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Abstract—Image inpainting is concerned with the com-
pletion of missing data in an image. When the area to
inpaint is relatively large, this problem becomes challeng-
ing. In these cases, traditional methods based on patch
models and image propagation are limited, since they fail
to consider a global perspective of the problem. In this
work, we employ a recently proposed dictionary learning
framework, coined Trainlets, to design large adaptable
atoms from a corpus of various datasets of face images
by leveraging the Online Sparse Dictionary Learning
algorithm. We therefore formulate the inpainting task
as an inverse problem with a sparse-promoting prior
based on the learned global model. Our results show the
effectiveness of our scheme, obtaining much more plausible
results than competitive methods.

I. INTRODUCTION

Image inpainting is a data completion problem that
aims to recover – or fill in – missing information in an
degraded image. These areas can be given by individual
missing pixels distributed along the image, or by more
continuous regions resulting from scratches, folding or
degradation of old photographs. In the extreme case
where the area to inpaint is relatively large (also known
as hole-filling), this problem becomes challenging [1].

This ill-posed problem, whose solution is often not
even well-defined, has received considerable attention
in recent years. Many inpainting approaches rely on
Partial Differential Equations (PDF) [2], [3], variational
formulations [4], exemplar-based methods [5], sparsity-
enforcing priors [6], [7] and combinations of them [8],
[9]. Despite their efficient performance, all these works
are restricted to either small areas or to the task of
object removal, by propagating and filling-in a proper
background surrounding background.

Some problems, however, require a different approach.
We shall focus in the specific problem of inpainting large
areas of face images, as the one depicted in Figure 1. As
one could foresee, traditional patch-based methods will
not be effective in recovering or estimating the missing
data. Diffusion based approaches, or those of content
propagation, will also find this problem too challenging.
In fact, all methods that do not consider a global prior
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Fig. 1. Example of a inpainted image - left: Face image with missing
eyes. Right: inpainted result obtained with the proposed approach.

model of the image to inpaint, will fail in generating data
in accordance with the specific problem at hand.

The task of obtaining an adaptive global model for
high dimensional signals is a hard problem. Some at-
tempts include manifold learning techniques, as in [10],
where the authors propose to learn an adaptable low-
dimensional manifold for images. This work includes
examples of inpainting on synthetic and texture data,
but it is unclear if this method could provide a feasible
alternative for real world face images. The recent work in
[11], on the other hand, proposes the use of convolutional
neural networks to train a global model to inpaint large
holes in natural images. This network, however, was
trained for general (street) images and it does not apply
to our specific problem.

In this work, we propose to build such a global
prior employing sparse representations modeling and
dictionary learning. The problem of dictionary learning
consists of adaptively learning a set of atoms which are
able to represent real signals as sparsely as possible, and
has been a popular topic in signal and image processing
over the last decade [12], [13]. However, due to the
computational constraints that this problem entails, all
learning methods are typically applied on small patches
from the image and not the image itself [14], [15].
In other words, attempting to obtain such a global
dictionary with traditional dictionary learning algorithms
would be infeasible.

A novel work which has circumvented this problem is
the recently proposed Trainlets framework [16]. In this
work, the authors proposed an Online Sparse Dictionary
Learning (OSDL) algorithm that is able to obtain large
adaptable atoms from natural images. Trainlets are built
as linear (sparse) combination of atoms from a fast
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and analytical dictionary, that of the novel Cropped
Wavelets. This work [16] presented some initial results
on the ability of Trainlets to sparsely approximate face
images - indicating their effectiveness in modeling high
dimensional data.

This way, we will formulate the inpainting task as
an inverse problem regularized by a sparse prior un-
der a global dictionary trained from publicly available
datasets. Our results indicate that the proposed approach
is able to synthesize missing information which is in a
accordance with the global context of the image, yielding
natural reconstructed faces.

II. LEARNING THE MODEL

Sparse representations has shown to be a powerful
prior in several inverse problems in image processing
(see [12] for a thorough review). This model assumes
that a signal y ∈ Rn can be well approximated by a
decomposition of the form Dx, where D is a matrix
of size n×m containing signal atoms in its columns –
termed dictionary –, and a sparse vector x ∈ Rm. The
problem of finding such a sparse vector is termed sparse
coding, and can formally expressed as

min
x
‖x‖0 s.t. ‖y −Dx‖2 ≤ ε, (1)

where ε is an allowed deviation in the representation,
and the `0 pseudo-norm is a count on the number of
non-zero elements of its argument. When the dictionary
is overcomplete (m > n), this is an NP-hard problem
in general as it is combinatorial in nature. Yet, greedy
algorithms and convex relaxation alternatives allow for
good approximations of its solution in practice [18], [19].

When combined with the ability to learn the dictionary
from real data, and for a specific task, this model has
yielded a number of state of the art results [15], [20],
[21], [22]. In its general form, the dictionary learning
(DL) problem reads as follows

argmin
D,X

1

2
‖Y −DX‖2F s.t. ‖xi‖0 ≤ p ∀i, (2)

where the matrix Y contains signal examples ordered
column-wise. This problem inherits the non-convexity
induced by the `0 pseudo-norm and adds the dictionary
as a minimization variable. Though a series of different
algorithm have been proposed [23], [14], [15], most
method undertake an alternating minimization approach
minimizing over X and D.

However successful, the dictionary learning problem
has been traditionally restricted to the domain of mod-
eling small image patches, thus limiting the kind of
problem these methods can address. This limitation
arises mainly from computational constraints, but also

from the fact that the degrees of freedom of the problem
– and the amount data required to tuned these adaptively
– become unmanageable as the dimension increases.

Some works have attempted to provide more efficient
dictionary learning algorithms. The work presented in
[24] proposes to lower the complexity of using (and
learning) the dictionary by suggesting a andaptable but
completely separable structure. Though this is an inter-
esting and effective idea, the complete separability con-
straint is often too restrictive to represent general images
of high dimensions, and its batch-learning algorithm is
restricted to small training sets.

Recently, the work in [16] proposed an Online Sparse
Dictionary Learning (OSDL) algorithm which is able to
manage signals of dimensions in the order of the several
thousands. This approach builds on the work of [25],
which models the dictionary D as the product of a fast
and efficient base dictionary, and an adaptable sparse
factor A. This lowers the complexity of both, the degrees
of freedom of the problem and the computational cost of
applying the dictionary. This way, the dictionary learning
problem is formulated as

min
A,X

1

2
||Y−ΦAX||2F s.t.

{
||xi||0 ≤ p ∀i
||aj ||0 = k ∀j . (3)

In particular, the authors in [16] employ a novel Cropped
Wavelets dictionary as the operator Φ, leveraging the
multi-scale analysis properties of wavelets while achiev-
ing a completely separable and border-effects free de-
composition. In order to cope with the increase of
training data, on the other hand, this work proposes a dic-
tionary learning algorithm based on ideas from stochastic
optimization [26]. In a nutshell, the algorithm performs
sparse coding of a mini-batch of training examples with
(Sparse) OMP [27], and then updates a subset of the
dictionary atoms through a variation of the Normalized
Iterative Hard Thresholding algorithm [28]. The reader is
referred to [16] for a detailed description of this method.

Tackling the learning of a global model for face
images in parcitular, we apply OSDL on a compendium
of face images taken from different datasets. To increase
the variability of the training data – and to obtain a
more general model – we employ images taken from the
Chinese Passport dataset used in [29] (both in its aligned
and not-aligned formats), the Chicago Faces Database
[30], the AT&T Faces Database1, and the Cropped Yale
Database [31]. All images were rescaled to a size of
100 × 100 pixels, and employed as is; i.e., there was
no coherent scaling or alignment involved. All together,
these amounted to a training set of roughly 19,000

1Freely available from AT&T Laboratories Cambridge’s website.



3

images. OSDL took approximately 2 days to perform
40 data-sweeps2. We employed the Cropped Wavelets as
the base dictionary (with Daubechies Wavelets with 4
vanishing moments), which has a redundancy of ≈ 1.7.
The matrix A was chosen to be tall (under-complete),
having 6,000 atoms in it. The atom sparsity was set to
1000; i.e., these are only ≈ 6% sparse. We present some
of the obtained atoms in Figure 2, where one can see
that not only they resemble faces or face-features, but
also the obtained variability between different sizes and
configurations.

III. INPAINTING FORMULATION

Once the global model has been obtained, we move
to describe in detail the inpainting formulation. Consider
the original image y0 ∈ Rn (n = 10, 000), and a mask
M, given by a binary matrix of size l×n, where l = c·n.
This way, c denotes the fraction of the pixels that have
not been removed (and remain) from the degraded image
given by y = My0.

Given this degradation model, the inpainting problem
can be cast in terms of a pursuit by adding a sparse
regularization term, resulting in a variant of the problem
in Equation (1). In this case, however, we turn to a
relaxation of this formulation moving from the `0 to the
`1 norm. This way, the inpainting problem is given by
the unconstrained optimization problem

min
x
‖y −MDx‖2 + λ‖x‖1, (4)

where λ a the penalty parameter, compromising between
the desired sparsity and the fidelity term. The shift
from the non-convex formulation in Equation (1) to the
relaxed form of the problem above is motivated by a
practical aspect: in the inpainting problem, where one
does not known a priori the number of non-zero elements
needed to obtain a good reconstruction (or the equivalent
ε threshold), it is easier to tune a penalty parameter λ.
The number of non-zeros in x might be larger than those
employed during the training, therefore making a greedy
pursuit time consuming. In addition, we have found this
`1 approach to yield solutions that are smoother, resulting
in more naturally-looking inpainted areas.

Due to the convexity of the problem in Equation (4),
a variety of algorithms can be employed to find its
solution. Iterative shrinkage algorithms are particularly
well-suited for this kind of problems, and we employ
FISTA as the specific solver [32]. Our implementation of
this method benefits from the relatively low-complexity

2We run our experiment on a Windows computer with an Intel
Xeon E5 CPU, with 64 Gb of RAM running Windows 64 bits.
However, no parallel processing was used, and memory consumption
did not exceed 16 Gb.

Fig. 2. Subset of the obtained atoms by OSDL.

of applying D. Indeed, multiplying a vector by the
dictionary (or its transpose) is never done explicitly.
Instead, this is computed in terms of the product with
the (very) sparse matrix A and the 1-dimensional dic-
tionaries, which represent the separable operator Φ.

IV. RESULTS

We now move to present the obtained inpainting
results. For these experiments, we applied the method de-
scribed in the previous section on a set of testing images,
not included in the training set. In order to demonstrate
the benefits of the proposed approach based on Trainlets,
we compare with a number of other methods; namely:
1) the patch-propagation method of [6], which employs
a sparse (patch) prior to inpaint the image, 2) a PCA
(global) learned basis, and 3) the Separable Dictionary
Learning Algorithm (SEDIL) [24], which also trains a
global but separable dictionary. For this last method, we
trained two 1-dimensional dictionaries of size 100×200
on the same training set, employing the code provided by
the authors3. Note that both PCA and SEDIL obtain a set
of global adaptive atoms by enforcing some constraints:
orthogonality and separability, respectively.

The inpainting algorithm resulting from the mini-
mization of Equation (4) depends on the parameter λ,
which needs to be tuned for each particular case. In our
experiments, and for a legitimate comparison, we run
each method for a series of values of this parameter
and then selected the most plausible results for each
method separately4. The comparison with [6], on the
other hand, is not entirely fair: inpaiting methods based
on patch propagation are not expected to perform well
in this challenging problem. Yet, we include them for
completion and in order to demonstrate the intrinsic need
of a global model.

3Note that this is a batch method, and we employed 2,000 itera-
tions. Training with SEDIL took approximately 2.5 days, resulting in
both dictionary learning algorithms running for about the same time.

4Note that the selection of the best (most plausible) result is
somewhat subjective, for which we have used our most fair judgment.
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Fig. 3. Inpainting results. From left to right: masked image, patch propagation [6], PCA, SEDIL [24], Trainlets [16], and the original image.

We present a subset of our results in Figure 3, and
more examples can be found in the supplementary
material. As can be seen, Trainlets provide the best
results – often making it hard to distinguish between the
original and the synthetic inpainted image. As expected,
the local method of [6] provides results that are not in
agreement with the global context. The performance of
SEDIL is limited, while PCA sometimes manages to
recover somewhat of a natural result. Still, the constraints
imposed by both of these two methods appear to be too
restrictive for this problem. Some cases are particularly
interesting: in the second image, where the glare in the
glasses occlude the left eye, our approach manages to
restore it; in the third image, we inpaint an eye which
was not originally there due lighting conditions, still in
a plausible manner.

V. CONCLUSION

We have presented a simple inpainting algorithm
which exploits the representation power of Trainlets.
By leveraging the OSDL algorithm, we were able to
train a global model for a diverse collection of images.

When this model is deployed with a sparse enforcing
prior, we are able to inpaint large areas in face images
obtaining very plausible reconstructions. An interesting
observation is the fact that once a good global model
is at our disposal, there is no need of any extra algo-
rithmic manipulation of the data: there is no symme-
try, exemplar-based copying or other form of external
regularization enforced in the reconstruction. All this
information is naturally captured by the learning process,
alleviating the reconstruction stage. Exploring the ability
of a similar approach in other kinds of inverse problems
is an interesting direction of research, and constitutes
part of ongoing work.
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