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Part I 

Motivating this              
Discussion 
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+ 

White Gaussian Noise 

= 

   Our Starting Point: Image Denoising  

 Relation to 
measurements 

Prior or 
regularization 

Y : Given measurements   

X : Unknown to be recovered 
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2

2

1
f X X Y G X

2

Many of the proposed image denoising algorithms are cast as the 
minimization of an energy function of the form 
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   Leading Image Denoising Methods 

are built upon powerful patch-based (local) image models: 
 K-SVD: sparse representation modeling of image patches [Elad & Aharon, ‘06] 

 BM3D: combines a sparsity and self-similarity [Dabov, Foi, Katkovnik & Egiazarian ‘07] 

 EPLL: uses GMM of the image patches [Yu, Sapiro & Mallat ’10] [Zoran & Weiss ’11] 

 CSR: clustering and sparsity on patches [Dong, Li, Lei & Shi ’11] 

 … 

IN THIS TALK 

 We aim to dive into this strange choice of modeling signals/images 
locally for regularizing global inverse problems. What is the rationale 
behind this? Is this enough? Can it be improved?  

 We shall start with a practical view and gradually move to a theory. 

 We will have more open question than answers … 
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   Consider this Algorithm [Elad & Aharon, ‘06] 

 This method is very effective for image denoising. Many variants of it were 
developed over the years in order to extend/improve it.  

 The above is only one in the large family of patch-based algorithms that 
denoise an image by decomposing it into patches, processing them separately 
and then merging them back by plain averaging to form the final outcome.  

5 

Noisy Image Reconstructed Image 

Denoise  
each patch 

Using OMP 

Initial Dictionary Using KSVD 

Update the 
Dictionary 
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   This Algorithm’s Origin  

kk

2 2

k kk2 2 0
X,{ } , k

1
X̂ ArgMin X Y X s.t. L

2

       
D

R D

 The expression RkX extracts a patch of size n from XIRN : 

 
 

 Rk
Tz puts the patch z in the kth location in the N-dim. vector.  

 

 Considering cyclic patch-extraction, we have:                                                                                

n 
k R kth 

location 

N 

1 T

k kn
k

R R I
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kk

2 2

k kk2 2 0
X,{ } , k

1
X̂ ArgMin X Y X s.t. L

2

       
D

R D

The Proposed Regularization / Model:  

Every patch in the unknown image is expected to have                              
a sparse representation w.r.t. the dictionary D  

 This algorithm seeks the “most appropriate” dictionary to fulfil this 
expectation, along with the sparse representations.  

 The denoising itself is obtained by projecting each of the patches         
to this model (via OMP). 

 When optimizing over X, this amounts to plain patch-averaging.  

Log-Likelihood Prior or regularization 

   This Algorithm’s Origin  
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   So, What is Missing?  

 Over the past several years, many researchers kept revisiting this 
algorithm and the line of thinking behind it, with a clear feeling that the 
final word has not been said, and that key features are still lacking.  

 What is missing? Here is what we thought of …  

 A multi-scale treatment [Ophir, Lustig, & Elad ‘11] [Sulam, Ophir & Elad ‘14] 

[Papyan & Elad ‘15] 

 Exploiting self-similarities [Ram & Elad ‘13] [Romano, Protter & Elad, ’14] 

 Pushing to better agreement on the overlaps [Romano & Elad ’13] 

[Romano & Elad ’15]2 

 Enforcing the local model on the final patches (EPLL) [Sulam & Elad ‘15]  

 Beyond all these, a key part that is missing is A Theoretical Backbone 
for the local model as a way to characterize the unknown image.  
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   Theoretical Backbone?  

The core model Assumption on X :  

 

Every patch in the unknown signal is expected to             
have a sparse representation w.r.t. the dictionary D  

Questions to consider: 

 Who are those signals belonging to this model?  

 Under which conditions on D would this model be feasible?  

 How does one sample from this model?  

 How should we perform pursuit properly (& locally) under this model?  

 How should we learn D if this is indeed the model? 

 … 

k kk 0
k X where L    R D
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   Why Sampling ? 

Generate a random vector α of 

length m and with L<<m non-zeros  




x

n 

m 

n D

Multiply α by the dictionary D of size 
n-by-m, and obtain x=Dα  

Add noise (WAGN) with STD= to 
the signal and get y=x+v 

Questions:  
 

Given y (& L, , and                                                          
some properties of D),  
 

(i) Can we recover the true support of α? 

(ii) How efficiently can we denoise y?  

Surely, you are familiar    
with this line of work … 
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   Why Sampling ? 

Generate a random vector α of 

length m and with L<<m non-zeros  



k

k
XR

n 

m 

n D

Multiply α by the dictionary D of size 
n-by-m, and obtain x=Dα  

Add noise (WAGN) with STD= to 
the signal and get Y=X+V 

Questions:  
 

Given Y (& L, , and                                                          
some properties of D),  
 

(i) Can we recover the                                     
true supports of αk? 

(ii) How efficiently can we denoise Y?  
What can the oracle do?  

(iii)Can we do all this by local processing?  

Surely, you are familiar    
with this line of work … 
Generate a signal X    
such that each of its 
patches has a sparse 

representation 

kk

k 0

k X

where L

  

 

R D
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   This Talk  

Part I – 
Motivating 

this 
Discussion 

Part III – Back to Sparse 
Representations: Who   

are these Signals ? 

Part II – A Toy 
Problem: The 
Gaussian Case 

Part IV  – Pursuit 
and Denoising for 

these Signals 

Part V – A Closer 
Look at the case 
of Conv. Sparsity  

 We propose an interesting extension of the classic 
Sparse Approximation theory to local models that 
are imposed on global signals.  

 For such signals, we address fundamental questions 
that are of great relevance to image processing.  

Take Home 
Message  

Part VI – 
Concluding 
Remarks  
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Part II 

Toy Problem: The     
Gaussian Case 
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   Problem Definition 

 We are given a Gaussian signal XIRN of known statistics, 
X~N{0,Σ} contaminated by WAGN: 

 
 

 Our goal – denoise Y to get as close as possible to X. 

 Y X V, V ~ 0,   

* For simplicity we 
assume zero mean 
signal X and a unit 
variance noise. 
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   Sounds Easy – Wiener Filtering !  

 Use the Wiener Filter for the denoising, as it gives the 
Minimum Mean Square Error (MMSE) result: 
 
 
 
 

 
 

 This is the best we could perform! However, 
  

 It calls for knowing , and  
 Inverting a matrix of size N-by-N. 

 
1

GlobalX̂ Y


   I

2 T 1

2X

1 1
min Y X X X

2 2

  

This is –log P(X|Y) 
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   Sounds Easy – Wiener Filtering !  

 For example, using the following                                            
Σ (N=1000), the obtained linear                                              

filter is this: 
 
 
 
 
 
 
 
 

 
 Are there simpler alternatives?  

 
1

GlobalX̂ Y


   I

Σ 

We are 
choosing Σ to 

be a circulant 
matrix for 

reasons that 
will be clear 

shortly 

Logarithmic 
Scale 
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   Local Processing by Patch-Averaging  

 A patch of length n<<N extracted from X by RkX is also 
Gaussian-distributed, obtained as the marginal    
distribution:  

 
 

 We could apply the Wiener filter to each of these patches 
(overlapped) and then seek a global solution that best fits 
these local results:  
 

 T

k k k kx X ~ N 0, R R R

 
k

2

1
T T

k k k k k k
X

k
x̂

2

min X Y


    R R R R R I R
2

kk 2
k

ˆX x R
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   Local Processing by Patch-Averaging  

 This process amounts to a simple aggregation by averaging:  
 

 
1

T T

k k k k k kx̂ Y


   R R R R I R

 

T

LPA kk

k

1
T T T

k k k k k k

k

1ˆ ˆX x
n

1
Y

n



 

    





R

R R R R R I R
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   Local Patch-Averaging (LPA) 

 By assuming a circulant Σ, all local models are the same,  

which is the typical case practiced in image processing of 
assuming the same model for all patches. 

 
 The obtained linear filter now is this: 

 
 
 
 
 

 Naturally, this matrix is circulant and                         
banded, with width 2n-1 (n=40).  

 
1

T T T

LPA k k k k k k

k

1
X̂ Y

n



   R R R R R I R
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   Could We Do Better ? 

 
12 T T T

k k k k2X
k

1 c
min Y X X X

2 2n



   R R R R

 We could refer to the global signal as the unknown, but 
impose the local Gaussian models. This is the rational of the 
EPLL (Expected Patch Log Likelihood) [Zoran & Weiss ‘10]. 
 

 The MMSE in this case reads 
 

 
 

 
1

1
T T

EPLL k k k k

k

c
X̂ Y

n


 

    
 

R R R R

Yes – EPLL ! 
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   EPLL via Local Processing (ADMM)   

 Wait! This looks no simpler than the global Wiener, so                                                                      
where is the                                                                    
benefit in                                                               
thinking locally? 

 

 Answer: ADMM  
 
 
 
 
 
 

 Notice that the first iteration (with u=0) coincides with LPA. 

 
1

1
T T

EPLL k k k k

k

c
X̂ Y

n


 

    
 

R R R R

   
1T2 T

k k k k2X
k

1 c
min Y X X X

2 2n



   R R R R

2

k kk 2
X z u

2


  R

kzkz
: Patch averaging  

: A Wiener filter on each patch       

 

1
cT T

k kk k k k kn
k 1,2,...

1

T T

k kk k k

k k

kk k k

ˆˆ ˆz X u

ˆ ˆ ˆX Y z u

ˆˆ ˆ ˆu u X z








     

  
        
  

  

 

R R R R R

R R R

R
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   EPLL – Back to the Example 

 
1

1
T T

EPLL k k k k

k

c
X̂ Y

n


 

    
 

R R R R

 
1

GlobalX̂ Y


   I

C=0.25 



23 

   Going Multi-Scale … 

 One could work with fixed-sized patches, related to different 
scales of the signal. This may enable better proximity to the 
global filter. Scale invariance may prove valuable … 
 

 For example … 
 
 

 In our notations, 
 

 Rk extracts a patch of length n from the signal 
 Qk extracts a patch of size 2n from the signal and then reduce it to 

length n by filtering followed by 2:1 decimation 
 

 Naturally, this can be repeated in several scales … 

 

 

12 T T T1
k k k k2X

k

1T T T2
k k k k

k

c1
min Y X X X

2 2n

c
X X

2n





  

 





R R R R

Q Q Q Q
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   Going Multi-Scale … 

 
1

GlobalX̂ Y


   I

 
1

1
T T

EPLL k k k k

k

c
X̂ Y

n


 

    
 

R R R R

MSX̂ Y   
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   Going Multi-Scale …  

These are the absolute error matrices of the filters versus the global Wiener 

Global LPAW W Global EPLLW W Global MSW W

True Scale 
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   Average Denoising Performance 

Noise level 
1 

LPA 
0.106 EPLL 

0.049 
MS-EPLL 

0.042 
Global 
0.030 
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   The Gaussian Case: A Summary 

What can be learned from this toy problem? 
  

 The signal X has a clear global statistical model, which induces the 
ultimate denoising approach – the Wiener filtering. 
 

 Nevertheless, we may handle the denoising task by operating on 
overlapped patches, using only local marginals, and by operating  
locally we can get to near-ideal performance. 
 

 Under some conditions on Σ, the local and the global methods may 

lead to the same performance.  
 

 In image processing, identifying/formulating a global model is simply 
impossible, while learning a local model is within reach.  
 

 We are using local marginals to “characterize” (but not to reconstruct) 
the global distribution.   
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Part III 

Back to Sparse 
Representations: Who       

Are These Signals?  
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   The Model to Explore 

The model Assumption on X :  

 

Every patch in the unknown signal is expected to             
have a sparse representation w.r.t. the dictionary D  

Questions to consider: 

 Who are those signals belonging to this model?  

 Under which conditions on D would this model be feasible?  

 How does one sample from this model?  

 How should we perform pursuit properly (& locally) under this model?  

 How should we learn D if this is indeed the model? 

 … 

k kk 0
k X where L    R D
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   Globalizing the Model (1) 

k kk 0
k X , L    R D

1 1T T

kk k kn n
k k

X X   R R R D
1 T

k kn
k

R R I

 We start with the model: 
 

 Rk extracts a patch of size n from XIRN : 

 

 

 
 Exploiting                                                                               
     

    i.e., the global signal is built of averaged local pieces. 

N 

n 
k R
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   Globalizing the Model (2) 

1 1T T

kk k kn n
k k

X X   R R R D
1

2

N

 
 
 
 
 
 
 
 
  

 

1 1 1T T T

1 2 Nn n n G

| | |

| | |

X
 
 

  
 
  

R D R D R D D

 Defining              leads to    

 

 
 This suggests the existence of a global sparsity-based  

model of the kind we are familiar with … 
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   Globalizing the Model (3) 

1 1 1T T T

1 2 Nn n n G

| | |

X

| | |

 
 

  
 
  

R D R D R D D

G
n D

D

mN 

N 

DD

DD

D D D

Under a proper 
permutation of the 

columns, this is a union 
of m square, banded 
& circulant matrices 

* D is of size n-by-m 

D
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   Globalizing the Model (4) 

1

2

N

 
 
 
 
 
 
 
 
  

 
1 T

kk Gn
k

X     R D D

1 T

kj j k j Gn
k

j X    R R R D R D

 However, the vector  is structured … 

G
n D

DDD

DD

D

 0 0 D

j D
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   Globalizing the Model (5) 

1

2

N

 
 
 
 
 
 
 
 
  

 

 j Gj 0 0   R D D

 This defines N sets of n equations each, which                            
can be expressed as …                                                              

 

    where M is of size nN×mN 
 

 M is some sort of “Laplacian” in nature, capturing the fact 
that the averaged patches over the overlaps should have a 
complete agreement on the content.  

0 M
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   Globalizing the Model (6) 

1

2

N

 
 
 
 
 
 
 
 
  

 

 Another limitation on  is the fact that                       , 
which we will denote as  

 

 

 A word about our notation: this definition works on             
blocks of m elements. Later on we will see a                     
similar definition with a sliding window … 

k 0
k L  

m

0,
L


 

m Sliding

0,
L




 

0,
L


 
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   Globalizing the Model – Summary  



   
 

     

G

0,

X

0, L

D

M

 0
0, L

,
    


M

kk

k 0 k

X

L

   
 

   

R D

We started with a 
local model 

 

…….  

,L,nD
G,D M

We ended up with 
an equivalent 

globalized model 

 However, for many choices of D,                                           
is empty for any 0<L<n 

       implying a useless model ! 

 Even if this model is feasible, how can we sample from it? 

 All this might seem hopeless, but … do not despair …  



n 
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   Special Case 1: PWC Signals 

 Piece-Wise-Constant signals obey the local model: If every 
patch of length n contains (up to) L-1 steps, then these 
patches can be described as  

 

 
k kk 0

k X , L,    R D n D Heaviside 

N 
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   Special Case 1: PWC Signals 

 In the PWC case, M has a null space of dimension N. We 
denote this null-space by Z (of size nN×N),  

 

 A proper choice for describing Z leads to the regular global 
sparse model with the  

          

       

 The representation     satisfies                          . 

G 0,
X , 0, L


     D M

  Z

   G GX D D Z



Global Heaviside 
dictionary  




  

n Sliding

0,
L 1
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   Special Case 2: Convolutional Sparsity 

 Consider a global sparsity-based model for signals X=H, 
in which the dictionary is circulant and banded in the 
following way : 

 

 

 

 

 

[Lewicki & Sejnowski ‘99] 

[Hashimoto & Kurata, ‘00] 

… 

[Wohlberg ’15] 

b 

H

N 
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   Special Case 2: Convolutional Sparsity 

 In this case, every patch of length nb will have a sparse 
representation w.r.t. the same local dictionary: 

 

 

 

 
 This suggests a family of local dictionaries                                  

that enable our local-global model.  

   k kx R H

T

kk k k   R HS S
n 

b+n-1 
These small 

representation 
vectors are 

overlapping, as 
they are extracted 

from the global 
rep. vector   
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   Special Case 2: Convolutional Sparsity 

G 0,
X , 0, L


     D M

 In terms of the above, we get that M has a null space of 
dimension N, and the situation is similar to the one 
encountered in the PWC case.  

 The same holds true for a global signal emerging from a 
sparsity-based model with a union of circulant and banded 
matrices 
 

                                                            we will come back  
                                                            to this later on … 

  jj

j

X H
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   Our Global-Local Model: A Summary 

We have identified special cases of local dictionaries D that 
enable this model.  

Furthermore, in these cases we can easily synthesize signals.   

k kk 0
k X , L    R D

n

G 0,
X , 0, L


     D M

Local Model: 

Globalized Model: 
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   Our Global-Local Model: A Summary 




   

m sliding

0,
X , LH

In these special cases we got an intermediate Global Model 

k kk 0
k X , L    R D

n

G 0,
X , 0, L


     D M

Local Model: 

Globalized Model: 

 

Clarification: 
 

The migration from the local to the globalized model is 
not constructive. So why bother? Because this will serve 
us later on when we define the pursuit algorithms.  
 
Open Questions : 
 

 Are there other local dictionaries D that could enable 
the local-global model? We do know of other cases … 

 Is it guaranteed that any such permissible D will   
have a global model? 
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Part IV 

Pursuit & Denoising            
for These Signals  
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   The Model to Explore 

The model Assumption on X :  

 

Every patch in the unknown signal is expected to             
have a sparse representation w.r.t. the dictionary D  

Questions to consider: 

 Who are those signals belonging to this model?  

 Under which conditions on D would this model be feasible?  

 How does one sample from this model?  

 How should we perform pursuit properly (& locally) under this model?  

 How should we learn D if this is indeed the model? 

 … 

k kk 0
k X where L    R D
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   This Brings us Back to Denoising  

G 0,
X , 0, L


     D M

 The signal X obeys our local model 
 
 

 
    or the globalized one, 

 
 

 
 Given Y=X+V, (               ), our goal is to recover X.  

 

 The specific questions we aim to address are:  
 

 How would the oracle perform in this case?  
 How can we perform this denoising using local pursuit and how 

well will this work?   

k kk 0
k X where L    R D

 2~ 0,  
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   The Pursuit Goal  

G 0,
X , 0, L


     D M

2

G 2 0,
min Y s.t. 0, L


     D M

 This is very similar to the regular pursuit we are 
accustomed to, and it is just as complex (NP-Hard). 
 

 Remember: while we write the pursuit in terms of DG   
and M, our true goal is to break this into local pursuit 
steps while being equivalent to this formulation.  

Pursuit is simply    
a projection              

onto the model 

The signal is believed to belong to the following model 
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   The Oracle (1) 

s

2
T T

s sG 2
min Y s.t. 0


   D P MP

 The oracle knows the locations of the |S|LN non-zeros          
in . The operator extracting these non-zeros is P           
(size |S|×mN). Thus,  
 

 
 Our pursuit task simplifies to the search of the optimal s : 

 
 
 

 Denoting by B (size nN×d (d|S|)), the null-space of MPT, 
we have s=Bθ, and the pursuit becomes   

T T

s    P P P

2
T

G 2
min Y


 D P B

(d<|S|)?  
 

Sounds like it 
should be 

smaller than 
N, how do we 

show it?  
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   The Oracle (2) 

2
T

G 2
min Y


 D P B

 This matrix is of size N×d, and it is full-rank.  
 

 … We started with a noise power of N2 in the signal Y, 
and the oracle ends with noise energy of d2. 
 

 Special cases of interest:  
 

 In the PWC case, d=number of flat regions, while |S|d·n. 
 In the convolutional sparsity case (with one circulant matrix), 

 
 

0
d , S d (2n 1)    
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   Oracle via LPA 

 Under the regime of an oracle (the supports of k are 
known), lets apply the Local Patch Averaging (LPA): 
 
 
 

 
 
 
 
 

Theorem: Applying the oracle’s LPA algorithm 
iteratively leads to the optimal solution.  

k k

k

2

†

k S S k
X

k
x̂

2

min X Y  R D D R

k k

T T †

kk k S S k

k k

1 1
ˆX x Y

n n
  R R D D R
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   Oracle via EPLL 

 Under the regime of an oracle (the supports of k are 
known), lets apply the EPLL: 
 
 
 

 
 
 
 
 

Theorem: Applying the oracle’s EPLL iteratively 
with arbitrary >0 leads to the optimal solution.  

 
k k

k

2

2 †

S S k2X
k

2

1
min Y X X

2 2


  

P

I D D R

1

T T

EPLL k k k k

k

X̂ Y



 
    
 

R P P R
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   The Oracle: A Summary   

 As expected, the “complexity” of the signal (the value d) 
governs the denoising performance. 
 

 The above two results regarding LPA and EPLL are 
misleading, as they may suggest that it is enough to apply 
local pursuit (projection onto an appropriate subspace) and 
average in order to lead to the ideal solution.  
 

 While this is indeed the case if the supports are known, as 
we depart from the oracle regime, we will see that the local 
pursuits must “communicate” in order to lead to a more 
successful global recovery.   
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   Patch-Based Pursuit 

2

G 2 0,
min Y s.t. 0, L


    D M

Recall our pursuit talks: 
 
 

 

 
Theorem: The above global optimization                 
task is equivalent to this form:  

SB – Extract the bottom n-1 elements 
ST – Extract the top n-1 elements  

This is the missing 
communication force 

 

 
k k

2

k k 2
k

k k 1 kB T 0 k

min Y

s.t. , L





 

    

 D R

S D S D



   Patch-Based Pursuit - Demo 
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Details: 
 
• Signal length: N = 700 
• Patch size: n = 25 
• Dictionary = PWC 
• Global sparsity: k = 25 
• Noise with  = 3  

 

Results:  
 
• Noise (per sample): 2 
• ADMM –  0.0782 

• LPA –   0.1062 
• Iter-LPA -   0.1132 
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Part V 

A Closer Look at                          
the Convolutional Sparsity  

(The Noiseless Case) 
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   The Convolutional Sparsity Case 

 Let us return to the special case of convolutional sparsity.  
 

 We will describe this not via the  local   model or its 
globalized form, but rather through the global model.  
 

 Consider a global sparsity-based model of the form 

 

 

where Hj are banded and circulant. 
 

 For simplicity we assume that b=n. 

b 

j H

N 



 
p

jj

j 1

X H
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   The Global Dictionary 

 1 2 3 H H H

TH
n p 



58 

   The Local Representations 

 TX H

= 

 kkx XR

kx

k D

The local 
dictionary 

k

n 

(2n-1)p 

k

Adjacent representations 
overlap, as they skip by p 

items as we sweep  
through the patches of X 
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   The Representation Problem  

  
  0, T0,

min s.t. XΡ H

k0, 0k
max


   where we have defined 

 
The Main Questions We Aim to Address:  
 
- Uniqueness of the solution to this problem ? 
- Guaranteed Recovery of the solution via global OMP/BP ? 
- The same recovery done via local operations ? 
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   Stripe Spark and Uniqueness 

 


  
   

  

T

S T 0,

0
min s.t.

0

H
H

Theorem: If a solution is found for (P0,) such that 

 
 
Then this is necessarily the globally optimal solution 
to this problem. 

 


  S T0,

1

2
H

We should be excited about this result and 
later results because they pose a local 

constraint for a global guarantee, and as 
such, they are far more optimistic compared 

to the comparable global guarantees  
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   Stripe Spark vs. Mutual Coherence 

 


 T

T T T
i j

maxH H H

Theorem: The relation                   
between the stripe spark                              
and the global coherence is 
 
 

Thus uniqueness of the                                    
solution is guaranteed if  

 
 S T

T

1
1  


H

H

This is the classic coherence, 
defined over the global dictionary,  
assuming normalized columns 

 0,
T

1 1
1

2


     H
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   Recovery Guarantees 

  
  0, T0,

min s.t. XΡ H

Theorem: If a solution of (P0,) satisfies  

 
 
Then global OMP and BP are guaranteed to find it. 

 

 
     

0,
T

1 1
1

2 H

Lets solve this problem via OMP or BP, applied globally 
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   Local Recovery Guarantee via ADMM 

 


    
2

1 T1 2

1
min X

2
Ρ H

  kk

2 k k

kk 2k 1, , kkk k

1
min X s.t.

2  

    
      

    


Q
R D

S

…. can be converted to the following equivalent format 
 
 
 
 

which can be solved iteratively by  
 

• Updating k via simple soft shrinkage. 
• Updating k via simple multiplication by a matrix, and  
• Updating  via patch-averaging.  

kk



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   Local Recovery Guarantee via ADMM 

 


    
2

1 T1 2

1
min X

2
Ρ H

Theorem: If the solution of (P0,) satisfies  

 
 
Then the ADMM solver of the global BP, with 0, 
is guaranteed to find it. 

 

 
     

0,
T

1 1
1

2 H
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   Local Pursuit in Action 

Details: 
 
• Signal length: N = 300 
• Patch size: n = 25 
• Dictionary = Convolutional 
• Unique atoms: p = 5 
• Global sparsity: k = 50 
• Number Iterations: 1000 
• = 1/50  
 

The graph shows  -    
a vector of length  
1500, with 50 non-zeros 
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Part VI 

Concluding Remarks 
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   Local Model for a Global Signal 

 This work suggests an interesting extension of sparse 
approximation theory to these new breed of models. 

 

 Key questions to address:  
 Who are those signals obeying this model ? 
 Who are the appropriate local dictionaries ?  
 How should these signals be processed via local operations ?  
 Can we derive performance bounds for such algorithms ? 
 How should the dictionary be learned ?   

 

 As we have seen today, some of these questions  were 
answered. Much work remains in order to fully map 
this field … 
 

 Stay tuned – we are working on this.  
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Thank You for Your Time & Patience  
…  and … 

Thanks to The Organizers: 
 

Holger Boche  - Technical University Munich 
Giuseppe Caire - Technical University Berlin 

Robert Calderbank - Duke University 
Gitta Kutyniok - Technical University Berlin 
Rudolf Mathar - RWTH Aachen University 

 

 Questions? 
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   Image Denoising is a Popular Problem  

Probably the most studied problem in image processing  … 

Why is it so popular? Here are few possible explanations: 
(i) It does come up in many applications 
(ii) It is the simplest inverse problem, platform for new ideas 
(iii) Many other problems can be recast as an iterated denoising, and …  
(iv) It is misleadingly simple  

 There are ~22,000 journal 
papers on image denoising. 

 

 Searching “image and 
Gaussian and noise 

and (denois* or 

remov* or filter* or 

clean)” in ISI WoS leads 

to ~1800 papers 
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   Restricted Isometry Property …  

2

G 2 0,
min Y s.t. 0, L


    D M

0,
V 0, V k


 M

   
2 2 2

k G k2 2 2
1 V V 1 V     D

Armed with this definition, we can derive a stability result for the                   
above pursuit problem, show its near-oracle performance, derive                         

a similar result for L1 replacing the L0,, and then via ADMM, show               
that this can be achieved by local operations  

Definition: The  globalized  model, as 
characterized by DG, M and k, is said to have the 
generalized RIP with k if:  

 
 
for any vector obeying  


