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Today’s Talk is About

and

We will show today that

e Sparsity & Overcompleteness can & should be used to design new
powerful signal/image processing tools (e.g., transforms, priors,
models, ...),

e The obtained machinery works very well — we will show these
ideas deployed to




Agenda

1. A Visit to Sparseland

Motivating Sparsity & Overcompleteness

2. Problem 1: Transforms & Regularizations :
How & why should this work? = ¥

Sparseland f-—;

3. Problem 2: What About D?

The quest for the origin of signals

4. Problem 3: Applications

Image filling in, denoising, separation, compression, ...
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Generating Signals in Sparseland

e Every column in
D ( ) is
a prototype

1+ signal ( ).
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Sparseland Signals Are Special
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Multiply
by D

X = Da
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Every
generated signal is built
as a linear combination
of few from our

D

A general model:
the obtained signals are
a special type

(or
Laplacians).




Transforms in Sparseland ?

e Assume that x is known to emerge from M.

e We desire simplicity, independence, and expressiveness.

e How about “Given x, find the o that generated it in M " ?
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So, In Order to Transform ...

We need to solve an
under-determined D .
linear system of equations: a — X

e Among all (infinitely
many) possible solutions
we want the I

e Sparsity is measured
using the L, norm: K

HQHO = Z‘O‘j

j=1
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Signal’s Transform in Sparseland

A sparse ¢
& random | =
vector E % H H
_ |8 Multiply n-je A
o =|:| ) ) ) o
— § by D st. x=Du
5 X =Da
e Is 0 = a ? Under which conditions?
4 Major e Are there practical ways to get @ ?
Questions

e How effective are those ways?

e How would we get D?
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Inverse Problems in Sparseland ?

e Assume that x is known to emerge from M.

e Suppose we observe y =Hx +V, a “blurred” and noisy
version of x with Mz < ¢. How will we recover x?

e How about “find the o that generated the x ..."” again?

M X-Hx.iy.Q&'

Noise
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Inverse Problems in Sparseland ?

A sparse ¢m; _
& random | & X I Dg !
vector | & Min [o] st
E . \! " (:n (L[ S.t. .
a =|: Multiply blur 3 o G
- - by D by H HX‘HDQHZ <g
: y=Hx+v
e Is 0. = o ? How far can it go?
4 Major e Are there practical ways to get ¢ ?
Questions i ySroget &
CLELD) o How effective are those ways?

e How would we get D?
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Back Home ... Any Lessons?

Several recent trends worth looking at:

= JPEG to JPEG2000 - From (1.~
linear approxima*

o0 §patse S

* From v E ‘ -
invariar, g “E
= Approxi ‘S

let and non-

~.micdl approximation

= JCA and related models
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To Summarize so far ...

The Sparseland model M for
signals is interesting since it
is rich and yet every signal
has a simple description

We do! this model is
relevant to us just as
well.

So, what
are the
implications?

We need to solve (or
approximate the solution
of) a linear system with
more unknowns than
Soyielileziicefl equations, while finding the
sparsest possible solution

(a) Practical solvers?
(b) How will we get D?
(c) Applications?
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Lets Start with the Transform ...

Our dream for Now: Find
the sparsest solution of

Da=X

[ 4 )
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Put formally,
Min
o
I I—known
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Questions to Address

& = ArgMin ||g||0 s.t. X =Da
0

e Is 0, = o ? Under which conditions?

4 Major e Are there practical ways to get Q ?

e e How effective are those ways?
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Question 1 — Uniqueness?

M XZD(X

Multiply Min |,
by D st. X =Du

|R>

[ 4 -
ENEEEEEN EEEEE EEEEEEEEEETE
| . g

Suppose we can
solve this exactly

Why should we necessarily get o = 0.?

It might happen that eventually |G, </, .
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Matrix “"Spark”

Definition: Given a matrix D, c=Spark{D} is the smallest
number of columns that are linearly dependent.

Example: Rank = 4

Spark = 3

oS = O O
—_— O O O

o O O =
o O = O
O O =
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Uniqueness Rule

Suppose this problem has been solved somehow

MianHO S.t. X=Dua

Uniqueness If we found a representation that satisfy

> Juls

Then necessarily it is unique (the sparsest).

This result implies that if M generates

signhals using “sparse enough” o, the
solution of the above will find it exactly.
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Question 2 - Practical P, Solver?

|
]
O
S

Multiply pin Jal,
by D s.t. X=Du

|R>

[ 4 -
ENEEEEEN EEEEN EEEEEEEEEETE
| . g

Are there reasonable ways to find 0 ?
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Matching Pursuit (MP)

e Step 1: find the one atom SRR i
that the signal.
e Next steps: given the
previously found atoms, find
the next one to
e The Orthogonal MP (OMP) is an improved
version that re-evaluates the coefficients after
each round.
QLU Rccent Advances in Signal 20
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Basis Pursuit (BP)

Instead of solving Solve Instead

Min|of, st. x=Du Minjof, st x=Du

e The newly defined problem is convex.
e It has a Linear Programming structure.

 Very efficient solvers can be deployed:
= Interior point methods ,
= Sequential shrinkage for union of ortho-bases ,

= If computing Dx and Do are fast, based on shrinkage
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Question 3 — Approx. Quality?

M X:Da

Multiply pin [l
by D s.t. X=Da

|R>

[ 4 -
ENEEEEEN EEEEN EEEEEEEEEETE
| . g

How effective are the MP/BP
in finding o ?
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Evaluating the “"Spark”

e Compute | ‘ b ]z

DT

e The Mutual Incoherence M is the

DD

Assume
normalized
columns

argest entry in absolute

value outside the main diagonal of DD.

e The Mutual Incoherence is a property of the dictionary
(just like the “Spark™). The smaller it is, the better the

dictionary.
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BP and MP Equivalence

Equivalence  Given a signal x with a representation x = D,

Assuming that |e|, <0.5(t+1/M) , BP and MP are

Guaranteed to find the sparsest solution.

= MP is typically inferior to BP!
= The above result corresponds to the worst-case.

= Average performance results are available too, showing much better
bounds
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What About Inverse Problems?

A d B
& random | X =Da v
vector | = ‘ _
Multiply | *blur” Ly Min gis s i
— | = B a
&=1i1® byp | bym y-woul <2 [
: y =Hx+v

e We had similar questions regarding uniqueness,
practical solvers, and their efficiency.

e It turns out that similar answers are applicable here
due to several recent works
[Donoho, Elad, and Temlyakov (" 04), Tropp (" 04), Fuchs (" 04)].
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To Summarize so far ...

The Sparseland model for

signals is relevant to us. Find the Use pursuit
We can design transforms  [RSEETREE: Algorithms
and priors based on it solution?

Why works so
well?

A sequence of works
during the past 3-4
years gives theoretic
justifications for these

tools behavior

(@) How shall we find D?

(b) Will this work for
applications? Which?
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Problem Setting

M

Multiply
by D

r 3

X = Dg Given these P examples and a
fixed size [NxK] dictionary D:

IR

[ 4 -
ENEEEEEE EEEEE T EEEEEEEEEETE
| . J

=
—

1. Is D unique?

2. How would we find D?
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Uniqueness?

_ If {x, " is rich enough* and if
Uniqueness =1

» Sparg{D}

then D is unique.

Comments:

e "Rich Enough”: The signals from 9% could be clustered to m groups that
share the same support. At least L+1 examples per each are needed.

e This result is proved constructively, but the number of examples needed
to pull this off is huge — we will show a far better method next.

e A parallel result that takes into account noise can be constructed
similarly.

PAS




Practical Approach — Objective

X

U

g

P 2
Min ZHng — )—(J'H st Y, ng <L
DA | j- 2 0
Each example is Each example has a
a linear combination sparse representation with

of atoms from D no more than L atoms
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The K—=SVD Algorithm — General

Initiali
ni Elze D
| |

Sparse Coding

Use MP or BP

| | X
Dictionary
E Update

Column-by-Column by
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K—SVD Sparse Coding Stage

: P 2 :
Min - 2Dy [, st v, fog] <L D

For the jt
example
we solve

Min [Pu-xjf, st fd <L
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K—SVD Dictionary Update Stage

G, : The examples in{ x,}*

j=1

that use the column d,.

The content of d, influences
only the examples in G,.

Let us fix all A apart from the
kth column and seek both d,
and the k" column to better
fit the residual!
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K—SVD Dictionary Update Stage

We should solve: D
Residual

Min || Td, - E

d, is obtained by on the examples’ residual in G,.
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To Summarize so far ...

The Sparseland model for

signals is relevant to us. In
order to use it effectively
we need to know D

Use the K-SVD
algorithm

Will it work
well?

We have established a
uniqueness result
and shown how to
practically train D

using the K-SVD

(a) Deploy to applications

(b) Generalize in various ways:
multiscale, non-negative
factorization, speed-up, ...

(c) Performance guarantees?
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Inpaintil‘lg (1) [Elad, Starck, & Donoho (" 04)]

nage inpainting [2, 10, 20, 18] is the proces

ing data in a designated region of a still or
lications range

_ predetermined
- ¥ing objects fro

F . ching damaged IIIIﬂ photogra
Source

mﬁamvmd;mscmwhmhmc dICtlonary:

is saamlessly merged info the image in §

iovi, Trad Curvelet+DCT
3 dnne by pmfemmnal artised! For .

inpainting is vsed to revert deteriomation

i photagraphs, the infamous “airtrushi
enemies [20]). ‘A current active area of

QOutcome
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Inpainting (2)

] 1s thaproces i
we  predetermined

i '--I-J." 10
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% Curvelet+DCT

Source
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K'SVD On Images [Aharon, Elad, & Bruckstein (" 04)]

IR W W IIRrar o ey |
el Pl Pl o N S O
0 Y ] 0 O e,
o o N N ) e e D
o o O I e 0 0 Y O
i ()l il o I I i
R ol I i G G I I I
£ 5 15 5 S D O O
SECEEFIONEEERSNEAODEEE
ECEEEIANEEEFSEAAAAEREN
IS Pt 0
ANV
NSNS NN
ElEEddiNEESSNSNNENEE
mndEEldEEE SRS
i o i I sl G G 6 O
o e el 3 O N D I B
£E 5 50 O O

Overcomplete Haar

Recent Advances in Signal
B} Representations and Applications
B8 to Image Processing

10,000 sample 8-by-8 images.

K-SVD:

441 dictionary elements.
Approximation method: MP.
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Filling-In Missing Pixels

90%0 missing K-SVD Results Haar Results
pixels Average # Average #
coefficients 4.27 coefficients 4.48

RMSE: 25.32 RMSE: 28.97




Filling-In Missing Pixels

RMSE
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Compression

K-SVD Haar
dictionary  dictionary

OMP with
BEroK
bounad
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DCT
dictionary
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Compression

K-SVD Dictionary Haar Dictionary DCT Results
BPP = 0.502 BPP = 0.784 BPP = 1.01
RMSE = 7.67 RMSE = 8.41 RMSE = 8.14

£ O . .
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Compression
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Today We Have Discussed

1. AVisitto Sparseland

Motivating Sparsity & Overcompleteness

2. Problem 1: Transforms & Regularizations
How & why should this work?

3. Problem 2: What About D?

The quest for the origin of signals

4. Problem 3: Applications

Image filling in, denoising, separation, compression, ...
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Summary

and _ We are working on resolving
are important

deas that o 4 There are those difficulties:
ideas that can be used in _

iani - ifficulties i e Performance of .
designing better tools in difficulties in ce of pursuit alg

. W .
signal/image processing ks them! Speedup of those methods,
e Training the dictionary,

e Demonstrating applications,

Future transforms and
regularizations will be

The dream?

4

, and promoting
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