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a b s t r a c t

The use of sparse representations in signal and image processing is gradually increasing in the past sev-
eral years. Obtaining an overcomplete dictionary from a set of signals allows us to represent them as a
sparse linear combination of dictionary atoms. Pursuit algorithms are then used for signal decomposition.
A recent work introduced the K-SVD algorithm, which is a novel method for training overcomplete
dictionaries that lead to sparse signal representation. In this work we propose a new method for
compressing facial images, based on the K-SVD algorithm. We train K-SVD dictionaries for predefined
image patches, and compress each new image according to these dictionaries. The encoding is based
on sparse coding of each image patch using the relevant trained dictionary, and the decoding is a simple
reconstruction of the patches by linear combination of atoms. An essential pre-process stage for this
method is an image alignment procedure, where several facial features are detected and geometrically
warped into a canonical spatial location. We present this new method, analyze its results and compare
it to several competing compression techniques.

� 2008 Published by Elsevier Inc.
1. Introduction

Compression of still images is a very active and matured field of
research, vivid in both research and engineering communities.
Compression of images is possible because of their vast spatial
redundancy and the ability to absorb moderate errors in the recon-
structed image. This field of work offers many contributions, some
of which became standard algorithms that are wide-spread and
popular. Among the many methods for image compression, one
of the best is the JPEG2000 standard—a general purpose wavelet
based image compression algorithm with very good compression
performance [1].

When considering the compression of a specific and narrow
family of images, the above-mentioned redundancy increases, thus
enabling a better compression performance. Such is the case with
compression of facial images. Indeed, this expected gain has been
observed and exploited in several recent publications that offer tai-
lored compression algorithms for facial images [2–17]. Among
those contributions, the more recent ones show performance sur-
passing those of the JPEG2000 [16,17].
Elsevier Inc.

cience Foundation Grant No.

t), elad@cs.technion.ac.il (M.
Compression of facial images is an appealing problem, both
because of the research challenges it provides, and the important
applications it serves. From a research perspective, one should
primarily wonder how to exploit the additional redundancy that
such a focused family of images exhibits, and how to surpass
general purpose compression algorithms this way. This is not an
easy challenge due to the vast efforts put to the general purpose
algorithms, and especially their entropy coding parts.

Application-wise, facial images are perhaps the most popular
images, held in large databases by various organizations, such as
police and law-enforcement, schools and universities, states, and
in databases of employees in large companies. Efficient storage of
such images is of value, and especially so when considering
photo-ID in an electronic ID cards. In such applications, very-low
bit-rate compression is to be considered, where general purpose
algorithms fail utterly.

Motivated by the above, In this work we address compression of
facial images as well, very much in line with the above activity. In
order to focus the discussion, we target photo-ID images of pre-
specified and fixed size 358� 441 grayscale images with 8 bits
per pixel.1 The goal of our work is very-low bit-rates (compression
ratios of 200 and beyond), where most algorithms are unable to
1 This database contains color photos taken by a 4-Mega-pixel digital camera (Fuji
FinePix A400), against a white and uniform background, with the highest compres-
sion settings for best quality. These photos were cropped and scaled to the above-
mentioned size, and also converted to a gray-value format.
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Fig. 1. (Left) Piece-wise affine warping of the image by triangulation. (Right) A
uniform slicing to disjoint square patches for coding purposes.

O. Bryt, M. Elad / J. Vis. Commun. Image R. 19 (2008) 270–282 271
show recognizable faces. We use a database containing around 6000
such facial images, some of which are used for training and tuning
the algorithm, and the others for testing it, similar to the approach
taken in [17].

In our work we propose a novel compression algorithm, related
to the one presented in [17], improving over it.

Our algorithm relies strongly on recent advancements made in
using sparse and redundant representation of signals [18–26], and
learning their sparsifying dictionaries [27–29]. We use the K-SVD
algorithm for learning the dictionaries for representing small
image patches in a locally adaptive way, and use these to sparse-
code the patches’ content. This is a relatively simple and
straight-forward algorithm with hardly any entropy coding stage.
Yet, it is shown to be superior to several competing algorithms:
(i) the JPEG2000, (ii) the VQ-based algorithm presented in [17],
and (iii) A Principal Component Analysis (PCA) approach.2

In the next section we provide some background material for
this work: we start by presenting the details of the compression
algorithm developed in [17], as their scheme is the one we embark
from in the development of ours. We also describe the topic of
sparse and redundant representations and the K-SVD, that are
the foundations for our algorithm. In Section 3 we turn to present
the proposed algorithm in details, showing its various steps, and
discussing its computational/memory complexities. Section 4
presents results of our method, demonstrating the claimed
superiority. We conclude in Section 5 with a list of future activities
that can further improve over the proposed scheme.

2. Background material

2.1. VQ-based image compression

Among the thousands of papers that study still image
compression algorithms, there are relatively few that consider
the treatment of facial images [2–17]. Among those, the most
recent and the best performing algorithm is the one reported in
[17]. That paper also provides a thorough literature survey that
compares the various methods and discusses similarities and
differences between them. Therefore, rather than repeating such
a survey here, we refer the interested reader to [17]. In this
sub-section we concentrate on the description of the algorithm
in [17] as our method resembles it to some extent.

This algorithm, like some others before it, starts with a geomet-
rical alignment of the input image, so that the main features (ears,
nose, mouth, hair-line, etc.) are aligned with those of a database of
pre-aligned facial images. Such alignment increases further the
redundancy in the handled image, due to its high cross similarity
to the database. The warping in [17] is done by an automatic
detection of 13 feature points on the face, and moving them to
pre-determined canonical locations. These points define a slicing
of the input image into disjoint and covering set of triangles, each
exhibiting an affine warp, being a function of the motion of its
three vertices. Side information on these 13 feature locations
enables a reverse warp of the reconstructed image in the decoder.
Fig. 1 (left side) shows the features and the induced triangles. After
the warping, the image is sliced into square and non-overlapping
patches (of size 8� 8 pixels), each of which is coded separately.
Such possible slicing (for illustration purpose we show this slicing
with larger patches) is shown in Fig. 1 (right side).

Coding of the image patches in [17] is done using vector quan-
tization (VQ) [30–32]. The VQ dictionaries are trained (using tree-
2 The PCA algorithm is developed in this work as a competitive benchmark, and
while it is generally performing very well, it is inferior to the main algorithm
presented in this work.
K-Means) per each patch separately, using patches taken from the
same location from 5000 training images. This way, each VQ is
adapted to the expected local content, and thus the high perfor-
mance presented by this algorithm. The number of code-words
in the VQ is a function of the bit-allocation for the patches. As
we argue in the next section, VQ coding is limited by the available
number of examples and the desired rate, forcing relatively small
patch sizes. This, in turn, leads to a loss of some redundancy be-
tween adjacent patches, and thus loss of potential compression.

Another ingredient in this algorithm that partly compensates
for the above-described shortcoming is a multi-scale coding
scheme. The image is scaled down and VQ-coded using patches
of size 8� 8. Then it is interpolated back to the original resolution,
and the residual is coded using VQ on 8� 8 pixel patches once
again. This method can be applied on a Laplacian pyramid of the
original (warped) image with several scales [33].

As already mentioned above, the results shown in [17] surpass
those obtained by JPEG2000, both visually and in Peak-Signal-to-
Noise Ratio (PSNR) quantitative comparisons. In our work we pro-
pose to replace the coding stage from VQ to sparse and redundant
representations—this leads us to the next subsection, were we de-
scribe the principles behind this coding strategy.

2.2. Sparse and redundant representations

We now turn to describe a model for signals known as Sparse-
land [29]. This model suggests a parametric description of signal
sources in a way that adapts to their true nature. This model will
be harnessed in this work to provide the coding mechanism for
the image patches. We consider a family of image patches of size
N � N pixels, ordered lexicographically as column vectors x 2 Rn

(with n ¼ N2). Assume that we are given a matrix D 2 Rn�k (with
possibly k > n). We refer hereafter to this matrix as the dictionary.
The Sparseland model suggests that every such image patch, x,
could be represented sparsely using this dictionary, i.e., the solu-
tion of

â ¼ arg min
a
kak0 subject to kDa� xk2

2 6 e2; ð1Þ

is expected to be very sparse, kâk0 � n. The notation kak0 counts the
non-zero entries in a. Thus, every signal instance from the family we
consider is assumed to be represented as a linear combination of
few columns (referred to hereafter as atoms) from the redundant
dictionary D.

The requirement kDa� xk2 6 e suggests that the approximation
of x using Da need not be exact, and could absorb a moderate error
e. This suggests an approximation that trades-off accuracy of repre-
sentation with its simplicity, very much like the rate-distortion



Fig. 2. A typical representation error (RMSE) as a function of the iterations of the
K-SVD algorithm. This graph corresponds to a gradual increment of atoms in the
representation ðLÞ from 1 to 7.
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curve in compression. Indeed, compression of x can be achieved by
transmission of the vector â, by specifying the indices of its non-
zero elements and their magnitudes. Quantization on the non-zero
entries in â leads to higher approximation error but with the
blessed fact that transmission of â now requires a finite and small
number of bits. This is exactly the strategy we are about to deploy.
Similar approach in a different context has been practiced in [34]
for coding of general images.

In order to use the Sparseland model for compression of image
patches, we need an effective way to solve the problem posed in
Eq. (1). While this problem is in general very hard to solve, the
matching and the basis pursuit algorithms can be used quite effec-
tively [18,19,22,23] to get an approximated solution. Recent work
established that those approximation techniques can be quite
accurate if the solution is sparse enough to begin with [20,21,24–
26]. In this work we make use of the Orthogonal Matching Pursuit
(OMP) because of its simplicity and efficiency. We refer hereafter
to the solution of ðP0Þ as sparse coding.

2.3. Training A dictionary

Given a set of image patches of size N � N to be coded,
X ¼ fxjgM

j¼1, the assumption that they emerge from the Sparseland
model helps us in devising the new coding strategy. However,
we must have the dictionary D in order to use this coding scheme.
This can be achieved by training D—minimizing the following en-
ergy functional with respect to both D and fajgM

j¼1,

e D; fajgM
j¼1

� �
¼
XM

j¼1

ljkajk0 þ Daj � xj

�� ��2
2

h i
: ð2Þ

This expression seeks to get a sparse representation per each of the
examples in X, and obtain a small representation error. The choice
for lj dictates how those two forces should be weighted, so as to
make one of them a clear constraint. For example, constraining
8jkajk0 ¼ L implies specific values for lj, while requiring
8jkDaj � zjk2 6 e leads to others.

The K-SVD algorithm proposes an iterative algorithm designed
to handle the above task effectively [27,28]. Adopting a block-coor-
dinate descent idea, the computations of D and fajgM

j¼1 are sepa-
rated. Assuming that D is known, the penalty posed in Eq. (2)
reduces to a set of M sparse coding operations, very much like in
Eq. (1). Thus, OMP can be used to obtain the near-optimal solu-
tions. Similarly, assuming that these representation vectors are
fixed, the K-SVD algorithm proposes an update of the dictionary
one column at a time. As it turns out, this update can be done opti-
mally, leading to the need to perform a singular value decomposi-
tion (SVD) operation on residual data matrices, computed only on
the examples that use this atom. This way, the value of eðD; fajgM

j¼1Þ
is guaranteed to drop per an update of each dictionary atom, and
along with this update, the representation coefficients change as
well (see [27,28] for more details).

Fig. 2 shows a typical representation error reduction graph in a
K-SVD dictionary training process performing a gradual increment
of the number of atoms used for the representation of the exam-
ples. This error is shown as Root Mean Squared Error (RMSE), being
the squared-root of the mean of the errors kDaj � xjk2

2, i.e., setting
8jkajk0 ¼ L, the algorithm starts with L ¼ 1 and after obtaining con-
vergence, L is incremented by 1.
3 Due to the inconsistency between the image and patch sizes, some of the patches
at the right and bottom boundaries are of different sizes than the rest.
3. The proposed method

3.1. The general scheme

We now turn to describe our compression scheme. A block dia-
gram of the encoder and decoder are given in Fig. 3. Our algorithm
consists of two main processes: An offline K-SVD training process
and an online image compression/decompression processes.

3.1.1. K-SVD training
The K-SVD training process is an off-line procedure, preceding

any image compression. The training produces a set of K-SVD dic-
tionaries that are then considered fixed for the image compression
stage. A single dictionary is trained for each 15� 15 patch over a
set of examples that will referred to as the learning set. The train-
ing follows the description from the previous section, with param-
eters detailed in Section 4. Prior to the training process for each
patch, the mean patch image of the examples in the learning set
is calculated and subtracted from all the examples in this set.

The image compression process uses the following steps in the
encoder, followed by a mirror application of them at the decoder:

3.1.2. Pre-processing
We use the same pre-process stage of geometrical warping as in

[17]. This leads to better conditioning of the input image, increas-
ing its redundancy versus the image database. The parameters of
the warp are sent as side information for the inverse warp at the
decoder. Those parameters are coded using 20 bytes. The pre-pro-
cessing stage also includes a simple scale-down by a factor of 2:1 of
the input image, so that later processing is applied on a smaller
image.

3.1.3. Slicing to patches
Our approach also works on fixed size square patches, coding

each patch separately and adaptively as in [17]. However, our cod-
ing strategy is different, being based on sparse and redundant rep-
resentations. The change in methods leads to the ability to handle
larger patches, and thus get more efficient coding. In our simula-
tions we have used N ¼ 15 pixels,3 although larger patch sizes are
also possible. The patches must also fit the dictionary in content,
so the same mean patch images that were calculated for the learning
set before the training process is subtracted out of the relevant
patches.



Fig. 3. Detailed block diagram of the proposed encoding/decoding method.

4 This is close to the actual size we use in our method, scaling down the original
image as mentioned earlier by 2:1 in each axis as part of the pre-process stage. The
actual size is 179� 221.
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3.1.4. Sparse coding
Every patch location has a pre-trained dictionary of code-words

(atoms) Dij. The size we use for k is 512—a discussion on this choice ap-
pears in Section 4. These dictionaries are generated using the K-SVD
algorithm on a set of 4415 training examples. The coding itself is done
by assigning a linear combination of few atoms to describe the patch
content (sparse coding). Thus, information about the patch content in-
cludes both the linear weights and the involved indices. Note that the
number of atoms vary from one patch to another, based on its average
complexity, and this varied number is known at the decoder.

Both encoder and decoder are storing the dictionaries, just as in
[17]. The sparse-coding stage for encoding of the patches is done
using the OMP algorithm. The decoder is simply aggregating the
proper atoms with the proper weights to reconstruct the patch,
building the output one patch at a time independent of the others.

3.1.5. Entropy coding and quantization
We use a straight-forward Huffman table applied only to the

indices. The representations’ weights are quantized with a 7-bit
uniform quantization, with boundaries chosen based on the train-
ing information for each patch separately.

Since the above compression scheme strongly relies on a suc-
cessful detection of the features to warp by, a natural question is
whether errors in this stage are destructive to the overall compres-
sion algorithm. When the detection of the features fails utterly, the
compression necessarily leads to very low performance. Since we
are performing a compression on an incoming image, we have
access to both the resulting PSNR, and also the average PSNR we
expect to get for this bits allocation. Thus, if the compression PSNR
is below some threshold, we obviously know that the detection
failed (or possibly the input image is not a face image). In such a
case, and in a completely automatic fashion, we can employ the
JPEG2000, which is indeed weaker, but still reasonable. A second
option we have in such a system is to prompt the user to detect
the features manually for this image. Thus, even rare situations
where the features are not found do not lead to a breakdown in
a system that employs the proposed algorithm.

3.2. VQ versus sparse representations

As mentioned in Section 2, the destination compression ratio
and the number of training examples pose a hard limit on the
allowed patch size, when using VQ. This is because as the patch
size grows while keeping the rate (bits per pixel) fixed, the dictio-
nary is required to grow exponentially, reaching sizes far beyond
the number of examples to train on. More specifically, using patch
size of N � N pixels, with k codewords in the VQ dictionary, consid-
ering an image with P pixels, and a target rate of B bits for the
entire image, all these ingredients are related to each other by

B ¼ P

N2 � log2 ðkÞ ) k ¼ 2
N2B

P : ð3Þ

For example, coding an image of size 180� 220 (P = 39,600) pixels4

with a target rate of B ¼ 500 bytes, a patch of size N ¼ 8 leads to



Fig. 4. The Required average number of atoms L as a function of the patch size N,
with the influence of the overall allocated number of bits B.
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k ¼ 88, which is reasonable. However, increasing the patch size to
N ¼ 12 already leads to k � 24;000, which cannot be trained from
6000 examples. Thus, the VQ approach is limited to relatively small
patch sizes (8� 8 used in [17]), implying that much of the spatial
redundancy between adjacent patches is overlooked.

When turning to sparse and redundant dictionaries, the picture
changes dramatically. We consider a patch size of N � N pixels,
with k atoms in the dictionary, L of which are used on average5

in the representation (assuming 7-bit quantization of the weights).
Handling of an image with P pixels, and a target rate of B bits for
the entire image, all these ingredients lead to the relation

B ¼ P

N2 � L � log2 ðkÞ þ 7ð Þ: ð4Þ

This means that per patch, instead of using log2k bits when working
with VQ, we need Lðlog2kþ 7Þ bits on average. Thus, if the required
amount of bits per patch is too high (as indeed happens when N
grows), it can be absorbed by varying L. For example, for an image
with P = 39,600 pixels, using k ¼ 512 atoms, a target rate of
B ¼ 500—1000 bytes, and a patch sizes in the range N ¼ 8 � 30,
all these lead to a required average number of atoms L as shown
in Fig. 4. As can be seen, the values are reasonable and so we have
the flexibility to control the rate by changing L in the range 1—12.

Aside from the flexibility that the Sparseland model provides,
this model also proposes a flexible description of the patches’ con-
tent, in a way that leads to high coding performance. The fact that
the dictionaries are trained from relevant examples leads to very
effective and tight model. Indeed, this model has been deployed
in recent years to a variety of applications in signal and image pro-
cessing, leading typically to state-of-the-art results [29]. More
work is required to explain the origin of this model’s strength,
though.

3.3. Run-time and memory requirements

In assessing complexities, we should separate the discussion
between the training and the compression processes. The training
process is composed of iterating on two main stages—sparse cod-
ing, which is done using the OMP algorithm, and dictionary update.
As mentioned in [29], both stages can be done efficiently in
OðJnkLTrSLÞ per patch, where J is the number of iterations, n is the
size of the patch, k is the number of atoms in the dictionary, LTr

is the maximal number of non-zero elements in each coefficient
vector in each patch during the training, and SL is the number of
examples in the learning set.

Since the training process is done to the entire learning set and
to each patch separately, The complexity of training all the patches
is OðPn JnkLTrSLÞ ¼ OðPJkLTrSLÞ, where P is the number of pixels in the
image and P

n is therefore approximately (due to border issues) the
number of disjoint square patches.

The compression process is also composed of two stages—the
encoding and the decoding stages. The encoding is done using
the OMP algorithm, which has a complexity of OðnkLAvÞ per image,
where LAv is the average number of non-zero elements in the coef-
ficient vector in all the patches. The encoding stage is done to each
patch separately, and therefore the complexity of the entire encod-
ing process is O P

n nkLAv
� �

¼ O PkLAvð Þ. The decoding stage is simply
calculating the linear combination result, which can be done in
OðnLAverageÞ per patch. The overall complexity of this stage is there-
fore O P

n nLAv
� �

¼ O PLAvð Þ.
5 If L varies from one patch to another, side information is necessary in order to
instruct the decoder how many atoms to use in each patch. However, in our scheme,
while L indeed varies spatially, it remains fixed for all images and thus the decoder
knows the atom allocated per patch with no additional side information.
In assessing the required memory for the proposed compression
method we need to take into account the dictionaries that were
produced for each patch, the previously mentioned mean patch
images, the Huffman tables, the coefficient usage tables and the
quantization levels for each patch. Calculating in bytes, the
required memory for the above mentioned data is given roughly
by OðPkÞ bytes. In our tests with P = 39,600 and k ¼ 512 this leads
to less than 20 Mbytes.

Practically, the training and testing processes has been all
implemented using non-optimized Matlab code on a regular PC
(Pentium 2, 2 GHz, 1 GByte RAM). Training of all the required
dictionaries requires 100 h to complete (and thus has been
implemented on several computers in parallel, each handling a
different group of patches). The compression of a single image
requires 5 s, and its decompression takes less than 1 s.

4. More details and results

We conducted several experiments in order to evaluate the
performance of our compression method and the quality of its
resulting images. In this section we show some statistical results
as well as reconstructed images from our compression method
and a comparison between our results to several other competitive
compression techniques.

We used 4415 face images as our learning set and a different
100 images as our test set. All the images in both sets are of a fixed
size of 358� 441 pixels prior to the pre-processing, and of size
179� 221 after a simple scale-down. The slicing to patches is
uniform over the image with the previously mentioned size, and
exceptions at the borders. Examples of such pre-processed
training/testing images can be seen in Fig. 5.
Fig. 5. Examples of pre-processed images used in the training/testing sets.
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Before turning to preset the results we should add the follow-
ing: while all the results shown here refer to the specific database
we operate on, the overall scheme proposed is general and should
apply to other face images databases just as well. Naturally, some
changes in the parameters might be necessary, and among those,
the patch size is the most important to consider. We also note that
as one shifts from one source of images to another, the relative size
of the background in the photos may vary, and this necessarily
leads to changes in performance. More specifically, when the back-
ground regions are larger (e.g., the images we use here have rela-
tively small such regions), the compression performance is
expected to improve.

4.1. K-SVD dictionaries

The primary stopping condition for the training process was set
to be a limitation on the maximal number of K-SVD iterations
(being 100). A secondary stopping condition was a limitation on
the minimal representation error. In the image compression stage
we added a limitation on the maximal number of atoms per patch.
These conditions were used to allow us to better control the rates
of the resulting images and the overall simulation time.

Every obtained dictionary contains 512 patches of size
15� 15 pixels as atoms. In Fig. 6 we can see the dictionary that
Fig. 6. The Dictionary obtained by K-SVD for Patch No.

Fig. 7. The Dictionary obtained by K-SVD for Patch No. 87
was trained for patch number 80 (The left eye) for L ¼ 4 sparse
coding atoms, and similarly, in Fig. 7 we can see the dictionary that
was trained for patch number 87 (The right nostril) also for L ¼ 4
sparse coding atoms. It can be seen that both dictionaries contain
images similar in nature to the image patch for which they were
trained for. A similar behavior was observed in other dictionaries.

4.2. Reconstructed images

Our coding strategy allows us to learn which parts of the im-
age are more difficult than others to code. This is done by
assigning the same representation error threshold to all of the
patches, and observing how many atoms are required for the
representation of each patch on average. Clearly, patches with
a small number of allocated atoms are simpler to represent than
others. We would expect that the representation of smooth areas
of the image such as the background, parts of the face and
maybe parts of the clothes will be simpler than the representa-
tion of areas containing high frequency elements such as the
hair or the eyes. Fig. 8 shows maps of atom allocation per patch
and representation error (RMSE—squared-root of the mean
squared error) per patch for the images in the test set in two
different bit-rates. It can be seen that more atoms were allocated
to patches containing the facial details (hair, mouth, eyes, and
80 (the left eye) using the OMP method with L ¼ 4.

(the right nostril) using the OMP method with L ¼ 4.



Fig. 9. Examples of original (top) and reconstructed (bottom) images from the le-
arning set, with a ‘‘good” 4.04 (on the left) and a ‘‘bad” 5.9 (on the right) represe-
ntation RMSE, both using 630 bytes.
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facial borders), and that the representation error is higher in
these patches. It can also be seen that the overall number of
allocated atoms increases and the representation error decreases
with the image bit-rate.

As in other compression methods, our reconstructed images
suffer from several kinds of artifacts. These artifacts are caused
by the slicing to disjoint patches, coding them independently.
Contrary to methods such as JPEG and JPEG2000, the recon-
structed images in our method do not have a strong smearing
artifact all over the image, but only local small areas in which
the image is smeared. Other artifacts include blockiness effect
due to the slicing to patches, inaccurate representation of high
frequency elements in the image, inability to represent compli-
cated textures (mainly in the clothes) and inconsistency in the
spatial location of several facial elements comparing to the origi-
nal image. These artifacts are caused by the nature of our com-
pression method, which has a limited ability to build the
reconstructed image out of the given dictionaries. In Fig. 9 we
can see two original images from the learning set and their recon-
structed images in a bit-rate of 630 bytes. The mentioned artifacts
can be seen in these images especially in the areas of the chin, the
neck, the mouth, the clothes and the outline of the hair. Although
there are areas in the images in which there is a smearing effect,
the majority of the image is clear and sharp, and certainly in a
high visual quality.

Fig. 10 shows three original images from the test set and their
reconstructed images in a bit-rate of 630 bytes. As in the previous
images, the mentioned artifacts can be seen in these images as
well, in the same image areas as before. As expected, the quality
of the images from the test set is not as high as the quality of
images from the learning set, but these images too are clear and
sharp, and in a high visual quality.
Fig. 8. (a) The atom allocation map for 400 bytes, (b) the representation error map for 400 bytes, (c) the atom allocation map for 820 bytes, and (d) the representation error
map for 820 bytes.



Fig. 10. Examples of original and reconstructed images from the test set, with a ‘‘good” 5.3 (left), an ‘‘average” 6.84 (middle) and a ‘‘bad” 11.2 (right) representation RMSE, all
three using 630 bytes.

Fig. 11. Comparing the visual quality of a reconstructed image from the test set in several bit-rates. From top left,clockwise: 285 bytes (RMSE 10.6), 459 bytes (RMSE 8.27),
630 bytes (RMSE 7.61), 820 bytes (RMSE 7.11), 1021 bytes (RMSE 6.8), original image.
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Much like other compression methods, the quality of the
reconstructed images in our method improves as the bit-rate
increases. However, the contribution gained from such a rate
increment is not divided equally over the image. Additional bits
are allocated to patches with higher representation error, and
those are improved first. This property is directly caused by
the nature of the compression process, which is RMSE oriented
and not bit-rate oriented. The compression process sets a single
RMSE threshold for all the patches, forcing each of them to
reach it without fixing the number of allocated atoms per
patch. Patches with simple (smooth) content are most likely
to have a representation error far below the threshold even
using zero or one atom, whereas patches with more complex
content are expected to give a representation error very close
to the threshold. Such problematic patches will be forced to im-
prove their representation error by increasing the number of
atoms they use as the RMSE threshold is decreased, while
patches with a representation error below the threshold will
not be forced to change at all. Fig. 11 illustrates the
gradual improvement in the image quality as the bit-rate in-
creases. As can be seen, not all the patches improve as the
Fig. 12. Facial images compression with a bit-rate of 400 bytes. Comparing results of JP
representation RMSE.
bit-rate increases but only some of them, such as several
patches in the clothes area, in the ears and in the outline of
the hair. These patches were more difficult to represent than
others.

4.3. Comparing to other techniques

An important part in assessing the performance of our com-
pression method is its comparison to known and competitive
compression techniques. As mentioned before, we compare our
results in this work with JPEG, JPEG2000, The VQ-Based compres-
sion method described in [17], and a PCA-Based compression
method that was built especially for this work as a competitive
benchmark. We therefore start with a brief description of the
PCA technique.

The PCA-Based compression method is very similar to the
scheme described in this work, simply replacing the K-SVD dic-
tionaries with a Principal Component Analysis (PCA) ones. These
dictionaries are square matrices storing the eigenvectors of the
autocorrelation matrices of the training examples in each patch,
sorted by a decreasing order of their corresponding eigenvalues.
EG2000, the PCA results, and our K-SVD method. The values in the brackets are the



Fig. 13. Facial images compression with a bit-rate of 550 bytes. Comparing results of JPEG, JPEG2000, the PCA results, and our K-SVD method. The values in the brackets show
the representation RMSE.
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Another induced difference is the replacement of the sparse cod-
ing representation with a simple linear approximation that leans
on the first several eigenvectors, till the representation error de-
crease below the specified threshold. Comparison to the PCA-
Based compression method is important in this work, because
whereas our technique could be interpreted as an adaptation
of the JPEG2000 to the image family by training, PCA could be
seen as a similar step emerging from JPEG.

Figs. 12–14 show a visual comparison of our results with the
JPEG, JPEG2000, and the PCA for three different bit-rates. Note that
Fig. 12 does not contain JPEG examples because the rate is below
the minimum possible one in this case. These figures clearly show
the visual and quantitative advantage of our method over all the
alternatives. We can especially notice the strong smearing effect
in the JPEG and JPEG2000 images, whereas our images are clear
and sharp.

Fig. 15 shows a Rate-Distortion curves comparison of the
compression methods mentioned before, averaged on the 100
test images. The PSNR shown here corresponds to the aligned
grayscale images for all methods, in order to evaluate the repre-
sentation error from the sparse coding and reconstruction stages
alone, without the error that result from the geometrical warp
process. Adding the error induced by the geometrical warp im-
plies a decrease of 0.2–0.4 dB for the VQ, PCA, and K-SVD
methods.

In addition to these Rate-Distortion curves we added a curve for
a ‘‘Clean” JPEG2000 method, which is simply a horizontally shifted
version of the JPEG2000 curve taking into account the header
embedded in the JPEG2000 standard. This header was found to
be of size 220 bytes.

It can be seen from this comparative graph that the K-SVD
compression method has the best performance and especially so
in the very low bit-rates of 300–1000 bytes, which is our area
of interest.

4.4. Dictionary redundancy

Dictionary redundancy, or overcompleteness, is defined as
k=n, being 1 for complete (non-redundant) representations,
and above this in our experiments. A natural question is
whether such redundancy is truly necessary for getting the
compression results shown. Fixing the patch size, n, what would
be the effect of changing the parameter k? Fig. 16 shows four
curves of the averaged PSNR on the test set images with varying



Fig. 14. Facial images compression with a bit-rate of 820 bytes. Comparing results of JPEG, JPEG2000, the PCA results, and our K-SVD method. The values in the brackets show
the representation RMSE.
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redundancy. Each curve shows this behavior for a different fixed
image bit-rate. Note that since the patch size is 15� 15 pixels,
having 225 atoms implies a complete (non-redundant) dictio-
nary, and with 150 atoms we are in fact in an undercomplete
regime.

We can see in Fig. 16 that the quality of the images is improving
(PSNR-wise) with the dictionary redundancy, but this increase is
subsiding. Intuitively, we would expect a change in the orientation
of the curves at some point, partly due to overfitting of the dictio-
naries (due to the limited number of examples), and partly because
too high redundancy is expected to cause deterioration in perfor-
mance. Such change in tendency has not been observed because
of limitations in the training data size.

5. Conclusions

In this paper we present a facial image compression method,
based on sparse and redundant representations and the K-SVD
dictionary learning algorithm. The proposed compression meth-
od is tested in various bit-rates and options, and compared to
several known compression techniques with great success.
Results on the importance of redundancy in the deployed dic-
tionaries are presented. The contribution of this work has sev-
eral facets: first, while sparse and redundant representations
and learned dictionaries have shown to be effective in various
image processing problems, their role in compression has been
less explored, and this work provides the first evidence to its
success in this arena as well. Second, the proposed scheme is
very practical, and could be the foundation for systems that
use large databases of face images. Third, among the various
ways to imitate the VQ and yet be practical, the proposed
method stands as an interesting option that should be further
explored.

As for future work, we are currently exploring several exten-
sions of this activity, such as reducing or eliminating the much
troubling blockiness effects due to the slicing to patches, gener-
alization to compression of color images, and adopting the ideas
in this work for compression of finger-prints images. The hori-
zon and the ultimate goal, in this respect, is a successful har-
nessing of the presented methodology for general images, in a
way that surpasses the JPEG2000 performance—we believe that
this is achievable.



Fig. 16. The effect of redundancy in the trained dictionaries on the quality of the test set images in PSNR for a fixed bit-rate (four different fixed values).

Fig. 15. Rate-Distortion curves for the JPEG, JPEG2000, ‘‘Clean” JPEG2000 (i.e., after removal of the header bits), PCA, VQ and the K-SVD methods.
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