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Abstract—In this work, we tackle the problem of multi-
label classification using a sparsity-based approach. Multi-label
classification problems, in which each instance is associated
with a set of multiple labels, have received significant attention
over the past few years due to the ongoing growth of data
dimensions and availability. However, the dependency between
labels poses new challenges to existing classification techniques.
We propose a supervised dictionary learning algorithm suited
for the multi-label setting. The suggested scheme introduces
a novel graph Laplacian regularization that encapsulates the
training set labeling prior. This regularization explicitly takes into
account the local manifold structure of the data, thus promoting
the discriminative power of the learned sparse representations.
Experiments on two different real-world multi-label learning
problems, i.e. natural scene classification and yeast gene func-
tional analysis, demonstrate that our proposed algorithm achieves
superior performance to other dictionary based approaches as
well as some established multi-label learning algorithms.

I. INTRODUCTION

Sparse and redundant representations have been successfully
applied to various computer vision and image processing
problems, such as image denoising [1l], inpainting [2]], super
resolution [3], etc. The underlying idea is approximating a
given signal as a sparse linear combination of items from an
over-complete dictionary. Since the choice of a representative
dictionary is crucial to the success of sparse coding, improved
performance can be achieved by adapting the dictionary to a
set of training signals rather than using a predefined basis.
Several methods have therefore been proposed to efficiently
learn an over-complete dictionary from the data, such as the
Method of Optimal Directions (MOD) [4] and K-SVD [3].

The dictionary learning problem is given by

argmin [[Y = DXz st Jailo<T Vi ()
where Y € RN js the data matrix, X € RE*N contains
the sparse representations and D € R™* ¥ is an over-complete
dictionary with normalized columns (atoms).

Despite the popularity of general dictionary learning meth-
ods, they only take into account the representation accuracy
and do not consider the discrimination capability of the trained
dictionary. Therefore, their performance in classification tasks
may be sub-optimal. To overcome this limitation, many su-
pervised dictionary learning algorithms have recently been
proposed that exploit the training data label information in
various ways.

In most previous methods, the dictionary and classifier are
learned separately. The straightforward approach for utilizing
the label information is learning a separate sub-dictionary for
each class (e.g. [6], [7], [8]], [9]). Consequently, each test signal
can be classified according to its reconstruction error using the
class sub-dictionaries. Alternatively, the sparse codes can be
used as features based on which a classifier is trained.

More sophisticated approaches (e.g. [10l], [1LL], [12], [L3],
[14]]) introduce a classification-error term into the objective
function, and enforce some discriminative criteria on the
optimized sparse coefficients. By doing so, these methods form
a unified problem and learn the dictionary and classifier jointly.

Within this category we elaborate on the Label Consistent
K-SVD (LC-KSVD) method [13]]. The LC-KSVD algorithm
jointly learns an over-complete dictionary D and an optimal
linear classifier W by solving:

: _ 2 . 2 . 2
arg | min [V = DX} + ol Q = AX |+ Bl H — WX}
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In this formulation, H € R™* is a binary matrix indicating
the labels of the training data, such that H;; = 1 if the signal
1y, belongs to the i-th class (out of m possible classes).

The binary matrix @Q € RE*¥ associates label information
with each dictionary atom, such that @);; = 1 if the signal
y; and the dictionary atom d; share the same label. The term
|Q—AX]||2 thus enforces that the sparse codes X approximate
the discriminative sparse codes (), encouraging signals from
the same class to have similar sparse representations. The min-
imized objective hence balances between the reconstruction
error ||[Y — DX ||%, the label consistency ||@Q — AX||% and the
classification error |[H — W X||%. These terms can be fused
together, leading to a standard formulation:

- - 2
arg min HY - DXH st zillo<T Vi, (3)
D.X F

Y D
where Y = | /aQ | and D = | \/aA
VBH VBW
Equation can be efficiently solved using the K-SVD
algorithm [S]], or any other fast algorithm recently developed
for this purpose. Having completed the training process,
classification of a new signal is simply performed by sparse



coding over the dictionary D and applying the learned
classifier W on the resulting sparse coefficient vector,
choosing the class that yields the highest score.

While achieving impressive results, the previously proposed
dictionary-based classification methods are limited to the
single-label scenario. A more complicated problem is multi-
label classification, which has become prevalent in recent years
due to the increase of data volumes and availability of online
labeling services. Such problems exist in several domains such
as text mining, where a document may be associated with
multiple topics; gene functional analysis, where each gene
can belong to multiple functional classes; and natural scene
classification, where each natural scene image may contain
several objects and belong to multiple categories. Since each
instance may be associated with multiple classes simulta-
neously, exploiting the interdependency between labels can
significantly affect the success of a multi-label classification
algorithm.

Some well-known approaches to multi-label classification
include decision trees [[15] and AdaBoost [16]]. Several works
have attempted to extend single-label classification approaches
to handle the multi-label scenario. Prominent among them are
the Multi-Label K-Nearest Neighbors algorithm (ML-KNN)
[17] and the Instance-Based Logistic Regression (IBLR) [18]].

In [[19], we have proposed an unsupervised dictionary learn-
ing algorithm that takes into account the underlying structure
of the data in both the feature and the manifold domains
using graph smoothness constraints. In [20] we extended
this algorithm to a supervised setting by applying similar
ideas to the LC-KSVD approach. In this paper, we further
generalize the supervised dictionary learning method to the
more challenging multi-label setting. Thereafter, we add an
adaptive threshold class to our proposed scheme, which will
improve the ability to distinguish the relevant categories from
the irrelevant ones. Additionally, we suggest replacing the
label consistency term with a less restrictive graph Laplacian
regularization, that promotes the discriminative nature of the
sparse codes without explicitly learning a separate dictionary
per class.

II. SUPERVISED DICTIONARY LEARNING FOR
MULTI-LABEL CLASSIFICATION

Our proposed algorithm is based on the LC-KSVD approach
[13]. Initially, we extended this method to support multi-label
classification, by altering the binary label matrix H to allow
multiple non-zeros per column. The classification procedure
should also be extended to support multiple labels. Similarly
to the single label problem, classification of a new test signal
y; is performed by sparse coding over the dictionary D and
applying the optimized classifier W to the resulting coefficient
vector z;. Then, instead of choosing the class yielding the
maximal score (the largest entry of Wx;), the relevant labels
are selected as those reaching a result above a threshold,

ie. @ = {¢ : [Wx;](¢) > 0.5}. Subsequently, we suggest
two extensions to the algorithm: optimizing the classification
threshold, and replacing the label consistency constraint with
a graph-based smoothness regularization.

A. Adaptive classification threshold

A common practice in multi-label learning is to optimize
a thresholding function which dichotomizes the label space
into relevant and irrelevant label sets. In order to apply a
similar concept to the dictionary-based approach, we introduce
an additional threshold category, which is now optimized in
the combined dictionary learning process. In practice, this is
achieved by expanding the m x K classifier matrix W (m
being the number of classes and K the number of dictionary
atoms) to include an additional row, accounting for the new
reference class. The label set for each signal is then determined
by considering the result of each classifier with respect to the
reference class. Put formally, we replace the term || H —W X ||%
with | — MW X||%, where M € R™*(m+1) is defined as

-1
M = 1, @)
-1

with I, denoting the m x m identity matrix. Consequently,
Equation (@) becomes

- )
arg min ‘Y - MDXH st zllo<T Vi, 5
D,X F
where we defined the extended matrix M = Ik

M
In order to solve Equation (3]), we suggest a modification to
the K-SVD algorithm [5]. Adopting the K-SVD formulation,
we perform sequential update of each atom along with its
related coefficients. Let v; denote the j-th column of X T so
that va is the j-th row of X. For the j-th atom update, the
error term could thus be reformulated as follows:
|V - MDX|3 = |V =3 Mdw! - 3rd;oT |3
i#j 6)
2 ||E; — Mdjv] ||%,
To preserve the representation sparsity, the update support is
restricted to samples using the j-th atom by the restriction
matrix P, selecting the subset of columns that correspond
to signals using the j-th atom. Therefore, the optimization
problem for the j-th atom is:
: R _ 377.(nT\R|2
e 125" = Md;(v; )|, 7
with Eff = E;P; and (v] )® = v] P; denoting the restricted
versions of Ej,va respectively. This problem can be solved
by alternating between updates of d; and (UJT)R, leading to
the following closed-form update rules:

— ~ o ~N\N—1 o, -
(UJT)Rz(dJTMTMdj) drMTER, (8)
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Note that for M = I (8),([8) coincide with the K-SVD solution.

B. Graph Laplacian regularization

The main contribution of LC-KSVD is introducing the
requirement that objects from the same class have similar
sparse codes over the dictionary. While this requirement is
reasonable, we find the current formulation, which directly
associates each dictionary atom with a specific class, highly
restrictive. Instead, inspired by our previous work [19], we
propose learning a single dictionary and encouraging similar
signals to have similar sparse codes using a graph Laplacian
regularization. The proposed regularization leverages the label
information and promotes the discriminative nature of the
sparse codes. Explicitly, we suggest to model the relationships
between different data samples using a graph and require
smoothness of the sparse codes over the graph topology.

Given a set of training samples {yi,...,yn} € R", we
construct a weighted graph G with N vertices, where each
node represents a data point. The weight w;; assigned to the
edge connecting the i-th and j-th nodes is designed to be
inversely proportional to the distance between them. The graph
adjacency matrix W9 consists of the edge weights w;;. The
graph Laplacian L is then defined as L = DY — WY, where
the degree matrix DY is a diagonal matrix whose entries are
Dlgz = Z j Wij.

Similarly to the methods proposed in [21], [22]], [19], we
incorporate the graph Laplacian L into the objective function
as a regularizer of the form Tr(XLX7T). Since Tr(XLXT) =
32, wijllws — x5]|3, where a; is the i-th column of X,
this term encourages similar signals, having a large proximity
measure w;;, to have similar sparse codes.

The new formulation therefore explicitly considers the local
geometrical structure of the data, such that the obtained sparse
representations X vary smoothly along the geodesics of the
underlying data manifold, as described by the Laplacian L. By
preserving locality, the resulting sparse codes can have more
discriminating power and hence better facilitate classification
tasks.

For the multi-label classification settings, we propose a
bilateral proximity metric consisting of both signal values
and label data. That is, denote the signals by y;,y; and the
corresponding labels by h;, h;, then

. 2 ) N2
wij = exp (—dh’(h“h])> exp (-Cly(%v%)> (10,

€1 €2

where dp(-,-) denotes the Hamming distance between the
binary label vectors and d, (-, -) denotes the Euclidean distance
between the data samples. The constructed manifold graph is
therefore not only data driven but also integrates the auxiliary
features given by the training set labels.

Combining the graph regularization into the dictionary
learning task, instead of the original label consistency term,

the new formulation reads
- .2
arg min HY - MDXH 4 ATr(XLXT)
DX F (11
S.t. HxZHO S T VZ,

- Y D ~ I,
whereY—(\/BH>,D—(\/BW> andM—[ M]

Similarly to the original framework, after the training pro-
cess completes, the individual components can be recovered
from D. Consequently, classification is performed by sparse
coding the test signals using D and applying the generalized
classifier MW on the resulting coefficients.

Solving Equation (II) requires significant modifications
of the K-SVD algorithm, beyond those mentioned in the
previous subsection. Having introduced the graph constraint,
the update rule for the sparse coefficients related to each atom
should be altered to reflect the added restriction. Explicitly,
the coefficients update rule of the dictionary update step,
previously given by Equation (8], is replaced by

oft = (vL + AT M N, LEMTNG. (12)

More importantly, the sparse coding step will now diverge
from the standard form. This calls for a new pursuit technique,
as described in detail in the sequel.

III. MANIFOLD REGULARIZED SPARSE CODING

Denote the effective dictionary D = MD. The manifold
regularized sparse coding task is thus formulated as follows:

T
arglr}}n HY - DX ‘F +ATr(XLXT)

(13)
S.t. ||J?,H0 <T Vi

Due to the imposed graph constraint, the problem is no longer
separable, and the sparse representations of different dataset
signals are now dependent on each other. Previous work [21]]
proposed to solve Equation by replacing the ¢y norm with
¢1 and using a coordinate descent approach and subgradient
methods.

In [19], we have proposed a different solution based on the
Alternating Direction Method of Multipliers (ADMM) [23],
which enables simultaneous update of all columns of X. In
this approach, the non-convex sparsity constraint is separated
from the rest and Equation (T3) is reformulated as

arg rr}}n Y — DX||% ++Tr(XLXT)

(14)
The augmented Lagrangian is then given by
L)(X,2,U) = f(X)+g(Z)+pl|X - Z+Ul3, (15

where f(X) = |V — DX|% + vTr(XLXT), g(Z) =
Z(||zillo < T Vi) for an indicator function Z(), and U is the
scaled dual form variable.

The ADMM iterative solution consists of sequential opti-
mizations of £, over each of the variables X,Z, and U.



For the sub-problem of updating X, omitting the sparsity
requirement has led to a quadratic objective. By simple deriva-
tion, this problem reduces to solving a Sylvester equation [24]:

(DTD + pI)X +~vXL = DTY + p(Z - U). (16)

Since the eigenvalues of (DT D+ pI) and (—vL) are distinct,
a unique solution X is guaranteed [25].

The sub-problem of updating Z reduces to a shrinkage
problem, requiring merely a sparse projection of X + U. To
obtain it, hard thresholding is applied to X 4 U such that only
the 7" largest entries of each column are kept. We denote this
projection operator by Pr.

The graph regularized sparse coding algorithm is summa-
rized in Algorithm [T}

Algorithm 1 Graph Regularized Sparse Coding

Initialize:
X0 = arg min |Y — DX||% st |lzillo <T Vi,
70) — x(0) , U — .
Iterate: for k = 1,2, ...
o Update X(*) as the solution of
(DT D+pl)X+yXL = DTV +p (Z(’“’l) - U<’H>)

« Update Z(#) = Pr (X®) 4 U-D)
e Update U®) = yk—1) 4 x (k) _ 7(k)
Output: The desired result is Z*).

Note that since the problem is non-convex, ADMM is not
guaranteed to converge. Nevertheless, for initialization with
the standard sparse coding (e.g. using OMP), convergence was
empirically observed within a few iterations.

IV. SIMULATION AND RESULTS

In the previous sections, we proposed a supervised dictio-
nary learning algorithm for multi-label classification, based
on the LC-KSVD [13]. The algorithm, denoted graphDL-ML,
incorporates the data manifold regularization and includes an
adaptive classification threshold.

We shall compare the proposed algorithm to three other
methods: LC-KSVD1, which refers to (]ZI) for p = 0, LC-
KSVD2, which refers to (]ZI) for o, 3 # 0, and ML-KNN
[17]. The ML-KNN approach is, to our best knowledge, the
state-of-the-art for multi-label classification, and was shown
to give superior results to some well-established multi-label
learning methods. For comparison with ML-KNN, we use the
parameter value K = 10, in accordance with the simulations
presented in [[17].

One of the challenges in multi-label prediction is the addi-
tional notion of being partially correct. To account for partial
prediction, we use five different multi-label evaluation metrics
to evaluate the performance of the compared algorithms:
the Hamming loss, One-error, Coverage, Ranking loss and

Average Precision. Details of these evaluation metrics can be
found in [17]. We note that for the average precision, a good
classification should lead to large values, while for the first
four measures - small values are desired. For both evaluated
datasets, ten-fold cross-validation was performed and the mean
results were used for comparison.

A. Natural scene classification

The algorithms were first evaluated for multi-label natural
scene classification. In this task, each natural scene image may
belong to several semantic classes simultaneously. Given a set
of manually labeled training samples, the goal is to output
a label set whose size is unknown a-priori for each unseen
sample. The experimental dataset consists of 2000 natural
scene images, each belonging to one or more out of 5 possible
semantic classes: desert, mountains, sea, sunset and trees. Half
of the images were used for training and the rest constitute
the test set. A few examples of this dataset are depicted in

Figure [T}

(b) (©

Fig. 1: Examples of multi-labeled images: desert+trees,
mountains+sea-+trees, sea+sunset.

Each image is represented by a 294-dimensional feature
vector using the procedure described in [26]. The extracted
features are spatial color moments in the LUV space, which
are commonly used in the scene classification literature.

The obtained results are summarized in table [l Our al-
gorithm clearly outperforms both the other dictionary based
methods and the ML-KNN approach.The observed improve-
ment in classification accuracy is between 1.7% — 3.9%.

B. Yeast micro-array dataset

Next, we evaluate the algorithms for yeast gene functional
classification. The yeast dataset is formed by micro-array
expression data and phylogenetic profiles, and includes 2417
genes, 1500 of which are used for training and the rest consti-
tute the test set. Each gene is represented by a 103-dimensional
feature vector, and associated with a set of functional groups
out of 14 possible classes (such as metabolism, transcription
and protein synthesis).

The obtained classification results are summarized in Table
|I_11 For this dataset, which is known to be difficult [27], our
algorithm was unable to outperform the ML-KNN method.
However, in the category of dictionary based methods, it
performs significantly better, with almost 5% improvement in
classification accuracy.



[ [[ Hamming loss [ One-error | Coverage [ Ranking loss [ Average precision ]

LC-KSVD1 0.2404 0.2281 2.0132 0.2193 0.8148
LC-KSVD2 0.2456 0.2192 1.9298 0.2047 0.8257

ML-KNN 0.2825 0.2456 2.0132 0.2295 0.8038
graphDL-ML 0.2254 0.1711 1.8904 0.1879 0.8427

TABLE I: Experimental results for the natural scene image dataset

[ [[ Hamming loss [ One-error [ Coverage [ Ranking loss [ Average precision ]

LC-KSVD1 0.2774 0.4209 8.5060 0.3353 0.6117
LC-KSVD2 0.2764 0.4231 8.4591 0.3340 0.6121

ML-KNN 0.1980 0.2345 6.4144 0.1715 0.7585
graphDL-ML 0.2485 0.3609 7.8931 0.2862 0.6606

TABLE II: Experimental results for the yeast dataset

V. CONCLUSION

In this paper, we have proposed a multi-label extension
to dictionary based classification methods, that includes an
adaptation of the classification threshold and an introduction
of a novel graph-based regularization that promotes the dis-
criminative nature of sparse codes.

By adhering to the intrinsic geometrical structure of the
data manifold, as captured by the graph Laplacian, the re-
sulting sparse codes have better discriminating power and
can significantly enhance classification performance. This is
especially meaningful in multi-label classification problems,
where exploiting the interdependency between labels poses an
additional challenge to the classification algorithms. This was
addresses in our proposed algorithm by the graph Laplacian
regularization, which was used for incorporating this depen-
dency into the learning process.

Experiments performed on two different datasets demon-
strate that the proposed method yields very good classification
results, and outperforms other supervised dictionary learning
algorithms even for very challenging multi-label classification
tasks.

REFERENCES

[1] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Img. Proc.,
vol. 15, no. 12, pp. 3736-3745, 2006.

[2] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho, “Simultaneous
cartoon and texture image inpainting using morphological component
analysis (mca),” Appl. Comput. Harmon. Anal., vol. 19, no. 3, pp. 340-
358, 2005.

[3] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution
via sparse representation,” IEEE Trans. Img. Proc., vol. 19, no. 11, pp.
2861-2873, 2010.

[4] K. Engan, S. O. Aase, and J. Hakon Husoy, “Method of optimal
directions for frame design,” in ICASSP, vol. 5, 1999, pp. 2443-2446.

[5] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Sig. Proc., vol. 54, no. 11, pp. 4311-4322, Nov. 2006.

[6] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust
face recognition via sparse representation,” TPAMI, vol. 31, no. 2, pp.
210-227, Feb 2009.

[7]1 1. Ramirez, P. Sprechmann, and G. Sapiro, “Classification and clustering
via dictionary learning with structured incoherence and shared features,”
in CVPR, 2010, pp. 3501-3508.

[8] M. Yang, L. Zhang, J. Yang, and D. Zhang, “Metaface learning for
sparse representation based face recognition,” in /CIP. IEEE, 2010,
pp. 1601-1604.

[9]

[10]
[11]
[12]

[13]

(14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

M. Yang, L. Zhang, X. Feng, and D. Zhang, “Fisher discrimination
dictionary learning for sparse representation,” in /CCV, 2011, pp. 543—
550.

J. Mairal, F. R. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised
dictionary learning,” in NIPS, 2009, pp. 1033-1040.

D.-S. Pham and S. Venkatesh, “Joint learning and dictionary construction
for pattern recognition,” in CVPR, June 2008, pp. 1-8.

Q. Zhang and B. Li, “Discriminative k-svd for dictionary learning in
face recognition,” in CVPR, June 2010, pp. 2691-2698.

Z. Jiang, Z. Lin, and L. S. Davis, “Learning a discriminative dictionary
for sparse coding via label consistent k-svd,” in CVPR, 2011, pp. 1697—
1704.

J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,”
TPAMI, vol. 34, no. 4, pp. 791-804, April 2012.

C. Vens, J. Struyf, L. Schietgat, S. DZeroski, and H. Blockeel, “Decision
trees for hierarchical multi-label classification,” Mach. Learn., vol. 73,
no. 2, pp. 185-214, Nov. 2008.

R. E. Schapire and Y. Singer, “Boostexter: A boosting-based system for
text categorization,” Mach. Learn., vol. 39, no. 2-3, pp. 135-168, 2000.
M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach to
multi-label learning,” Pattern Recognition, vol. 40, no. 7, pp. 2038-
2048, Jul. 2007.

W. Cheng and E. Hiillermeier, “Combining instance-based learning and
logistic regression for multilabel classification,” Mach. Learn., vol. 76,
no. 2-3, pp. 211-225, Sep. 2009.

Y. Yankelevsky and M. Elad, “Dual graph regularized dictionary
learning,” IEEE Transactions on Signal and Information Processing
over Networks, 2016. [Online]. Available: http://dx.doi.org/10.1109/
TSIPN.2016.2605763

, “Structure-aware classification using supervised dictionary learn-
ing,” submitted.

M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai,
“Graph regularized sparse coding for image representation,” I[EEE Trans.
Img. Proc., vol. 20, no. 5, pp. 1327-1336, May 2011.

K. N. Ramamurthy, J. J. Thiagarajan, P. Sattigeri, and A. Spanias,
“Learning dictionaries with graph embedding constraints,” in ASILO-
MAR, Nov 2012, pp. 1974-1978.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122,
Jan. 2011.

J. Sylvester, “Sur ’equations en matrices pr = xq,” Comptes Rendus
Acad. Sci. Paris, vol. 99, no. 2, pp. 67-71,115-116, 1884.

R. Bhatia, Matrix Analysis. Springer-Verlag, New York, 1997.

M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label
scene classification,” Pattern Recognition, vol. 37, no. 9, pp. 1757-1771,
2004.

A. Elisseeff and J. Weston, “A kernel method for multi-labelled classi-
fication,” in NIPS, 2001, pp. 681-687.



http://dx.doi.org/10.1109/TSIPN.2016.2605763
http://dx.doi.org/10.1109/TSIPN.2016.2605763

	Introduction
	Supervised Dictionary Learning for Multi-Label Classification
	Adaptive classification threshold
	Graph Laplacian regularization

	Manifold Regularized Sparse Coding
	Simulation and Results
	Natural scene classification
	Yeast micro-array dataset

	Conclusion
	References

