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Abstract—Most state-of-the-art denoising algorithms employ a
patch-based approach by enforcing a local model or prior, such as
self similarity, sparse representation, or Gaussian Mixture Model
(GMM). While applying these models, these algorithms implicitly
build a notion of similarity between the image pixels. This can be
formulated as an image-adaptive linear-filter which is then used
to denoise or restore the degraded image. In this work we focus
on such a filter emerging from the GMM, study its properties
and construct a graph Laplacian from it.

Focusing on a variational denoising formulation, we incor-
porate a graph-based regularization term by leveraging the
corresponding GMM Laplacian. The resulting algorithm extends
and improves the non-local diffusion algorithm by replacing the
Non-Local Means kernel with a GMM one. Our results indicate
that this approach, termed Gaussian Mixtures Diffusion (GMD),
consistently improves over both the original GMM scheme
and the non-local diffusion algorithm. Furthermore, GMD is
competitive or even better than the state-of-the-art method of
EPLL.

Index Terms—Gaussian Mixture Models, Image Denoising,
Diffusion, Laplacian Regularization, Boosting.

I. INTRODUCTION

Image restoration is the problem concerned with inverting a
degradation model and recovering or estimating the underlying
image. In the particular case of image denoising, which will
be the main concern of our work, the degradation of the image
u ∈ RN is modeled as

f = u + η, (1)

where f ∈ RN is the noisy image, and η ∈ RN is a zero-
mean Gaussian noise realization, with standard deviation σ.
Most algorithms assume that patches from natural images
can be well represented by a specific model, such as sparse
representations [1], [2] or Gaussian Mixtures Model (GMM)
[3], [4]. Given the noisy measurements f , the image restoration
task can be expressed in terms of an optimization problem,
minimizing a cost function over the unknown image u:

min
u

1

2
‖f − u‖22 + λR(u). (2)

From a maximum a posteriori perspective, the first term cor-
responds to the log-likelihood function while R(u) enforces
the specific model on the unknown image, with parameter λ.

*The authors contributed equally to this work.

This last term acts as the regularizer, promoting smoothness or
other qualities that – we believe – characterize natural images.

Broadly speaking, often times the denoising process can
be decomposed into two stages. The first one involves highly
non-linear decisions which enforce quite sophisticated local
priors on small patches extracted from the image, whereas the
second stage accounts for projections and averaging in order
to obtain the final global image. Interestingly, as pointed out
in [5], [6], once the non-linear part is fixed, these algorithms
can be formulated as an image-adaptive linear filter, W. This
way, the entire denoising process in this framework can be
expressed as

û = Wf , (3)

where û ∈ RN is the denoised image, and W ∈ RN×N is the
matrix form of the denoiser (we will describe this operator in
more detail in Section II).

On the one hand, Equation (3) states that each denoised
pixel in û is the outcome of a weighted average over the
noisy image pixels, where the weights are determined by the
specific denoising algorithm. On the other hand, this shows
that most denoising algorithms implicitly build a notion of
similarity between the i-th and j-th image pixels, given by
the entry W(i, j). Based on this observation, the denoiser
can be formulated as a weighted graph, where the vertices
refer to the image pixels, and the (weighted) edges represent
the pixels’ similarity. Previous works have addressed the
graph formulation (and its properties) of the K-SVD [6], the
Non-Local Means, the Bilateral and the LARK kernels [5].
Yet, despite the popularity of the GMM prior in the image
processing community, this analysis has not been addressed
for its resulting operator – this will be the first concern of our
work.

Recently, the graph formulation has been employed to
regularize the denoising process [5]–[7], designing an image-
adaptive term R(u) in Equation (2). This term is usually
expressed in terms of the Laplacian operator, defined by
L = I −W, where I ∈ RN×N is the identity matrix and
W is induced by different denoisers (from Equation (3)).
Broadly speaking, the eigenvectors that correspond to the small
eigenvalues of L encapsulate most of the structure of the
underlying signal [8]. As such, one may propose a graph-
based regularization term that penalizes those components in
u corresponding to the large eigenvalues of L; e.g., as done
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in [7], [9],
min
u

1

2
‖f − u‖22 + λuTLu. (4)

Notice that when moving from Equation (2) to Equation (4),
we are constraining ourselves to priors that have a graph-
Laplacian interpretation. In these cases, the performance of the
resulting algorithm depends on the choice of L, which is in
turn determined by the similarity measure we use to construct
the corresponding graph.

The problem in Equation (4) is certainly not the only way to
enforce a graph-based regularization when dealing with inverse
problems. Recent works have also considered replacing the
data-fidelity term by a weighted norm induced by the matrix
W, as in [10]. Another alternative, presented in [6], is to
enforce the reconstructed image u to be close to the filtered
image Wf . Formally,

J (u) = min
u

1

2
‖Wf − u‖22 + λuTLu. (5)

This formulation generally provides better results than the
problem in Equation (4), as it is related to boosting methods.
In particular, this is the cost function minimized by the SOS
boosting [6].

Interestingly, the minimization of this kind of problems
can be interpreted from a variational perspective. The Non-
Local Diffusion (NLD) algorithm [7] suggests a non-local
generalization of the diffusion framework by employing a
functional defined over a set of pixels which are not necessarily
near each other. Unlike the conventional diffusion methods,
the minimization of the corresponding functional amounts
to a diffusion process between pixels that can now be far
apart by leveraging some notion of similarity or affinity. In
particular, the NLD employed the affinity measure induced
by the Non Local Means (NLM) kernel [11], defining the
distance between pixels as a function of the Euclidean distance
between their corresponding patches. The resulting algorithm
effectively minimizes the cost function in Equation (4), where
the Laplacian is the one corresponding to the NLM operator.

In this work, we explore the algorithm resulting from the
problem in Equation (5) in the case of a Laplacian operator
induced by the GMM prior. We provide a detailed analysis of
the denoiser resulting from GMM, and employ the formulation
in terms of a non-local diffusion process. This way, our also
work extends and improves the non-local diffusion algorithm
of [7] by (1) employing a similarity measure induced by
the GMM operator, and (2) considering the cost function in
Equation (5) instead of the original problem in (4). As we
will show in the experimental section, our proposed Gaussian
Mixture Diffusion (GMD) approach outperforms both the
initial formulation of the NLD with the NLM kernel [7], and
the original GMM algorithm. Interestingly, the GMD is also
competitive or even better than the EPLL [4], which builds
upon GMM as well.

This paper is organized as follows: In Section II we provide
a brief description of the GMM denoising scheme along with

the derivation of its equivalent linear filter. Then, we present
the properties of the resulting matrix W. The proposed GMD
method with the GMM Laplacian is described in Section
III, before moving to the experimental results in Section IV.
Conclusions are lastly drawn in Section V.

II. GAUSSIAN MIXTURE MODEL

GMM is a popular prior for natural image patches, which
has been shown to be very effective in several image restora-
tion tasks [3], [4]. This prior models the distribution of patches
as the sum of multivariate Gaussians learned from real data.
Applying this prior for image denoising accounts to formu-
lating a MAP estimator for each independent patch from the
corrupted image. This can be approximated by choosing the
Gaussian with the highest conditional weight for each patch,
and then applying a plain Wiener filter with the corresponding
covariance matrix [4]. Finally, a patch averaging step is applied
in order to obtain the final denoised image.

Given K (learned) Gaussian distributions, characterized by
their covariance matrices Σk, with zero mean1, denoising each
patch zi ∈ Rn can be formally expressed by the following
minimization problem

p̂i = arg min
p
‖p− zi‖22 + σ2pTΣ−1

k(i)p, (6)

where k(i) is the index of the chosen Gaussian with highest
conditional weight [4] for the ith patch, and p̂i is its estimated
clean version. This problem has a closed form solution in terms
of the Wiener filter, given by

p̂i =
(
I + σ2Σ−1

k(i)

)−1

zi = Fi zi. (7)

Next, the denoised patches p̂i are merged together by
averaging. This is done by minimizing the following cost
function

û = arg min
u

µ‖f − u‖22 +

N∑
i=1

‖p̂i −Riu‖22, (8)

where û ∈ RN is the estimated (denoised) global image, and
Ri ∈ Rn×N is a matrix that extracts the ith patch from the
image. Following the procedure described in [6], the closed
form solution of Equation (8) is given by

û =

(
µI +

∑
i

RT
i Ri

)−1(
µI +

∑
i

RT
i FiRi

)
f

= WGMMf , (9)

where the filters Fi are the Wiener filters in Equation (7). In
the above derivation we have used the fact that zi = Rif .
Notice that this linear operator can be written as a matrix
WGMM, and thus the denoised image is simply expressed as
û = WGMM f .

1For simplicity, we make the common assumption that the image patches
have zero-mean.
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While the GMM model is a popular choice for image
denoising, a formal analysis of WGMM has not yet been
addressed. In this section, we present the properties of this
filter and provide their corresponding proofs in Appendix A.
We should note that all these properties are also shared by the
KSVD filter [6].

Theorem 1. Under the assumption of periodic boundary
conditions2, the matrix WGMM, defined in Equation (9), has
the following properties:

1) WGMM = WT
GMM: it is symmetric.

2) WGMM � 0: it is positive definite, and has minimal
eigenvalue equal to µ

µ+n .
3) ‖WGMM‖2 ≤ 1: its spectral radius ≤ 1.

III. THE PROPOSED APPROACH

Based on the properties provided in Theorem 1, we can
draw interesting conclusions. As it was done for the K-SVD
operator matrix in [6], the matrix WGMM can be decomposed
into a similarity matrix KGMM and a normalization matrix D.
Formally,

WGMM =

(
µI +

∑
i

RT
i Ri

)−1(
µI +

∑
i

RT
i FiRi

)
=D−1KGMM. (10)

As a consequence, a graph-Laplacian can be constructed from
this operator by

LGMM = I−WGMM, (11)

where the eigenvalues of LGMM are in (0, 1].
The denoising algorithm is obtained by minimizing the

function J (u), defined in Equation (5), which can be done
using a gradient descent strategy. As such, the estimated image
is found by iterating:

uk+1 = uk − γ∇J (u) (12)

where
∇J (u) = u−Wf + 2λLu. (13)

For a given step-size γ and regularizer-strength ρ (fixed for
each noise level), we run the gradient descent process a fixed
number of iterations. In practice, we do not build L nor W
explicitly, but rather apply it by using the local filters Fi. In the
case of the GMM, this corresponds to knowing the Gaussians
chosen for each patch. Before moving to the experimental
section, we should note that the non-local diffusion method of
[7] employs a minimization driven by an update very similar
to that in Equation (13), where f is used instead of Wf – thus,
the name. This shows more clearly the connection to the NLD
algorithm, as well as providing a variational interpretation to
the SOS boosting algorithm [6].

2By assuming cyclic boundary conditions, the following holds:∑
i R

T
i Ri = nI, where n is the dimension of the image patch.

IV. EXPERIMENTAL RESULTS

In this section we present image denoising results corre-
sponding to the minimization of the cost function in Equation
(5) for the Laplacian matrix L induced by the GMM prior,
for various standard test images and noise levels. As for the
parameters the proposed GMD, for all noise levels we set
γ = 0.1, λ = 2, and 2 diffusion steps are applied.

We compare the proposed approach to the Non Local Diffu-
sion work [7], which corresponds to a diffusion process guided
by the graph built with the NLM kernel (minimizing Equation
(4)). In addition, we also compare the GMD to the plain
GMM denoiser as a baseline. We include for completion the
results obtained by the EPLL [4]. This algorithm essentially
minimizes a cost function similar to the one in Equation (2),
where the prior is enforced on the reconstructed patches. This
idea boils down to applying a GMM-based denoiser iteratively,
with a set of parameters which need to be tuned. Note that
the EPLL algorithm is still a patch-based method which also
updates its operator (choosing the Gaussian Mixtures) at every
iteration, whereas in our approach these remain constant.

Table I provides a comparison between NLD, GMM, EPLL
and the proposed GMD approach in terms of Peak Signal to
Noise Ratio (PSNR). As can be seen, for σ = 20, GMD
achieves the best reconstruction performance. For σ = 30,
EPLL and GMD obtain comparable results, whereas for
σ = 50, the EPLL slightly outperforms GMD. We remind the
reader that the EPLL, unlike our approach, updates its operator
at each iteration. We believe that by updating the matrix L
(i.e., re-run the Gaussian selection step) the GMD results can
be further improved, too. However, we choose not to include
this step in our algorithm in order to focus the attention on
the minimization of the problem in Equation (5).

Figure 1 provides a visual comparison between the NLD
approach of [7], GMM and ours GMD method. As can be seen
the GMD reconstruction has less artifacts than the baseline
methods, complying with the quantitative PSNR measure.

V. CONCLUSION

In this paper, we introduced a graph interpretation of the
GMM denoiser, followed by an analysis of the resulting
operator. The denoising effect is obtained by minimizing a cost
function with a graph-Laplacian regularization, as suggested
by the SOS formulation. We have shown that the proposed
approach can be understood from a variational perspective,
resulting in close variant of the NLD algorithm. Following
the experimental results, it was evidenced that our approach
is more effective than the traditional NLD counterpart. Our
results not only outperform those by the regular GMM de-
noising algorithm, but they are also competitive with those
of the state-of-the-art EPLL method. We believe that updating
the graph (and the corresponding operator) along the iterations
(as done by the EPLL and the SOS boosting) will result in
increased performance, and this is a promising direction of
future work.
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TABLE I
DENOISING RESULTS FOR VARIOUS NOISE LEVELS AND IMAGES, GIVEN IN TERMS OF PSNR. THE BEST RESULT IS HIGHLIGHTED.

σ\Image House Saturn Foreman Lena Peppers Girl Woman Averages
Non Local Diffusion (NLM kernel)

20 32.27 35.21 32.65 31.35 31.51 30.03 30.99 32.00
30 30.00 32.57 30.42 29.36 26.65 28.60 28.86 29.49
50 27.14 29.64 27.76 26.86 27.09 26.72 26.06 27.40

GMM
20 32.59 35.54 33.07 32.23 32.11 30.56 31.81 32.56
30 30.84 33.38 31.24 30.48 30.56 29.38 29.86 30.82
50 28.13 30.33 28.66 28.03 28.23 27.82 27.26 28.35

EPLL-GMM
20 32.98 36.68 33.63 32.60 32.51 30.71 32.08 33.03
30 31.22 34.23 31.66 30.78 30.90 29.54 30.04 31.20
50 28.76 31.15 29.16 28.41 28.68 28.00 27.57 28.82

GMD (Proposed)
20 33.07 36.78 33.68 32.61 33.53 30.75 32.14 33.22
30 31.20 34.35 31.70 30.70 30.86 29.53 29.97 31.19
50 28.42 31.12 29.08 28.23 28.47 28.07 27.27 28.66

(a) Input: Foreman (b) NLD: PSNR = 32.65dB (c) GMM: PSNR = 33.07dB (d) GMD: PSNR = 33.68dB

(e) Input: Girl (f) NLD: PSNR = 30.03dB (g) GMM: PSNR = 30.56dB (h) GMD: PSNR = 30.75dB

Fig. 1. Denoising of the images Foreman (a-d) and Girl (e-h), when σ = 20.
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APPENDIX A
THE PROPERTIES OF THE GMM MATRIX

In this appendix we provide the proves for Theorem 1.

Proof: We will start by showing that property 1 holds.
Under the periodic boundary conditions, we have that

WGMM =

(
µI +

∑
i

RT
i Ri

)−1(
µI +

∑
i

RT
i FiRi

)

=
1

µ+ n

(
µI +

∑
i

RT
i FiRi

)
. (14)

Recall that the filters Fi, expressed in Equation (7) are
symmetric (and more so, positive definite) as they are the
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inverse of symmetric matrices. Therefore, WGMM is the sum
of symmetric matrices, and it is then also symmetric.

The second property can be deduced using the same ra-
tionale. The matrices given by RT

i FiRi are symmetric and
positive semidefinite. Thus, their sum

∑
i R

T
i FiRi is also

positive semidefinite. Moreover, we can express

WGMM =
µ

µ+ n
I +

1

µ+ n

(∑
i

RT
i FiRi

)
. (15)

The first term in this sum is obviously positive definite, while
the second is positive semidefinite. From this, the minimal
eigenvalue of the GMM matrix λmin(WGMM) = µ

µ+n > 0,
and WGMM � 0.

To prove the last property, consider the operator norm of
WGMM given the (square of the) decomposition presented
above:

‖WGMM‖2 =

∥∥∥∥∥ µ

µ+ n
I +

1

µ+ n

(∑
i

RT
i FiRi

)∥∥∥∥∥
2

≤
∥∥∥∥ µ

µ+ n
I

∥∥∥∥
2

+

∥∥∥∥∥ 1

µ+ n

(∑
i

RT
i FiRi

)∥∥∥∥∥
2

.

(16)

Note first that the operator norm of the first term is given
by µ

µ+n . Focusing on the second term, we consider a similar
decomposition to that presented in [6] (Appendix B). The sum
in the last Equation, over all N patches, considers overlapping
structures. We can decompose this term by considering the
sum over {Ωj}nj=1 groups of non overlapping patches only.
With this, we have that∥∥∥∥∥∑

i

RT
i FiRi

∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
j

∑
k∈Ωj

RT
kFkRk

∥∥∥∥∥∥
2

≤
n∑
j

‖Mj‖2 ,

where we have denoted Mj =
∑
k∈Ωj

RT
kFkRk. Notice that

M is a block diagonal matrix, having the filters Fk as leading
minors.

To show that ‖Mj‖2 ≤ 1 we will rely on the definition of
the induced norm. Consider thus any vector X ∈ RN such
that ‖X‖2 = 1. Moreover, denote RkX = xk ∈ Rn. Then,

‖MjX‖22 =

∥∥∥∥∥∥
∑
k∈Ωj

Mk
jX

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
∑
k∈Ωj

RT
kFkxk

∥∥∥∥∥∥
2

2

. (17)

Due to the fact that RT
kRj = 0, ∀i 6= k (because the

corresponding patches are non-overlapping), we have that

‖MjX‖22 ≤
∑
k∈Ωj

∥∥RT
kFkxk

∥∥2

2
,

≤
∑
k∈Ωj

∥∥RT
k

∥∥2

2
‖Fkxk‖22 ,≤

∑
k∈Ωj

‖Fkxk‖22 , (18)

where we have used the multiplicative property of the operator
norm and the fact that ‖RT

k ‖2 = 1.

Looking now at the square of the operator norm of Fkxk:

‖Fkxk‖22 =
∥∥(I + σ2Σ−1

k )−1xk
∥∥2

2
≤ ‖xk‖22 , (19)

where the inequality holds since λmax(I + σ2Σ−1
k ) ≥ 1, as

Σ−1
k � 0.
By using Equations (17), (18), (19), and the fact that
‖X‖22 =

∑
k∈Ωj

‖xk‖22, we have that

‖MjX‖22
‖X‖22

=

∥∥∥∑k∈Ωj
RT
kFkxk

∥∥∥2

2

‖
∑
k∈Ωj

xk‖22
≤
∑
k∈Ωj

‖Fkxk‖22∑
k∈Ωj

‖xk‖22

≤
∑
k∈Ωj

‖xk‖22∑
k∈Ωj

‖xk‖22
= 1. (20)

Therefore, the squared maximal singular value (i.e. the opera-
tor norm) of Mj is ≤ 1. Incorporating this into Equation (16),
we have that

‖WGMM‖2 ≤
∥∥∥∥ µ

µ+ n
I

∥∥∥∥
2

+

∥∥∥∥∥ 1

µ+ n

(∑
i

RT
i FiRi

)∥∥∥∥∥
2

≤ µ

µ+ n
+

1

µ+ n

n∑
j=1

‖Mj‖2

≤ µ

µ+ n
+

n

µ+ n
≤ 1. (21)
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