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Today’s Talk is About

Sparsity
and                                 

Overcompleteness
We will show today that
• Sparsity & Overcompleteness can & should be used to design new 

powerful signal/image processing tools (e.g., transforms, priors, 
models, …),

• The obtained machinery works very well – we will show these 
ideas deployed to applications. 
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Agenda

1. A Visit to Sparseland
Motivating Sparsity & Overcompleteness 

2. Problem 1: Transforms & Regularizations 
How & why should this work? 

3. Problem 2: What About D?
The quest for the origin of signals

4. Problem 3: Applications
Image filling in, denoising, separation, compression, …

Welcome                         
to                              

Sparseland
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Generating Signals in Sparseland

M K

N

D
A fixed Dictionary

•Every column in  
D (dictionary) is 
a prototype 
signal (Atom).

•The vector α is 
generated 
randomly with 
few non-zeros in 
random locations 
and random 
values. 

A sparse 
& random 
vector

=

α
x

N
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• Simple: Every 
generated signal is  built 
as a linear combination 
of few atoms from our 
dictionary D

• Rich: A general model: 
the obtained signals are 
a special type mixture-
of-Gaussians (or 
Laplacians).

Sparseland Signals Are Special

Multiply 
by D

αD=x

M 
α
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D

Transforms in Sparseland ?

Nx ℜ∈

M αD

M • Assume that x is known to emerge from     . .

• We desire simplicity, independence, and expressiveness. 

M • How about “Given x, find the α that generated it in     ” ? 

Kℜ∈αT 



Recent Advances in Signal 
Representations and Applications    
to Image Processing

7

Known 

So, In Order to Transform …

We need to solve an   
under-determined                        
linear system of equations:

=
x=αD

• Sparsity is measured 
using the L0 norm:

∑=
=

K

1j

0
j0

αα

• Among all (infinitely 
many) possible solutions 
we want the sparsest !!
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α̂• Are there practical ways to get     ?

Signal’s Transform in Sparseland

α

α
α

D=x.t.s

Min
0 α̂Multiply 

by D

αD=x

A sparse 
& random 

vector

=α

4 Major 
Questions

αα =ˆ• Is            ? Under which conditions?

• How effective are those ways?

• How would we get D?  
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Inverse Problems in Sparseland ?

• Assume that x is known to emerge from     .    M

M 
αD

Nx ℜ∈

vxy += H• Suppose we observe               , a “blurred” and noisy 
version of x with          . How will we recover x?ε≤

2
v

xH
My ℜ∈

Noise

• How about “find the α that generated the x …” again? 

Kˆ ℜ∈α
Q
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Inverse Problems in Sparseland ?

Multiply 
by D

αD=xA sparse 
& random 

vector

=α “blur”
by H

vxy += H

v

4 Major 
Questions 
(again!)

• How would we get D?  

α̂• Are there practical ways to get     ?

• How effective are those ways?

αα =ˆ• Is            ? How far can it go? 

εα

α
α

≤−
2

0

y

.t.sMin

HD
α̂
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Back Home … Any Lessons?

Several recent trends worth looking at: 

JPEG to JPEG2000 - From (L2-norm) KLT to wavelet and non-
linear approximation

From Wiener to robust restoration – From L2-norm (Fourier)     
to L1. (e.g., TV, Beltrami, wavelet shrinkage …)

From unitary to richer representations – Frames, shift-
invariance, bilateral, steerable, curvelet

Approximation theory – Non-linear approximation

ICA and related models

Sparsity. 

Overcompleteness.

Sparsity. 

Sparsity & Overcompleteness.

Independence and Sparsity.

Sparseland

is HERE
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To Summarize so far …

We do! this model is 
relevant to us just as 

well.
Who     

cares?

So, what      
are the 

implications?

Sparsity?  
looks  

complicated
(a) Practical solvers? 
(b) How will we get D?
(c) Applications?

The Sparseland model       for 
signals is interesting since it 
is rich and yet every signal 
has a simple description

M 

We need to solve (or 
approximate the solution 
of) a linear system with 
more unknowns than 

equations, while finding the 
sparsest possible solution
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Agenda

1. A Visit to Sparseland
Motivating Sparsity & Overcompleteness 

2. Problem 1: Transforms & Regularizations 
How & why should this work? 

3. Problem 2: What About D?
The quest for the origin of signals

4. Problem 3: Applications
Image filling in, denoising, separation, compression, …

T

Q
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Lets Start with the Transform …

known

αα
α

D=x.t.sMin:P 00

Put formally,

Our dream for Now: Find 
the sparsest solution of =

Known 

x=αD
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ααα
α

D== x.t.sArgMinˆ 0

Questions to Address

αα =ˆ• Is            ? Under which conditions?

• Are there practical ways to get     ?

• How effective are those ways?

• How would we get D?

α̂4 Major 
Questions
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Multiply 
by D

αD=x

=α

M 
Question 1 – Uniqueness? 

α

α
α

D=x.t.s

Min
0 α̂

Suppose we can            
solve this exactly

αα =ˆWhy should we necessarily get          ?

It might happen that eventually                  .00ˆ αα <
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Matrix “Spark”

Rank  = 4Rank  = 4

Spark = 3Spark = 3

1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

 
 
 
 
 
 

Example:

Donoho & Elad (‘02) 

Definition: Given a matrix D, σ=Spark{D} is the smallest
and and number of columns that are linearly dependent.
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Uniqueness Rule

αα
α

D=x.t.sMin:P 00

Suppose this problem has been solved somehow

This result implies that if       generates 
signals using “sparse enough” α, the 
solution of the above will find it exactly.

M 

If we found a representation that satisfy 

Then necessarily it is unique (the sparsest).
02

ασ
>

Uniqueness

Donoho & Elad (‘02) 
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α̂Are there reasonable ways to find     ?

M 
Question 2 – Practical P0 Solver? 

α

α
α

D=x.t.s

Min
0 α̂Multiply 

by D

αD=x

=α
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Matching Pursuit (MP)

=

Mallat & Zhang (1993)

• Next steps: given the 
previously found atoms, find 
the next one to best fit …

• The Orthogonal MP (OMP) is an improved 
version that re-evaluates the coefficients after 
each round.

• The MP is a greedy 
algorithm that finds one 
atom at a time.

• Step 1: find the one atom 
that best matches the signal. 
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Basis Pursuit (BP)

αα
α

D=x.t.sMin
0

Instead of solving

αα
α

D=x.t.sMin
1

Solve Instead

Chen, Donoho, & Saunders (1995)

• The newly defined problem is convex.

• It has a Linear Programming structure.

• Very efficient solvers can be deployed:
Interior point methods [Chen, Donoho, & Saunders (`95)] ,

Sequential shrinkage for union of ortho-bases [Bruce et.al. (`98)],  

If computing Dx and DTα are fast, based on shrinkage [Elad (`05)].
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Multiply 
by D

αD=x

=α

M 
Question 3 – Approx. Quality? 

α

α
α

D=x.t.s

Min
0 α̂

α̂
How effective are the MP/BP 
in finding     ? 
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Evaluating the “Spark”

• The Mutual Incoherence is a property of the dictionary 
(just like the “Spark”). The smaller it is, the better the 
dictionary.

• The Mutual Incoherence M is the largest entry in absolute 
value outside the main diagonal of DTD.

DT

=D

DTD

• Compute
Assume 
normalized 
columns
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BP and MP Equivalence

Given a signal x with a representation           ,

Assuming that                        , BP and MP are 

Guaranteed to find the sparsest solution. 

αD=x

( )M115.00 +<αDonoho & Elad (‘02) 
Gribonval & Nielsen (‘03)

Tropp (‘03) 
Temlyakov (‘03)

Equivalence

MP is typically inferior to BP!

The above result corresponds to the worst-case.

Average performance results are available too, showing much better 
bounds [Donoho (`04), Candes et.al. (`04), Elad and Zibulevsky (`04)]. 
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What About Inverse Problems?

εα

α
α

≤−
2

0

y

.t.sMin

HD
α̂“blur”

by H

vxy += H

v

• We had similar questions regarding uniqueness,                 
practical solvers, and their efficiency.

• It turns out that similar answers are applicable here           
due to several recent works                                     
[Donoho, Elad, and Temlyakov (`04), Tropp (`04), Fuchs (`04)].

Multiply 
by D

αD=xA sparse 
& random 

vector

=α
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To Summarize so far …

The Sparseland model for 
signals is relevant to us. 

We can design transforms 
and priors based on it

Use pursuit        
Algorithms

Find the 
sparsest 
solution?

A sequence of works 
during the past 3-4 

years gives theoretic 
justifications for these 

tools behavior

Why works so 
well?

What next?

(a) How shall we find D?

(b) Will this work for 
applications? Which?
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Agenda

1. A Visit to Sparseland
Motivating Sparsity & Overcompleteness 

2. Problem 1: Transforms & Regularizations 
How & why should this work? 

3. Problem 2: What About D?
The quest for the origin of signals

4. Problem 3: Applications
Image filling in, denoising, separation, compression, …
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Problem Setting

Multiply 
by D

αD=x

M α

L
0

≤α

Given these P examples and a 
fixed size [N×K] dictionary D:

1. Is D unique?

2. How would we find D?

{ }P
1jjX

=
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Uniqueness?

If            is rich enough* and if

then D is unique.

{ }
2

Spark
L

D
<

Uniqueness

Aharon, Elad, & Bruckstein (`05)

Comments:

M 







L
K• “Rich Enough”: The signals from      could be clustered to     groups that 

share the same support. At least L+1 examples per each are needed.

• This result is proved constructively, but the number of examples needed 
to pull this off is huge – we will show a far better method next. 

• A parallel result that takes into account noise can be constructed 
similarly. 

{ }P
1jjx

=
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Each example has a 
sparse representation with 

no more than L atoms

Each example is                    
a linear combination                   

of atoms from D

Practical Approach – Objective 

D≈X A

L,j.t.sxMin
0j

P

1j

2

2jj,
≤∀∑ −

=
ααD

AD
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The K–SVD Algorithm – General 

DInitialize         
D

Sparse Coding
Use MP or BP

Dictionary 
Update

Column-by-Column by  
SVD computation

Aharon, Elad, & Bruckstein (`04)

X
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K–SVD Sparse Coding Stage

D

X

L,j.t.sxMin
0j

P

1j

2

2jj ≤∀∑ −
=

ααD
A

For the jth
example           
we solve 

L.t.sxMin 0
2

2j ≤− αα
α

D

Pursuit Problem !!!
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K–SVD Dictionary Update Stage

D
Gk : The examples in         
and that use the column dk.

{ }P

1jjX
=

?dk =

The content of dk influences 
only the examples in Gk.

Let us fix all A apart from the 
kth column and seek both dk
and the kth column to better 
fit the residual!
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dk is obtained by SVD on the examples’ residual in Gk.

K–SVD Dictionary Update Stage

D
?dk =Residual

E

kα

We should solve:

2

Fk
T
k,d

dMin
kk

E−α
α
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To Summarize so far …

The Sparseland model for 
signals is relevant to us. In 
order to use it effectively 

we need to know D

Use the K-SVD 
algorithm

How D
can be 
found?

We have established a 
uniqueness result   
and shown how to 
practically train D
using the K-SVD

Will it work 
well? 

What next?
(a) Deploy to applications

(b) Generalize in various ways: 
multiscale, non-negative 
factorization, speed-up, …

(c) Performance guarantees?



Recent Advances in Signal 
Representations and Applications    
to Image Processing

36

Agenda

1. A Visit to Sparseland
Motivating Sparsity & Overcompleteness 

2. Problem 1: Transforms & Regularizations 
How & why should this work? 

3. Problem 2: What About D?
The quest for the origin of signals

4. Problem 3: Applications
Image filling in, denoising, separation, compression, …
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Inpainting (1) [Elad, Starck, & Donoho (`04)]

Source

Outcome

predetermined 
dictionary:           
Curvelet+DCT
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Inpainting (2)

Source

Outcome

predetermined 
dictionary:           
Curvelet+DCT
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10,000 sample 8-by-8 images.
441 dictionary elements.

Approximation method: MP.
K-SVD:

Overcomplete Haar

K-SVD on Images [Aharon, Elad, & Bruckstein (`04)]
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Filling-In Missing Pixels

90% missing 90% missing 
pixelspixels

HaarHaar ResultsResults
Average # Average # 

coefficients 4.48coefficients 4.48
RMSE: 28.97RMSE: 28.97

KK--SVD ResultsSVD Results
Average # Average # 

coefficients 4.27coefficients 4.27
RMSE: 25.32RMSE: 25.32
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Filling-In Missing Pixels
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KK--SVD SVD 
dictionarydictionary

HaarHaar
dictionarydictionary

DCT DCT 
dictionarydictionary

OMP with OMP with 
error error 

boundbound

( )10 logC K
N
+

=BPP 10C
N
⋅

=BPP

Compression
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DCT ResultsDCT Results
BPP = 1.01BPP = 1.01

RMSE = 8.14RMSE = 8.14

KK--SVD DictionarySVD Dictionary
BPP = 0.502BPP = 0.502
RMSE = 7.67RMSE = 7.67

HaarHaar DictionaryDictionary
BPP = 0.784BPP = 0.784
RMSE = 8.41RMSE = 8.41

Compression
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Compression
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Today We Have Discussed

1. A Visit to Sparseland
Motivating Sparsity & Overcompleteness 

2. Problem 1: Transforms & Regularizations 
How & why should this work? 

3. Problem 2: What About D?
The quest for the origin of signals

4. Problem 3: Applications
Image filling in, denoising, separation, compression, …
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Summary

Sparsity and Over-
completeness are important 
ideas that can be used in 
designing better tools in 
signal/image processing 

We are working on resolving 
those difficulties:
• Performance of pursuit alg.       
• Speedup of those methods,
• Training the dictionary,
• Demonstrating applications,
• …

There are 
difficulties in 
using them!

Future transforms and 
regularizations will be data-
driven, non-linear, 
overcomplete, and promoting 
sparsity.

The dream?


