to a scalar being the diagonal element in the matrix on the
LHS), we start by constructing this element.

For a specific �� that shifts by 

����� 
����, the term���� po-
sitions the 
�� 
����� 	 � 
����th element from the image � in the

destination 
�� 	� (the transpose has the effect of an inverse displace-
ment). The image 	 � ���� is a scale-up version of the low-reso-
lution image �� by zero-filling. This implies that if the location 
� �

����� 	�
���� is not an integer multiple of � (the resolution ratio),
this location has a zero entry. Otherwise, the entry is simply ��
�� ��,
where 
�� �� � 
�� 
����� 	 � 
������. Thus, at location 
�� 	�, we
get

��
�� 	� �
�
	�����	��

��
�� �� (13)

where we have defined the neighborhood set

���� 	� � � 
�� ��� �� � 
��� ��

� � � � �� 
����� � � � � 	 � 
����� (14)

Plugging the definition of �� from (11) yields

��
�� 	� �
�
	�����	��

�

���

��	�
�� ����
�� ��� (15)

In this expression,��	�
�� �� refers to the entry on the main diagonal
in ��	� that multiplies the 
�� �� entry in ��.

We now discuss the left-hand-side (LHS) in (12). The operator
����� within this expression is a diagonal matrix that decimates
an image by a factor � in each axis, weights each pixel by the diagonal
weight matrix��, and then up-scales back the image using the same
factor by zero-filling. This means that when operating on an image
�, a pixel in location 
�� 	� is nulled if 
�� 	��� is a noninteger, and
otherwise it is simply weighted, i.e., it becomes ��
�� 	� � �
�� 	�.

When the operator ����
������ is applied to the 
�� 	�th pixel

in �, it shifts it to the 
� � 
����� 	 � 
����th location, nulls it or
weights it, based on whether 
�� 
����� 	 � 
������ is an integer,
and finally shifts the outcome back by 
�
������
���� to its orig-
inal place, 
�� 	�. The fact that the operator ����

������ returns
every pixel to its original location means that this matrix is diagonal, as
every output pixel depends only on the value of the input pixel in the
same location. Thus, the scalar that multiplies the 
�� 	�th pixel in � is

��
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�
	�����	��
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�� ���
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�� ���
�� 	� (16)

where we have made use of the definition of �� in (11). This ex-
pression sums all the weights in (15), serving as a normalization term.
Assuming that this sum is positive (i.e., at least one weight is nonzero),
combining (15) and (16) leads to a closed form expression for the

�� 	�th pixel in the estimated �

��
�� 	� �
�
	�����	��
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���

��	�
�� ����
�� ��

�
	�����	��

�

���

��	�
�� ��

(17)

and the resemblance to the fusion algorithm in our prior work is evident
(see [11, Equation (30)]). Just as explained there, the similarity of the
final algorithm to the NLM stands out, but there is a subtle difference
between the two, related to the domain of the averaging. The proposed
algorithm differs considerably from an interpolation followed by ap-
plication of NLM—we show a visual comparison between the two in
Section III-E.
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Fig. 1. Results for the 8th, 13th, 18th, and the 23rd frames from the “Suzie” sequence. From left to right: pixel-replicated low resolution image; original image
(ground truth); Lanczos interpolation; result of the proposed algorithm.

E. Computing the Weights

In order to complete the description of the algorithm, we must ex-
plain how ������� �� are computed. Based on (8), these weights are
supposed to encompass the fit, per pixel, of the desired high resolution
image � after being transformed by �� and decimated by �, with
the input image ��. Thus, the weights could be related to the error
�������. In order to better estimate the fit, we propose to use some
spatial support for each pixel instead of computing the plain differ-
ence. Defining���� as an operator that extracts a patch of a fixed and
predetermined size (say � � � pixels) from an image, the weights are
computed by

������� �� � ��� �
����� ������ ����

�

�

	��

�� ����	��� 
 ��
�	��� 
 ��� ��� � (18)

The first part in the above formula gives a value that is inversely propor-
tional to the Euclidean distance between the transformed image����
and the input image��, computed over some support around each pixel.
The second part adds a decaying weight as a function of the displace-
ment and time shift magnitudes versus the reference frame. The func-
tion � can be chosen as any monotonically non increasing function
(e.g., box function or Gaussian bell).

The computation of the weights requires the use of the unknown �.
Instead, the weights are computed at the beginning by using an esti-
mated version of �, being a scaled-up version of the reference frame
��. This scale-up is done using a conventional image interpolation al-
gorithm such as bilinear, bicubic, or the Lanczos method. As this is a
crude version of the desired outcome, the process can be iterated, using
the newly estimated image ��. In our tests, we employ two such itera-
tions only.

The method in which the weights are computed is reminiscent of
classic block-matching based SR algorithms (e.g., [3]). However, there
is a key difference between these algorithms and the one proposed
here. In the classic block-matching based SR, block-matching is used
to determine a single trajectory for each pixel in the current image
(that is being processed) to the others, and as such, estimate the mo-
tion. In contrast, in the proposed algorithm a method similar to block-

matching is used to estimate the probability of each trajectory. Once
computed, all these trajectories are considered together, according to
their probabilities, as opposed to selecting only the single most likely
one. This difference is what enables the proposed algorithm to handle
complex scenarios where highly accurate motion estimation is not cur-
rently possible.

F. Other Resampling Tasks

We wish to adapt the proposed framework to other re-sampling
tasks, such as de-interlacing, inpainting and more. We start by
explaining this extension intuitively. The re-sampling task can be
considered as computing pixel values for only some of the pixels in
each image (“missing pixels”). For example, the de-interlacing task
may be viewed as providing pixel values only for the even rows for the
odd numbered fields, as well as for the odd rows in the even numbered
fields. Formulating this idea, given each input image (or field) ��, it
can be linked to the original (unknown) image �� using a masking
operator��  �� �����. Simply put,�� discards all un-sampled
pixels. It is a binary matrix, with as many rows as the number of
pixels in �� and as many columns as pixels in ��, with entries of
ones indicating which pixels are to be kept. Note that �� contains only
sampled pixels. In the in-painting case, it contains only the un-masked
pixels.

In line with the idea of the probabilistic motion estimation, �� can
be constructed as a (pixel-wise) weighted average of different transfor-
mations of the target image 	. The image 	 that we seek should be as
similar as possible to each ��, after undergoing each of the transforma-
tions and the relevant masking. This required similarity is weighted on
a pixel-wise basis, according to the (local) probability of the specific
transformation having taken place. Put into the maximum likelihood
formulation, a penalty function very similar to (7) arises, where the
decimation operator is replaced by ��


�

��� �	� �
�

	

�

���

	

���

���
��	 � ���
�

�
� (19)

Minimizing this functional proceeds very similarly to the steps de-
scribed before. The treatment of the blur is separated, and a pixel-wise
formula for the values of � is given by (17). The difference is in the
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Fig. 2. Original “Trevor” sequence. Left: Interpolated image. Middle: Interpolation, followed by NLM processing and deblurring. Right: Proposed algorithm.
Bottom row offers a close-up of a portion of the images.

Fig. 3. De-Interlacing Results. (a) Original (ground-truth) image. (b) Interlaced image. (c) Row averaging, 29.87 dB. (d) Row averaging followed by NLM pro-
cessing, 29.93 dB. (e) Proposed algorithm—first iteration, 30.69 dB. (f) Proposed algorithm—second iteration, 30.71 dB.

order of summation, as the neighborhood���� �� of a pixel is now time
(and spatial) dependent. This is because the masking may be different
for every image in the sequence.

The weights for this formula are computed very similarly to the SRR
case, described in (18). However, these tasks can benefit from com-
puting the weights in high resolution scale. Thus, if we consider that
���� is for the coarse scale, we denote ���� � ��

�����, with
����� being the same size as��. The formula for each entry of �����

(when arranged as an image) is, therefore, the same as in (18), but with
��� � �� replacing ���� � ��. In these weights, �� is an inter-
polated version of �� (with the interpolation method depending on the

specific task). Of course, these weights should be computed only for
pixels that are kept after the masking���� ���

�����.

IV. EXPERIMENTAL RESULTS

We now turn to demonstrate the potential of the proposed SRR al-
gorithm by presenting the results for image sequences with a general
motion pattern. Since the algorithm tested here is the very same one
as in [11], we concentrate on one such example. The original sequence
“Suzie” has been blurred using a 3� 3 uniform mask, decimated by a
factor of 1:3 (in each axis), and then contaminated by additive white
zero-mean Gaussian noise with ��� � �. The degraded sequence
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was the input to the proposed SRR algorithm, and Fig. 1 presents the
obtained results for the 8th, 13th, 18th, and the 23rd frames.5

We also compare the results using the average PSNR, an objec-
tive quality measure (���� � �� �	


��
���� � ��� ������ �dB�,

where � and� are the original and reconstructed images, respectively,
and � the number of pixels in the image). For the above sequence, the
PSNR for the pixel replicated low-quality sequence, the Lanczos results
and the proposed algorithm are 30, 31.4, and 33.74 dB, respectively.

The above presented sequence, and the others in [11], are all syn-
thetic, in the sense that the blur kernel and decimation are known. Note,
however, that the motion in the sequences is real, and not synthetically
generated. In order to demonstrate the proposed algorithm on a directly
captured sequence, we provide a second experiment “Trevor,” whose
results are displayed in Fig. 2. In this case, there is no ground-truth
image available to compare to. Therefore, to demonstrate that a super-
resolution effect is achieved, a comparison is made to an interpolated
sequence. This interpolation is obtained by a Lanczos interpolation,
followed by NLM filtering for denoising, and then deblurring. This
comparison serves two goals: (1) It indeed verifies that the proposed
algorithm obtains SR effect; and (2) it demonstrates the difference be-
tween simply running NLM and deblurring after up-scaling, compared
to running the proposed algorithm. This comparison is important, as
the two schemes are confusingly similar. Clearly, a far better image is
obtained with the proposed algorithm.

We have also tested the proposed generalized algorithm on an inter-
laced sequence. We used the Foreman sequence and composed each in-
terlaced frame by taking the odd numbered rows from one frame, and
the even numbered rows from the next, resulting in a sequence with
half as many frames. This sequence was also contaminated by addi-
tive white zero-mean Gaussian noise with ��� � �. This generated
sequence can be considered a true interlaced sequence, as no manipu-
lation (e.g., simulated blurring) of the pixels has been made other than
half the pixels being discarded.

This sequence has been processed by the framework suggested in
Section III, with the result appearing in Fig. 3. The initial interlaced
sequence was split into fields, and each field was expanded by a factor
of two in the vertical axis only. The missing rows were interpolated by
averaging the rows immediately above and below each missing row.
The masks�� were designed to discard the even rows in the odd num-
bered images, and the odd rows in the even numbered images. Five in-
terlaced frames (ten fields) were used for processing, and the search
area consisted of ten pixels in every direction. We display the results
for two iterations (where the first is used for computing the weights for
the second), although the differences are much less dramatic than in the
SRR case. As done above, we also show the results of directly filtering
the re-scaled sequence with the NLM filter, to highlight the difference
of the proposed approach. Note how the staircase effect (on the wall)
is much decayed by the proposed algorithm. It should be noted that the
purpose of this test is only to demonstrate the applicability of the pro-
posed framework to other re-sampling tasks, without claiming that it
out-performs other de-interlacing methods. Further work is required to
compare the proposed technique to existing de-interlacing algorithms.

Before concluding the results section, we address the computational
complexity of the algorithm presented here. As already explained in
[11], the overall algorithm is very heavy—the weights’ computation
stage is the most demanding. For a nominal case, in which the search
area is 31� 31 pixels in the low-resolution, 15 images in the sequence,
and a patch size of 13� 13 pixels for computing the weights, there are
about 2,400,000 operations per pixel. While this value may seem pro-

5The sequences appearing in this section (input and output) and others from
[11], along with the various parameters used to generate them, can be found at
http://www.cs.technion.ac.il/~matanpr/NLM-SR.

hibitive, there are various methods in which this computational burden
can be substantially reduced. We refer the reader to [11, Section 4.3]
for an elaborate discussion.

V. SUMMARY

In our earlier work, we developed an explicit-motion-estimation-free
SRR algorithm by extending the NLM [11]. In this paper we approach
the same task from a different perspective, basing it on a probabilistic
and crude motion estimation. Interestingly, this approach (under some
assumptions) leads to the same algorithm described in [11]. However,
the formulation described here is more intuitive, as it relies on the
classic super-resolution framework and on the imaging model. Further-
more, this formulation allows for different extensions than those pro-
posed in [11]. We also show how the framework can in fact be adapted
to any re-sampling task. An example of de-interlacing is given, to show
the validity of this adaptation. This example shows than even sequences
with large, highly nonrigid motion patterns can be successfully de-in-
terlaced by the proposed framework.
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