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Abstract

An efficient approach for face compression is introduced. Restricting a family of images to frontal facial
mug-shots enables us to first geometrically deform a given face into a canonical form in which the same
facial features are mapped to the same spatial locations. Next, we break the image into tiles and model each
image tile in a compact manner. Modeling the tile content relies on clustering the same tile location at many
training images. A tree of vector-quantization dictionaries is constructed per location, and lossy compression
is achieved using bit-allocation according to the significance of a tile. Repeating this modeling/coding scheme
over several scales, the resulting multi-scale algorithm is demonstrated to compress facial images at very low
bit rates while keeping high visual qualities, outperforming JPEG-2000 performance significantly.
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I. Introduction

The problem of image compression has been thoroughly explored for years and efficient

general purpose compression algorithms are available today. Much less attention has been

given to the problem of image compression for the case in which a strong prior is available

for the class of images to be compressed. This happens, for example, when the input belongs

to a certain, a-priori known and possibly very specific class of images. One expects that for

such specific cases an even more efficient compression should exist, outperforming general

purpose algorithms.

In this paper we address the problem of compressing human frontal facial images. The

images we deal with are passport-type photos - full face, frontal view, plain background, no

dark glasses, without hats and other non-standard clothing, see for example Figure 1.
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Fig. 1. Input examples - passport-type photos.

Our goal is a compression method of a standard digital 358×441 b/w passport photograph

(154KBytes at 8 bits per pixel) into less than 1KByte representation (i.e. compression ratio

of about 1 : 154 and beyond). The goal of this note is to introduce a method to compress

and decompress the facial image, so that it is visually appealing, at a quality sufficient to

un-mistakenly visually identify a given subject.

The approach we take is based on the following concepts.

• Geometrical Canonization: Restricted to frontal facial mug-shots, the handled images

are geometrically deformed into a canonical form, in which facial features are located at the

same spatial locations. Using a plain feature detection procedure, the image is divided to

disjoint and covering set of triangles, each deformed using a different affine warp.

• Clustering: The overall treatment of the images is local, by splitting the image into tiles.

Every tile is coded using vector quantization. A flexible bit allocation is permitted, by using

tree VQ [1], [2], [3].

• Hierarchial Multi-Scale Treatment: The coding is performed on a pyramidal repre-

sentation of the image, processing the information from coarse to fine, and at each stage

operating on the image residual.

The proposed compression algorithm is demonstrated and compared to JPEG-2000 [20].

Compressed facial images at very low bit rates are shown to keep high visual qualities

(compression ratio of 154 : 1 with an average PSNR of 30dB), outperforming JPEG-2000
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results.

In Section II we review existing contributions in the literature referring to compression

of facial images. Section III presents a detailed description of the geometric canonization,

which turns out to be crucial for the compression performance. In section IV we discuss the

core coding part of the algorithm that is based on VQ, covering the training and the testing

phases, along with the extension to a multi-scale scheme. Experiments and results are shown

in Section V, and conclusions are drawn in Section VI.

II. Related work and the proposed approach

Face images are common, and as such are extensively studied in the literature especially in

the context of detection and recognition. Remarkably, among the many thousands of papers

that discuss ways to compress still images in general, only few address the compression of

face images [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]. Assumptions

on the images’ content, and tailoring compression algorithm that exploit these assumptions,

lead these contributions to a variety of solutions. In this section we briefly describe such

methods and their rationales.

The importance of geometric pre-analysis of the image to the compression performance

has been recognized in several papers [5], [6], [7], [8], [9], [10], [11], [15], [17]. Most of these

methods use feature detection for locating semantic landmarks, such as eyes, nose, mouth,

etc. Once found, one can either warp the image to a canonical configuration, as done in [5],

[7], [8], [9], [11], or operate on the original image, while adapting the treatment spatially

based on the content detected [6], [10], [15].

Here, we first deform the image into a canonical form. Alignment in most papers has been

implemented using a rigid transformation (rotation, scale, shift) [5], [8], [9], [11], [15], thus

limiting the accuracy of the fit. In our method we employ a more delicate canonization that
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leads to a perfect alignment of 13 points1, thereby boosting compression performance, as

described in the next section.

Coding of the image content can be done in various ways. An early paper by Moghaddam

and Pentland [5] applied a global Principal Component Analysis (PCA), training a transform

that leads to optimal compactization of the image energy in the leading transform coefficients.

Truncating and quantizing these coefficients leads to the desired coding. PCA (or Karhunen

Loeve Transform (KLT)) has been also practiced in [11]. However, rather than considering

global basis functions that span over the entire image support, the PCA is done on small

tiles of size 8× 8 pixels. For every image, all tiles are clustered into 4 groups based on their

local activity, and per each, a PCA is trained. As this training varies from one image to

another, the obtained transform matrices must be sent as side information.

The papers by Ferreira and Figueiredo [13], [14], [19] also describe a transform training

and processing of small tiles. They propose the use of Independent Component Analysis

(ICA) for the representation of image tiles. However, their adaptation to the image content

is less strict, as the learned transform is assumed to be the same for all tiles, regardless of

their spatial location. In this context, their view matches the JPEG approach that employs

the same transform to all the blocks in the image. As such, their scheme is more general

than the one we consider, and geometrical alignment is irrelevant. While the compression

performance reported in these papers is better than JPEG, and comparable to JPEG-2000,

it is clear that such semi-adaptation is destined to be inferior to methods that also adapt

the transform spatially.

Getting closer to the proposed approach, the reported compression algorithm in [8], [9]

consists of an encoding stage that is based on the wavelet transform, followed by vector

1This number of features was chosen as a good compromise between three criteria: (i) the desire to use reliable and

detectable features; (ii) the desire to use as many as possible points so as to align the images better; and (iii) the

desire to use only few features to reduce their side-information cost.
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quantization of different bands. VQ is also used in [15], where it is directly applied on

several image features, instead of arbitrary slicing the image into tiles. As mentioned earlier,

while our coding is also done using VQ, the adaptation we propose is more flexible, as every

tile location is trained separately. The various obtained dictionaries are stored in the encoder

and the decoder, and thus they are not needed as side information. More information on

this scheme is given in Section IV.

A somewhat different representation that exploits both spatial and inter-image depen-

dencies is considered in [12], [16], [18]. Treating the group of images as a 3D tensor, its

decomposition to three-way rank-one approximation is proposed. Generalizing the Singular

Value Decomposition (SVD) in several possible ways, these attempts are claimed to lead

to more efficient compression. Since these papers consider only global decomposition, their

results are inferior to a tile-based treatment, as studied here.

Performance-wise, most of the above algorithms are shown to outperform the JPEG and

become similar to, or just slightly better than the JPEG-2000 standard. Among these

papers, those published before the year 2000 do not compare to JPEG-2000. It is hard to

give conclusive comparison to these methods as most of them consider small images (less

than 100 × 100 pixels) and relatively high rate (above 0.1bpp), while we consider larger

images and a much lower rate (0.05bpp).

III. Alignment

As our solution exploits the similarity between corresponding regions in facial images, the

images need to be aligned first. The input image is geometrically transformed into a canonical

form, which brings it as close as possible to a predefined “average” facial image. For this

goal we apply a feature-based correspondence to map the input image to its canonical form.

Before turning to describe the alignment procedure, we note that while it is tempting to
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exploit the symmetry of faces, extensive study that we performed shows that such symmetry

cannot be trusted, and it often leads to inferior results. Apparently, mirroring ones’ half-face

generates high frequency de-correlated errors due to the subtle asymmetry of faces (and the

fact that these images are not exactly frontal ones). Thus, edges fall near (and not on-top of)

edges, and the result would be a waist of significant bits required to transmit large prediction

error.

A. Facial features detection

We define a set of thirteen facial features. Six of them are anchored to facial anatomical

landmarks - eyes, nose, mouth and chin (see Figure 2), and the rest are along the face outline.

Fig. 2. Facial feature points. There are two features in the eyes that cannot be seen in these images.

The outline of the face is detected by background subtraction. For the plane background,

as in our case, we take samples of the background color in several image locations and

construct a linear background model for the whole image to compensate for non-uniform

illumination. The foreground is then detected by thresholding, followed by morphological

filtering.

One issue that requires special attention is the hair around the face, which can significantly

alter the form of the facial outline. In order to cope with this problem we estimate the facial

skin tone color and correct the outline contour location around the face inwards, thereby

avoiding the hair region. In Figure 3 one can see how the hairline affects the location of



7

facial outline markers at the mouth level (Top). The markers are brought back to the face

line by the hair correction procedure (Bottom).

Fig. 3. Facial features detection with (Bottom) and without hair correction (Top).

The internal facial features are detected using correlation based matching. The correlation

kernels are built by averaging relatively small image window around the feature point over

the training set. See Figure 4.

(a) (b) (c) (d) (e) (f)

Fig. 4. Correlation masks for facial features detection - (a) left eye, (b) right eye, (c) nose tip, (d) left mouth

corner, (e) right mouth corner, (f) chin.

B. Image warping

At the training phase we scan a large set of images, detect facial features as described

above, and find the average feature locations. Given a set of corresponding feature points in
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the input image and the reference “average” facial image, we need to warp the former onto

the latter. This is done using a piecewise affine transform.

Fig. 5. Affine warping triangulation.

The set of thirteen feature points together with six points at the image corners and bound-

aries define a triangulation in the image domain (see Figure 5). Every triangle 4AiBiCi in

the input image and the corresponding triangle 4ABC in the “average” image uniquely

define an affine transform T such that

T [AiBiCi]
T = [ABC]T . (1)

Then, for every x ∈ 4AiBiCi

Iwarped(x) = I(Tx), (2)

where I and Iwarped are the input and the aligned images respectively. Figure 6 shows several

examples of aligned images.

C. Implementation considerations

The proposed feature detection process as described in Section III.A may fail to find

the proper locations, thus jeopardizing the overall coding process. In our experiments we

found that more than 99% of the images were treated properly by the automatic detection
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Fig. 6. Input images (Top) and their aligned (canonical) versions (Bottom)

procedure. Identification of the errors for the training images (6, 000 images altogether) was

done manually, and their features were marked semi-manually (getting a proposed location

from the system and updating it if needed).

In the coding of new test images, failure to detect the features leads to extreme low PSNR,

and thus it is easily detected automatically. For such images, features are required to be

marked by the user. Alternatively, such images can be coded using regular JPEG-2000 (or

any other competing scheme).

As to the geometrical canonization as described in Section III.B, it is done on all the

training images, before proceeding to the coding stage. This canonization is also done when

encoding a test image. Since the decoder should apply the inverse transform, side information

containing the 13 feature coordinates is required. This requires less than 20Bytes, using a

prior knowledge on the coordinates’ distribution.



10

IV. Coding strategy

A. Choice of VQ

Once the images are aligned, one would expect a certain similarity between the corre-

sponding regions, allowing for compact representation. Here, we can explore one of several

principal approaches to exploit this similarity for compression. The use of PCA, as described

in Section II, can lead to such modeling and coding. However, as we limit our discussion

to extremely low bit-rates, keeping a number of reasonably quantized coefficients even for a

relatively small basis may become prohibitively expensive. Therefore, we implemented local

clustering and vector quantization (VQ), which fits well our low-bit-rates [1], [2], [3].

B. Training the coder

The images are divided into small blocks of size 8 × 8 (a parameter of the algorithm).

For each block location we have 6, 000 examples taken from training images. The K-Means

algorithm is applied to find the best 2k representation vectors, where k is the number of bits

allocated for this block. The value of k is chosen as the minimal number of bits yielding a

mean-square-error (MSE) over the training set lower than a predefined threshold. Actual

values of k in our tests are in the range [0, 10].

In order to save even more bits, the MSE thresholds for each block are chosen to pro-

vide lower error in recognition-critical portrait areas (eyes, nose, etc.), at the expense of

discriminating less visually important regions (background, clothing, etc.). This idea has

also appeared in [17], where the coding was done using JPEG-2000, but in a spatial selective

way. Figure 7(a) shows the root mean-squared-error (RMSE) threshold allocation map used

for training, with the requested maximal allowed error varying from 6 to 15 intensity levels.

The actual bit allocation per block established by the training process does not necessarily

correlate with the RMSE threshold map, as seen in Figure 7(b). This is because the system
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is able to represent regions with low variability, e.g. forehead or cheeks, with a small amount

of bits even when the allowed error for this region is low.
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(a) (b)

Fig. 7. (a) RMSE threshold map (intensity levels), (b) Bit allocation map (bits per block).

We use 8 × 8 blocks with an overlap of one pixel to minimize blockiness effects. When

reconstructed, the pixels at the overlapping regions are taken as average between the overlap-

ping blocks. An alternative approach that removes this overlapping and applies deblocking

as a post-processing in the decoder is possible, but was not pursued.

Handling of color RGB images is simple. Such images are first converted into Y CbCr

format and the training is performed independently for each one of the three channels, while

the chroma components are taken at half of the original resolution along each axis, and the

MSE thresholds are chosen to be less restrictive. The computed quantization vectors are

then stored for each block and each channel and used both for encoding and decoding.

C. Encoding and decoding

The encoding process starts with alignment - facial features are detected as described

above and the image is warped to its “canonical” form. Then, each tile is quantized using

VQ, finding the closest representation vector (in the MSE sense) among the VQ vectors

stored for this tile. The chosen VQ vector’s index serves as a representation for the block.
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The process should be repeated for all 3 image channels in case of color images.

The bit stream that represents the compressed image contains data on facial features

coordinates and the VQ vectors indices. We did not implement an entropy coding stage for

further compression. There are several reasons for this choice (i) we found experimentally

that relatively simple entropy coding schemes (Huffman, LZ) hardly provide any further

compression; (ii) we wanted to keep the algorithm simple and avoid complex entropy coding

schemes that might provide further compression; and (iii) the performance even without

such schemes was found to be sufficient.

For decoding, the steps described above are performed in a reversed order, namely, the

bit stream is parsed into the feature points coordinates and the VQ vector indices. As the

bit allocation and the order of fields in the bit stream is known and fixed, no additional

formatting symbols are required for parsing.

For a given tile, the image is retrieved by the index from the VQ vectors set stored for

this location. Overlapping block pixels are averaged, and the process is repeated for all three

image channels. Finally, the image is warped using an inverse alignment stage. The locations

of the feature points in the input image retrieved from the bit stream along with the known

feature points coordinates in the canonical image, uniquely define the inverse piecewise affine

transform to be applied to the restored image.

D. Multi-scale approach

A multi-scale approach can easily be incorporated into the proposed scheme. The idea is

to use larger size tiles/blocks for correlated image regions. That is, instead of coding several

neighboring correlated small blocks separately, one can apply the VQ analysis for the whole

correlated area and use only one vector index to represent it.

This gain can be practically achieved by operating using a constant block size (8 × 8 as
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described above) over all the layers of a Gaussian pyramid of the input image [4]. Such

a pyramid leads to a set of s resolution layers, denoted as Is−1, Is−2, . . ., I0. The image

Is−1 is the coarsest layer, smaller by factor 2s−1 in each axis compared to the original, and

containing a reduced (smoothed and down-sampled) version of the original. The rest of the

layers are similar, growing bigger by a factor of 2 along each axis, and I0 is the finest layer,

being the original image.

The proposed multi-scale framework starts with Is−1, applying the training and the coding

as described above, on patches of size 8× 8 pixels. The decompressed image is interpolated,

and subtracted from Is−2. The residual is passed through the same training/coding stages.

This repeats until the finest resolution layer is reached.

In coding and decoding across scales, care must be given to the bits-allocation in each

layer. We use the MSE threshold map as described above, choosing K per each tile and each

resolution layer to conform with the target error.

V. Experiments

In our experiments we used a two level multi-scale approach. The system was trained on

6, 000 images. By tuning the MSE thresholds we control the rate – i.e., vary the required

number of bytes to represent the encoded image.

The VQ dictionaries trained should to be stored at the encoder and the decoder. For

the rates tested in the following experiments we found that ≈ 40 MBytes are required. We

note that this size can be reduced dramatically by introducing quantization of the dictionary

entries. Our coding scheme was simulated using non-optimized Matlab software, and ran on

a PC (Pentium 2, 1.5GHz, 1GByte RAM). Encoding of an image takes 2.7 seconds, and its

decoding requires 0.8 seconds.

Figure 8 shows several examples of image compression using our method. This image was
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taken from the test set. For comparison, the results are presented along with the images

compressed using the standard JPEG-2000 images compression algorithm. As claimed, the

results using our method show better visual quality.

We conducted an experiment where 10 unprepared subjects where presented with 20 im-

ages compressed using our method and JPEG-2000 using 1− 3KBytes images. The respon-

dents were asked to grade the proposed compression results relative to the JPEG-2000. The

average grade indicated that our compression result with 1KByte falls somewhere between

JPEG-2000 2kBytes and 3kBytes in terms of subjective visual appeal. Figure 9 presents the

JPEG-2000 images obtained with 1 KByte, 2 KBytes, and 3 KBytes for the example shown

in Figure 8, to illustrate this comparison.

In order to get a more objective measure of performance, we coded 1000 test images in

varying rates, using both JPEG-2000 and our algorithm. Figure 10 shows the Rate-Distortion

curves obtained with both methods. As can be clearly seen, while the developed algorithm

generally shows better compression performance for the range of rates explored, its gain is

pronounced as the rate decreases.

VI. Conclusions

A frontal facial compression method was presented and its advantages were explored. It

was shown that a geometric warping into a canonical form, followed by an efficient coding

for each block, allows compression rates that are almost twice better compared to the best

commercial compression method namely JPEG-2000. This is not the end of the road, and

VQ may well be found to be inferior to alternative ways of representing the block patches. In

a sequel paper, we intend to explore the role of sparse representation in tailored dictionaries

in representing image tiles.
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Fig. 8. Left - our results, Right - JPEG-2000. First row: 270 Bytes; Second row: 392 Bytes; Third row:

522 Bytes, Fourth row: 644 Bytes; and Last row: 865 Bytes.



18
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Fig. 9. Our result (bottom) and JPEG-2000 results with higher bit-rates for comparison.
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Fig. 10. Rate-distortion curves for JPEG-2000 and our results.


