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Abstract—Compression of frontal facial images is an appealing
and important application. Recent work has shown that specially
tailored algorithms for this task can lead to performance far
exceeding JPEG2000. This paper proposes a novel such compres-
sion algorithm, exploiting our recently developed redundant tree-
based wavelet transform. Originally meant for functions defined
on graphs and cloud of points, this new transform has been
shown to be highly effective as an image adaptive redundant and
multi-scale decomposition. The key concept behind this method
is reordering of the image pixels so as to form a highly smooth
1D signal that can be sparsified by a regular wavelet. In this
work we bring this image adaptive transform to the realm of
compression of aligned frontal facial images. Given a training
set of such images, the transform is designed to best sparsify the
whole set using a common feature-ordering. Our compression
scheme consists of sparse coding using the transform, followed by
entropy coding of the obtained coefficients. The inverse transform
and a post-processing stage are used to decode the compressed
image. We demonstrate the performance of the proposed scheme
and compare it to other competing algorithms.

Index Terms—Patch-based processing, redundant wavelet,
compression.

I. INTRODUCTION

In recent years, facial images are being extensively used
and stored in large databases by social networks, web ser-
vices, or various organizations such as states, law-enforcement,
schools, universities, and private companies. Facial images
are also expected to be stored in digital passports and ID
cards. Thus, efficient storage of such images is beneficial, and
their compression is an appealing application. The limitation
to a specific and narrow family of images increases their
combined spatial redundancy, and this allows algorithms that
are specially tailored for the task of facial image compression,
to surpass general purpose compression algorithms. More
specifically, recent work [1]–[4] has shown that this kind of
algorithms lead to performance far exceeding JPEG2000 [5].

In this paper, we introduce a novel algorithm for com-
pression of facial images that exploits our recently developed
redundant tree-based wavelet transform (RTBWT) [6]. This
transform was originally designed to represent scalar functions
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defined on high-dimensional data clouds and graphs. However,
we have shown in [6], [7] that this transform applicable to
an image by converting it to a graph-structure, producing
an image adaptive redundant and multi-scale decomposition
that is highly effective for sparsifying its content. In this
work, we bring this signal-adaptive transform to the realm
of compression of aligned frontal facial images.

Given a training set of aligned face images, we construct
a version of the RTBWT designed to sparsely represent these
family of images. We compress an image by applying on it
sparse coding using the RTBWT decomposition, quantizing
the coefficients in the obtained representation, and then ap-
plying entropy coding. We decompress the image by placing
the entropy decoded coefficients in a sparse vector, applying
the RTBWT reconstruction, and applying a post-processing
stage to the result. We demonstrate the performance of the
proposed scheme both qualitatively and visually, and compare
it to other competing algorithms.

The paper is organized as follows: In Section II, we explain
how to calculate the RTBWT which sparsely represents a
set of face images, and how to use it to obtain a sparse
representation for such images. Section III introduces our
proposed image compression scheme, and in Section IV we
present experimental results that demonstrate its advantages.

II. THE SPARSIFYING TRANSFORM

A. Sparse Representation of Facial Images

Let y be a column-stacked version of a face image, which
contains N pixels. We assume that the image y follows
the sparseland model [8], and therefore we can compress it
by obtaining an efficient (sparse) representation for it. The
sparseland model suggests that the image y can be sparsely
represented using a redundant matrix D of size N × J
(J > N), which we term a dictionary. More specifically, let
∥α∥0 denote the number of nonzero entries in a coefficient
vector α. Then we expect that the solution of

α̂ = argmin
α

∥α∥0 subject to ∥Dα− y∥22 ≤ ϵ2 (1)

should be sparse, i.e. ∥α∥0 ≪ N . This means that the image y
can be represented using a small number of columns (termed
atoms) from D, with an error measured by the distance ∥Dα−
y∥22. Naturally, there exists a tradeoff between the number of
atoms used to represent y and the size of the representation
error, i.e., the more atoms we use the smaller the error gets.

Problem (1) is an NP-hard problem, since it requires an
examination of O(JN ) possible non-zero supports for α.
However, the matching and the basis pursuit algorithms [9]–
[11] can be used quite effectively to obtain an approximation
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Fig. 1: Facial image encoding and decoding schemes.
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Fig. 2: RTBWT decomposition scheme

for the solution. In fact, these approximation techniques can
be quite accurate if the solution is sparse enough to begin
with [12]–[16]. In this work we make use of the Orthogonal
Matching Pursuit (OMP) because of its simplicity [10] and
efficiency. We next describe how we obtain the dictionary D,
which we use for sparsifying face images.

B. RTBWT-Based Dictionary for a Set of Images

Let yg , g = 1 . . . , G be a training set, which contains
the column-stacked versions of G aligned1 face images, each
containing N pixels. We wish to construct a redundant dictio-
nary using the images in this training set, which will enable
to sparsely represent them and similar facial images from a
different test set. We note that while other methods usually
train dictionaries which sparsely represent image patches, here
we wish to find a dictionary that will be used to represent the
entire image. To this end we make use of the redundant tree-
based wavelet transform (RTBWT) [6], [7].

The RTBWT is a data-adaptive transform, providing a
sparse and redundant representation for its input signal. In
order to calculate the transform for an image y, it requires
that each pixel yi will be associated with a feature vector xi,
and it is assumed that under a distance measure w(xi,xj) (e.g.
Euclidean distance), proximity between two such feature vec-
tors xi and xj implies proximity between their corresponding
pixels yi and yj . When working with an image, the features

1Geometrical pre-aligning of the facial images is crucial to any method that
aims for effective compression. Indeed, previous work [1], [2], [3] used this,
and here we assume the availability of an aligned set.

may be chosen to be patches centered around the pixel of
interest [6], [7]. The transform is constructed by modifying
the classical redundant wavelet transform [17], [18]. Figure 2
describes the decomposition scheme of the RTBWT. The filters
h̄ and ḡ are the scaling and wavelet decomposition filters of a
regular discrete wavelet transform, and they are applied using
cyclic convolution. The 2 : 1 decimators denoted by ↓ 2o and
↓ 2e keep the odd and even samples of their input, respectively.
The signals asℓ and ds

ℓ contain subsets of the samples in the
approximation and detail coefficient vectors aℓ and dℓ in the
ℓth scale, respectively, where a0 = y.

The operators Ps
ℓ make the difference between our proposed

wavelet decomposition scheme and the common redundant
wavelet transform [17], [18]. Each such operator produces
a permuted version as,pℓ of its input vector asℓ . This may be
interpreted as a linear and unitary operator given that vector.
These operators increase the regularity of the approximation
coefficient signals in the different levels of the decomposition
scheme and cause their representation with the RTBWT to
be more sparse. The reordering operators are obtained by
organizing the feature vectors, calculated from the patches,
such that they are chained in the shortest possible path [6], [7],
[19], [20]. Thus, essentially an approximation to the solution
of the traveling salesman problem (TSP) [21] is obtained. For
example, let {xp

j}Nj=1 denote the patches {xi}Ni=1 in their new
order, then P1

0 is obtained by minimizing the measure

TV (xp
j ) =

N∑
j=2

w(xp
j ,x

p
j−1). (2)

We note that the RTBWT reconstruction scheme is obtained
in a similar manner by adding the operators (Ps

ℓ)
−1 into the

redundant wavelet transform reconstruction scheme.
We now move to discuss the specifics of facial image com-

pression. We first average the images in the training set and
obtain a mean face image. This image contains information
shared by all the images in the training set, and therefore
we subtract it from every training image in order to obtain
a more efficient representation for it. Next, since we want the
transform to sparsely represent all the images in the training
set, we need to associate a single feature point with every set
of G pixels that are located in the same index in each of the
training images. Thus, we construct a G×N matrix YG, which
contains in its rows the images yg , and choose its kth column
to be the feature vector xk associated with the kth pixel ygk
in all of the training images. Note that this is different from
the common practice mentioned above of using spatial patches,
and in our scheme, the same permutation operators are applied
to all train images. We choose the distance function w to be
the Euclidean distance. Having defined the feature points and
the distance function, we use them to construct the RTBWT
according to the scheme described above, and in [6].

We next denote by Φ and Ψ the matrices that apply
the RTBWT decomposition and reconstruction, respectively,
and choose our dictionary D to be a version of Ψ, whose
atoms have been normalized to have a unit norm. We note
that because of its large size, the matrix D is not explicitly
calculated nor stored. Instead, in order to multiply vectors
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by D and DT within the OMP algorithm, it is required to
apply the RTBWT reconstruction and decomposition schemes,
respectively, on these vectors.

III. FACIAL IMAGE COMPRESSION SCHEME

Our proposed facial image encoding and decoding schemes
are shown in Figure 1. We assume that we are given training
and test sets containing aligned facial images. We average
the images in the training set and subtract from them the
mean image. We calculate a dictionary from the resulting
images as described in the previous section, and then encode
every one of these images using the following procedure:
1) We apply sparse coding to the image using the OMP
algorithm to obtain a small set of coefficient values and their
corresponding indices. 2) We replace the coefficient indices by
the differences between the indices of consecutive coefficients,
split the coefficient values into low and high ranges, and
apply uniform quantization to the values in each range. 3) We
calculate two different Huffman tables, one for the coefficient
values and the other for their indices, relying on the statistics
of their occurrences in the sparse representations of all the
images in the training set. All the aforementioned calculations
are done offline, and we assume that the obtained RTBWT
dictionary (along with its defining permutations) and Huffman
tables are known both to the encoder and the decoder, along
with the mean face image, and therefore they do not need to
be transmitted as side information.

Encoding an image from the test set starts with subtract-
ing from it the mean face image, and applying the same
encoding procedure that was applied above in order to find
the significant representation coefficients. We then perform
entropy coding by applying the corresponding Huffman tables
to the resulting sets of coefficient indices and values, and
obtain the compressed image. We decode such an image by
first applying entropy decoding, thus obtaining the quantized
coefficient values and the index differences. We recover the
coefficient indices from their differences, and use them and
the corresponding quantized coefficient values to construct a
sparse representation. The image is reconstructed by simply
applying the RTBWT reconstruction to this sparse vector, and
adding the mean face image to the result.

In order to further improve the quality of the obtained
image, we use a post-processing scheme, which is a variation
on the one proposed in [3]. This scheme consists of applying
to the reconstructed image N different filters of size 5×5, each
centered around a different pixel. We use the training images
to learn several different sets of N filters, each corresponding
to a different range of bit-rates. These filters are obtained as
follows. We apply the encoding and decoding schemes to each
of the training images yg, and arrange the obtained images ŷg

as the rows of a G×N matrix ŶG. Now, let hk be a column
stacked version of the 5 × 5 filter applied to a reconstructed
image in the location of its kth pixel. Also, we denote by
ek and Rk a vector and a matrix, whose right multiplications
with (ŷg)

T extract the kth pixel and the transposed column-
stacked version of the surrounding 5 × 5 patch, respectively.
Then the filter hk is obtained by solving the following least

squares problem

ĥk = argmin
hk

∥ŶgRkhk −Ygek∥22

=
[
RT

k (Ŷ
g)T ŶgRk

]−1

RT
k (Ŷ

g)TYgek. (3)

This process is repeated for each pixel, and it is part of the
off-line training process.

IV. EXPERIMENTAL RESULTS

We assess the performance of our compression scheme on
a database2 containing 4515 grayscale asian face images with
8 bits per pixel. These images are the same ones used in [2],
and they undergo the same preprocessing stage as in [2] –
alignment according to the scheme proposed in [1] followed
by a scale-down by a factor of 2. We use a random subset of
4415 aligned images of size 221×179 as the training set, and
the remaining 100 aligned images as the test set.

We start by calculating from the training images a mean
face image, shown in Figure 3(a). We can see that this image
contains a relatively sharp face, whose facial features are
shared by all the training images. We subtract this image from
all the images in the training set, and construct the RTBWT
with the resulting images. We use a 13-level wavelet decom-
position with the Symmlet 8 filter, and obtain a dictionary with
redundancy factor of 14. Figures 3(b) and (c) contain examples
of two atoms from this dictionary, which correspond to the
coefficients with the second and fourth largest magnitudes, out
of the ones used to represent the top-center image in Figure
5. It can be seen that the atoms are either images of complete
faces, or images containing details around face edges. We then
encode all the images in the training set and calculate one
Huffman table for 128 coefficient values, and another for 1024
index difference values.

We next use our proposed compression scheme to encode
and decode each image in the test set, and use the results (in
PSNR) obtained with and without post-processing to calculate
two rate-distortion curves. We compare these curves to the
ones obtained by repeating this procedure with the common
redundant wavelet transform (RWT) replacing the RTBWT
in our scheme, and to rate-distortion curves obtained with
JPEG20003, the algorithm described in [2] which is based
on the K-SVD, and its improved version [3] which consists
of a post-processing stage. We note that we used the matlab
function “imwrite” to compress images in JPEG2000 format.

First it can be seen that the post-processing stage improves
the performance of our scheme for all bit-rates both when
the RTBWT and the RWT are used. Also, applying our
scheme with the RTBWT improves its results by at least
8 dB compared to ones obtained with the RWT, both when
post-processing is used and when it is not. Further, even
without using post-processing our RTBWT-based algorithm
outperforms JPEG2000, for all compressed-image sizes which

2We chose this database since it contains thousands of images of both men
and women in varying ages, and it was used by previous papers by our group
[2], [3], that provide results which serve as reference to compare against.

3Since we test performance on very low bit rates, for a fair comparison we
removed a fixed header size of 100 bytes from the JPEG2000 curve.
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Fig. 3: (a) Mean face image. (b) Two atoms from the RTBWT
dictionary.
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Fig. 4: Rate distortion curves obtained with JPEG2000, the methods
in [2] (K-SVD) and [3] (K-SVD+PP), and our proposed scheme using
the RWT and the RTBWT with and without post-processing (PP).

are lower than 1140 bytes. Our full RTBWT-based algorithm
outperforms JPEG2000 for all bit rates: From a gain of 3 dB
for low bit-rates to a gain of 0.6 dB for high bit-rates.
Finally, without post-processing our RTBWT-based algorithm
outperforms the algorithm in [2] for compressed-image sizes
higher than 850 bytes, but obtains inferior results for smaller
sizes. However, our full algorithm performs similarly to the
algorithm in [3] for compressed-image sizes smaller than 450
bytes, but outperforms it for higher sizes even by more than
1 dB for compressed-image sizes higher than 1000 bytes.

We next demonstrate the visual quality of the results ob-
tained with our RTBWT-based compression scheme when
low bit-rates are used. Figure 5 compares both visually and
in terms of PSNR and SSIM [22] the reconstructed images
obtained for compressed-image sizes of 400, 600, and 800
bytes with our scheme, with and without post-processing, and
with JPEG2000 with a header size of 100 bytes removed. It
can be seen that our scheme obtains higher PSNR values than
JPEG2000, and that post-processing further decreases these
errors. In terms of SSIM, our scheme with post-processing
outperforms JPEG2000. Without post-processing our results
contain artifacts that look like paint-brush strokes, causing a
reduced SSIM. These artifacts are greatly reduced using the
post-processing, and the obtained images are of relatively high
quality despite the low bit-rates.

27.04 / 0.78 28.58 / 0.77 29.94 / 0.86

29.98 / 0.84 30.32 / 0.79 31.83 / 0.87

30.86 / 0.86 31.57 / 0.84 32.80 / 0.89

Fig. 5: Facial image compression results (PSNR / SSIM) with
compressed-image sizes of 400 bytes (first row), 600 bytes (center
row), and 800 bytes (right row). The original images (first column)
are compressed using JPEG2000 (second column), and our scheme
without post-processing (third column) and with it (last column).

V. CONCLUSION

We have proposed a new face image compression
scheme based on the redundant tree-based wavelet transform
(RTBWT). We learn the transform from a training set contain-
ing aligned face images, and use it as a redundant dictionary
when we encode images by applying sparse coding on them.
Improved quality results are obtained by using a filtering-based
post-processing scheme. We have demonstrated competitive
performance compared to other methods, and managed to
obtain results of high visual quality for low bit-rates.

There are several research directions to extend this work
that are currently considered. A first direction is to learn a
set of indices of leading coefficients, which is shared by all
encoded images. These indices will be known to the decoder,
and therefore only their corresponding values will be sent by
the encoder, thus achieving better compression. A different
direction is to train different dictionaries for different parts
of the image or for different sub-groups of images in order
to obtain dictionaries which are more adapted to the data.
Such dictionaries may lead to a sparser image representation
and improved quality of the reconstructed images. Finally, the
performance of our scheme may also be improved by replacing
the entropy coding technique it uses from Huffman coding to
arithmetic coding. Then we may compare its results to those of
the advanced HEVC compression scheme [23] which reduces
the bit rate by about 20% compared to JPEG2000 [24].
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