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Abstract

Cleaning of noise from signals is a classical and long-studied problem in signal processing. For signals
that admit sparse representations over a known dictionary, MAP-based denoising seeks the sparsest
representation that synthesizes a signal close to the corrupted one. While this task is NP-hard, it can
usually be approximated quite well by a greedy method, such as the Orthogonal Matching Pursuit (OMP).
In this work we consider a Minimum-Mean-Squared-Error (MMSE) denoising algorithm, superior to the
above MAP approach. We show that this estimator amounts to a weighted averaging of many sparse
representation solutions. As its deployment is also NP-hard, we propose a practical randomized version of
the OMP algorithm for generating such a group of representations. Simulations of the proposed algorithm
are provided and its superiority over plain OMP is demonstrated.

1 Introduction

Cleaning of additive noise from signals is a classical and long-studied problem in signal processing.
This task, known as denoising, considers a given measurement signal y ∈ Rn obtained from the clean
signal x ∈ Rn by a contamination of the form y = x+v. In this paper we shall restrict our discussion to
noise vectors v ∈ Rn, assumed to be zero mean i.i.d. Gaussian, with entries drawn at random from the
normal distribution N (0, σ). The denoising goal is to recover x from y.

In order to design an effective denoising algorithm, we must have at our disposal two pieces of infor-
mation: The first is a knowledge about the noise characteristics, as described above. Along with it, we
must also introduce some knowledge about the class of signals that x belongs to. Only with these two
can one design a scheme to decompose y into its original components, x and v. There are numerous
algorithms for denoising, as there are numerous ways to describe the a-priori knowledge about the sig-
nal characteristics. Among these, a recently emerging model for signals that attracts much attention is
one that relies on sparse and redundant representations [Mallat (1998), Bruckstein-Donoho-Elad (2008)].
This model will be the focus of the work presented here.

A signal x is said to have a sparse representation over a known dictionary D ∈ Rn×m (we typically
assume that m > n, implying that this is a redundant representation), if there exists a sparse vector
α ∈ Rm such that x = Dα. The vector α is said to be the representation of x. Referring to the columns
of D as prototype signals or atoms, α describes how to construct x from a few such atoms by a linear
combination. The representation is sparse – the number of non-zeros in it, k = ‖α‖0, is expected to be
much smaller than n. Also, this is a redundant representation – it is longer than the original signal it
represents. In this paper we consider the family of signals that admit sparse representations over a known
dictionary D and discuss ways to denoise them.

Assuming that x = Dα with a sparse representation α, how can we denoise a corrupted version of it,
y? A commonly used denoising technique is to seek the sparsest representation that synthesizes a signal
close enough to the corrupted one [Bruckstein-Donoho-Elad (2008)]. Put formally, one way to define our
task is given by

α̂ = arg min
α

‖α‖0 + λ‖y −Dα‖22. (1)

The first penalty directs the minimization task towards the sparsest possible representation, exploiting
our a-priori knowledge about the formation of the signal. The second penalty manifests our knowledge
about the noise being white and Gaussian. This overall expression is inversely proportional to the
posterior probability, p(α|y), and as such, its minimization forms the Maximum A-posteriori Probability

1 / 10



(MAP) estimate. The parameter λ should be chosen based on σ and the fine details that model how the
representations are generated. Once α̂ is found, the denoising result is obtained by x̂ = Dα̂.

The problem posed in Equation (1) is too complex in general, requiring a combinatorial search that
explores all possible sparse supports [Natarajan (1995)]. Approximation methods are therefore often
employed, with the understanding that their result may deviate from the true solution. One such ap-
proximation technique is the Orthogonal Matching Pursuit (OMP), a greedy algorithm that accumulates
one atom at a time in forming α̂, aiming at each step to minimize the representation error ‖y −Dα‖22
[Mallat-Zhang (1993), Bruckstein-Donoho-Elad (2008)]. When this error falls below some predetermined
threshold, or when the number of atoms reaches a destination value, this process stops. While crude,
this technique works very fast and can guarantee near-optimal results in some cases.

How good is the denoising obtained by the above approach? Past work mostly concentrated on
the accuracy with which one can approximate the true representation (rather than the signal itself),
adopting a worst-case point of view. The only work that targets the theoretical question of denoising
performance head-on is reported in [Fletcher-Rangan-Goyal-Ramchandran (2006)], providing asymptotic
assessments of the denoising performance for very low and very high noise powers, assuming that the
original combinatorial problem can be solved exactly.

In this paper we consider the following question: Suppose we are served with a group of competing
sparse representations, each claiming to explain the signal differently. Can those be fused somehow to
lead to a better result? Surprisingly, the answer to this question is positive. In this paper we propose
a practical way to generate a set of sparse representations for a given signal by randomizing the OMP
algorithm. We demonstrate the gain in using such a set of representations by a plain averaging. Most
important of all, we develop analytical expressions for the MAP and the Minimum Mean-Squared-Error
(MMSE) estimators for the model discussed and show that while the MAP estimator aims to find and use
the sparsest representation, the MMSE estimator fuses a collection of representations to form its result.

This paper is organized as follows. In Section 2 we build a case for the use of several sparse repre-
sentations, leaning on intuition and some preliminary experiments that suggest that this idea is worth a
closer look. Section 3 contains the analytic part of this paper, which develops the MAP and the MMSE
exact estimators and their expected errors, showing how they relate to the use of several representations.
We conclude in Section 4 by highlighting the main contribution of this paper, and drawing attention
to important open questions to which our analysis points. We should note that this paper is a (much)
shorter version of [Elad-Yavneh (2008)].

2 A Mixture of Representations

2.1 The RandOMP – Creation of a Set of Representations

Here is a clear definition of our goal at the moment: Given a dictionary D and a signal y, we aim to
find a group of sparse representations αi, such that each satisfies ‖Dαi − y‖2 ≤ T , and all aim to be as
sparse as possible yet different from each other. Alternatively, we may desire to find this set such that
each has the same pre-specified number of non-zeros, k, and all aim to get residuals, ‖Dαi − y‖2, that
are as low as possible. We shall work in this section with the former option, since it is more relevant to
denoising in cases when the noise power is fixed and known, as in the case studied here.

Figure 1 presents the OMP algorithm with a stopping rule that depends on the residual energy
[Mallat-Zhang (1993)]. At each iteration, the set {ε(j)}m

j=1 is computed, whose jth term indicates the
error that would remain if atom j is added to the current solution. The atom chosen is the one yielding
the smallest error. Note that if there are several candidate atoms that show a relatively small residual
energy, the smallest one is chosen regardless of the proximity of the others to it. This brings us naturally
to the randomization approach we intend to apply.

In order to use this algorithm to generate a set of (probably) distinct sparse representations, all that
we need to do is to randomize the choice of the next atom to be added. For example, rather than choose
the atom that minimizes ε(j), we can choose it at random with a probability inversely proportional to
these error values, or proportional to |dT

j rk−1|2/‖dj‖22 (since ε(j) = ‖rk−1‖22 − |dT
j rk−1|2/‖dj‖22). For

reasons to be explained in detail in the next section, the specific way we choose to draw the next atom
is with probability linearly proportional to exp{ c2

2σ2 · |dT
j rk−1|2/‖dj‖22}, with c2 = σ2

x/(σ2
x + σ2). Here σx

is the variance of the non-zero entries of the representation of the original signal. Figure 2 presents this
algorithm, concentrating on the part that is different from Figure 1.
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Task: Approximate the solution of minα ‖α‖0 s.t. ‖Dα− y‖2 ≤ T .

Parameters: The matrix D, the signal y, and the error threshold T .

Initialization: Initialize k = 0, and set

• The initial solution α0 = 0.

• The initial residual r0 = y −Dα0 = y.

• The initial solution support S0 = Support{α0} = ∅.
Main Iteration: Increment k by 1 and perform the following steps:

• Sweep: Compute the errors ε(j) = minzj ‖djzj − rk−1‖22 for all j using the

optimal choice z∗j = dT
j rk−1/‖dj‖22.

• Update Support: Find j0–the minimizer of ε(j), and update the support, Sk =
Sk−1 ∪ {j0}.

• Update Solution: Compute αk, the minimizer of ‖Dα − y‖22 subject to
Support{α} = Sk.

• Update Residual: Compute rk = y −Dαk.

• Stopping Rule: If ‖rk‖2 < T , stop. Otherwise, apply another iteration.

Output: The proposed solution is αk obtained after k iterations.

Figure 1: The OMP – a greedy algorithm.

2.2 Experimental Study

By running this algorithm J0 times, this randomization leads to J0 solutions {αi}J0
i=1, as desired.

Common to all these representations are the facts that (i) their representation error ‖Dαi−y‖2 is below
T due to the stopping rule enforced; and (ii) all of them tend to be relatively sparse due to the greedy
nature of this algorithm that aims to decrease the residual energy, giving preference to those atoms that
serve this goal better.

...

Main Iteration: . . .

• Sweep: . . .

• Update Support: Draw j0 at random with probability proportional to exp{ c2

2σ2 ·
|dT

j rk−1|2/‖dj‖22}, and update the support, Sk = Sk−1 ∪ {j0}.

...

Figure 2: RandOMP – generating random sparse representations.

We demonstrate the behavior of this algorithm by performing the following test. We build a random
dictionary D of size 100×200 by drawing its entries at random from the normal distribution N (0, 1), and
then `2 normalizing its columns. We then generate a random representation α0 with k = 10 non-zeros
chosen at random and with values drawn from N (0, σx) with σx = 1. The clean signal is obtained by
x = Dα, and its noisy version y is obtained by adding white Gaussian noise with entries drawn from
N (0, σ) with σ in the range [0, 2].

Armed with the dictionary D, the corrupted signal y and the noise threshold T = nσ2 = 100, we can
run the plain OMP, and obtain a representation αOMP . The denoising effect obtained can be evaluated
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by the expression ‖DαOMP − x‖22/‖y − x‖22.
We also run the RandOMP with J0 = 40, obtaining {αRandOMP

j }40j=1. Instead of trying to pinpoint
the representation that performs best among those, we simply compute their average. This experiment
is repeated 1, 000 times in order to average over different noise realizations, sharing the same dictionary
but generating different signals α, x and y using the same parameters (σx = 1 and k = 10). Figure 3
presents the denoising performance of the averaging as a function of σ, and as can be seen, our method
is better 1 for all the choices of σ.
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Figure 3: The performance of the OMP and RandOMP algorithm for various noise powers.

We now turn to explain these results, tying the Rand-OMP algorithm and its averaged result to the
MMSE estimator.

3 Relation to the MMSE Estimator

We start by modelling the signal source in a complete manner, define the denoising goal in terms
of the MSE, and derive several estimators for it. We start with a very general setting of the problem,
and then narrow it down to the case discussed above on sparse representations. Our main goal in this
section is to show that the MMSE estimator can be written as a weighted averaging of various sparse
representations, which explains the results of the previous section. Beyond this, the analysis derives
exact expressions for the MSE for various estimators, enabling us to assess analytically their behavior
and relative performance, and to explain results that were obtained empirically in Section 2. Towards
the end of this section we tie the empirical and the theoretical parts of this work – we again perform
simulations and show how the actual denoising results obtained by OMP and RandOMP compare to the
analytic expressions developed here.

3.1 Preliminaries

Given a dictionary D ∈ Rn×m, let Ω denote the set of all 2m sub-dictionaries, where a sub-dictionary,
S, will interchangeably be considered as a subset of the columns of D or as a matrix comprised of such
columns. We assume that a random signal, x ∈ Rn, is selected by the following process. With each sub-
dictionary, S ∈ Ω, we associate a non-negative probability, P (S), with

∑
S∈Ω P (S) = 1. Furthermore,

with each signal x in the range of S (that is, such that there exists a vector z ∈ Rk satisfying Sz = x,)
denoted x ∈ R(S), we associate a conditional PDF, p(x|S). Then, the clean signal x is assumed to be

1The gain provided by the RandOMP is higher for lower SNR in this experiment. This differs from results to appear
later in the paper in Figure 4. An explanation of this gap in the performances is provided there.
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generated by first randomly selecting S according to P (S), and then randomly choosing x ∈ S according
to p(x|S). After the signal is generated, an additive random noise term, v, with PDF pv(v), is introduced,
yielding a noisy signal y = x + v.

Note that P (S) can be used to represent a tendency towards sparsity. For example, we can choose
P (S) to be a strongly decreasing function of the number of elements in S, or we can choose P (S) to be
zero for all S’s except those with a particular (small) number of elements, etc.

Given y, and assuming we know pv(v), P (S) and p(x|S), our objective is to find an estimator, x̂,
that will be as close as possible to the clean signal x in some sense. In this work we will mainly strive to
minimize the conditional mean square error (MSE),

MSEy = E (‖x̂− x‖2 |y)
. (2)

We write the conditional MSE as the sum

MSEy =
∑

S∈Ω

MSES,yP (S|y), (3)

with MSES,y defined as

MSES,y = E (‖x̂− x‖2 |S,y
)
. (4)

The first factor of the summation in (3) is the MSE subject to a noisy signal y and a given sub-dictionary
S, and the second factor is the probability of S given a noisy signal y. By Bayes’s formula, the latter is
given by

P (S|y) =
p(y|S)P (S)

p(y)
, (5)

where
p(y|S) =

∫

x∈R(S)

pv(y − x)p(x|S) dx (6)

is the PDF of y given the sub-dictionary S.
Next, we consider the first factor of the summation in (3), MSES,y, the MSE for a given y and

sub-dictionary S. Defining MS,y(x) = E (x |S,y), we have

E (‖x‖2 |S,y
)

= E (‖MS,y(x) + x−MS,y(x)‖2 |S,y
)

(7)

= ‖MS,y(x)‖2 + E (‖x−MS,y(x)‖2 |S,y
)

= ‖MS,y(x)‖2 + VS,y(x).

This property, along with the linearity of the expectation, can be used to rewrite the first factor of the
summation in (3) as follows:

MSES,y = E (‖x̂− x‖2 |S,y
)

= E (‖x̂‖2 − 2x̂T x + ‖x‖2 |S,y
)

(8)

= ‖x̂‖2 − 2x̂TMS,y(x) + ‖MS,y(x)‖2 + VS,y(x)
= ‖x̂−MS,y(x)‖2 + VS,y(x).

Finally, plugging this into (3) we obtain

MSEy =
∑

S∈Ω

[‖x̂−MS,y(x)‖2 + VS,y(x)
]
P (S|y) = E (‖x̂−MS,y(x)‖2|y)

+ E (VS,y(x)|y) , (9)

with P (S|y) given by (5).

3.2 Various Estimators – A General Form

By (9), the optimal x̂ that minimizes MSEy is, not surprisingly, given by

x̂MMSE = E (MS,y(x)|y) , (10)

and, plugged to Equation (9), the resulting optimal conditional MSE is given by

MSEMMSE
y = E (‖MS,y(x)− E (MS,y(x)|y) ‖2|y)

+ E (VS,y(x)|y) . (11)

5 / 10



Finally, from (9) and (10) we obtain for an arbitrary estimator x̂ the conditional MSE

MSEy = MSEMMSE
y + ‖x̂− x̂MMSE‖2. (12)

This can be used to determine how much better the optimal estimator does compared to any other
estimator.

The MAP estimator is obtained by maximizing the probability of x given y,

x̂MAP = arg max
x

p(x|y) = arg max
x

p(y|x)p(x)
p(y)

= argmax
x

pv(y − x)p(x), (13)

with
p(x) =

∑

S∈Ω : x∈R(S)

p(x|S)P (S) .

At the moment these expressions remain vague, but as we turn to use the specific signal and noise models
discussed in Section 3.1.2, these will assume an explicit form.

Suppose that the sub-dictionary S that was chosen in the generation of x is revealed to us. Given this
information, we clearly minimize MSEy by setting x̂ = MS,y(x) for the given S. We call this the oracle
estimator. The resulting conditional MSE is evidently given by the last term of (9),

MSEoracle
y = E (VS,y(x)|y) . (14)

We shall use this estimator to assess the performance of the various alternatives and see how close we
get to this “ideal” performance.

3.3 Back to Our Story – Sparse Representations

Our aim now is to harness the general derivation to the development of a practical algorithm for
the sparse representation and white Gaussian noise. Motivated by the sparse-representation paradigm,
we concentrate on the case where P (S) depends only on the number of atoms (columns) in S, denoted
|S|. We start with the basic case where P (S) vanishes unless |S| is exactly equal to some particular
0 ≤ k ≤ min(n, m), and S has column rank k. We denote the set of such S’s by Ωk, and define the
uniform distribution

P (S) =
{ 1

|Ωk| S ∈ Ωk ,

0 otherwise.

We assume throughout that the columns of D are normalized, ‖dj‖ = 1, for j = 1, . . . , n. This assumption
comes only to simplify the expressions we are about to obtain. Next, we recall that the noise is modelled
via a Gaussian distribution with zero mean and variance σ2, and thus

p (y|x) = pv (y − x) =
1

(2πσ2)n/2
· exp

{−‖y − x‖2
2σ2

}
. (15)

Similarly, given the sub-dictionary S from which x is drawn, the signal x is assumed to be generated via
a Gaussian distribution with mean zero and variance σ2

x, thus p(x|S) is given by

p (x|S) =

{
1

(2πσ2
x)k/2 · exp

{
−‖x‖2
2σ2

x

}
x ∈ R(S)

0 otherwise.
(16)

For convenience, we introduce the notation c2 = σ2
x/(σ2 +σ2

x). Also, we denote the orthogonal projection
of any vector a onto the subspace spanned by the columns of S by

aS = S
(
ST S

)−1
ST a.

We now follow the general derivation given above. From Equation (6) we can develop a closed-form
expression for p(y|S). By integration and rearrangement we obtain

p(y|S) =
∫

x∈R(S)

1

(2πσ2)n/2 · (2πσ2
x)k/2

· exp
{−‖y − x‖2

2σ2
+
−‖x‖2
2σ2

x

}
dx

=
(1− c2)k/2

|Ωk| (2πσ2)n/2
· exp

{−(1− c2)‖y‖2
2σ2

}
· exp

{−c2‖y − yS‖2
2σ2

}
. (17)
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Since the only dependence of p(y|S) on S is through the right-most factor, we immediately obtain by (5)
the simple formula

P (S|y) =
exp

{
− c2‖y−yS‖2

2σ2

}

∑
S′∈Ωk

exp
{

c2‖y−yS′‖2
2σ2

} . (18)

The denominator here is just a normalization. The numerator implies that, given a noisy signal y, the
probability that the clean signal was selected from the subspace S decays at a Gaussian rate with the
distance between y and S, i.e., ‖y− yS‖. This result is expected, given the Gaussian noise distribution.

Continuing to follow the general analysis, we compute the conditional mean, MS,y(x), for which we
require the conditional probability

p(x|S,y) =
p(y|S,x) p(x|S)

p(y|S)

=
1

p(y|S)
· 1
(2πσ2)n/2

· exp
{−‖y − x‖2

2σ2

}
· 1
(2πσ2

x)k/2
· exp

{−‖x‖2
2σ2

x

}
. (19)

By integration, we then obtain the simple result,

MS,y(x) =
∫

x∈R(S)

xp(x|S,y)dx = c2yS . (20)

Now the conditional variance can be computed, yielding

VS,y(x) =
∫

x∈R(S)

‖x− c2yS‖2p(x|S,y)dx = kc2σ2, (21)

which is independent of S and y. Thus, the oracle MSEy in this case is simply

MSEoracle
y = kc2σ2. (22)

The optimal estimator is given by Equation (10),

x̂MMSE = c2
∑

S∈Ωk

ySP (S|y) =
c2

∑
S′∈Ωk

exp
{
− c2‖y−yS′‖2

2σ2

} ·
∑

S∈Ωk

exp
{−c2‖y − yS‖2

2σ2

}
yS , (23)

with P (S|y) taken from (18). This MMSE estimate is a weighted average of the projections of y onto all
the possible sub-spaces S ∈ Ωk, as claimed. The MSE of this estimate is given by

MSEMMSE
y = kc2σ2 +

∑

S∈Ωk

‖x̂MMSE − c2yS‖2P (S|y). (24)

The latter can also be written as

MSEMMSE
y = kc2σ2 − ‖x̂MMSE‖2 +

∑

S∈Ωk

‖c2yS‖2P (S|y). (25)

We remark that any spherically symmetric pv(v) and p(x|S) produce a conditional mean, MS,y(x),
that is equal to yS times some scalar coefficient. The choice of Gaussian distributions makes the result
in (20) particularly simple in that the coefficient, c2, is independent of y and S.

Next, we consider the Maximum a Posterior (MAP) estimator, using (13). For simplicity, we shall
neglect the fact that some x’s may lie on intersections of two or more sub-dictionaries in Ωk, and therefore
their PDF is higher according to our model. This is a set of measure zero, and it therefore does not
influence the MMSE solution, but it does influence somewhat the MAP solution for y’s that are close to
such x’s. We can overcome this technical difficulty by modifying our model slightly so as to eliminate
the favoring of such x’s. Noting that P (S) is a constant for all S ∈ Ωk, we obtain from (13)

x̂MAP = arg max
x∈R(Ωk)

exp
{−‖y − x‖2

2σ2

}
· exp

{−‖x‖2
2σ2

x

}
, (26)
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where R(Ωk) is defined as the union of the ranges of all S ∈ Ωk. Multiplying through by exp(2c2σ2), we
find that the maximum is obtained by minimizing c2‖y − x‖2 + (1 − c2)‖x‖2, subject to the constraint
that x belongs to some S ∈ Ωk. The resulting estimator is readily found to be given by

x̂MAP = c2ySMAP
, (27)

where SMAP is the sub-space S ∈ Ωk which is closest to y, i.e., for which ‖y− yS‖2 is the smallest. The
resulting MSEy is given by substituting x̂MAP for x̂ in (12).

Note that in all the estimators we derive, the oracle, the MMSE, and the MAP, there is a factor of c2

that performs a shrinking of the estimate. For the model of x chosen, this is a mandatory step that was
omitted in Section 2.

3.4 Combining It All

It is now time to combine the theoretical analysis of section and the estimators we tested in Section 2,
and we achieve this by a controlled experiment. We start by building a random dictionary of size 20× 30
with `2-normalized columns. We generate signals following the model described above, by randomly
choosing a support with k = 3 columns, orthogonalizing the chosen columns, and multiplying them by a
random i.i.d. vector with entries drawn from N(0, 1) (i.e. σx = 1). We add noise to these signals with σ
in the range [0, 2] and evaluate the following values:

1. Empirical Oracle estimation and the MSE it induces. This estimator is simply the projection of
y on the correct support, followed by a multiplication by c2, as described in Equation (20) .

2. Theoretical Oracle estimation error, as given in Equation (22).

3. Empirical MMSE estimation and its MSE. We use the formula in Equation (23) in order to
compute the estimation, and then assess its error empirically. Note that in applying this formula
we gather all the

(
30
k

)
possible supports, compute the projection of y onto them, and weight them

according to the formula. This explains why in the experiment reported here we have restricted
the sizes involved.

4. Theoretical MMSE estimation error, using Equation (25) directly.

5. Empirical MAP estimation and its MSE. We use the analytic solution to (26) as described above,
by sweeping through all the possible supports, and searching the one with the smallest projection
error. This gives us the MAP estimation, and its error is evaluated empirically.

6. Theoretical MAP estimation error, as given in Equation (12), when plugging in the MAP esti-
mation.

7. OMP estimation and its MSE. The OMP is the same as described in Section 2, but the stopping
rule is based on the knowledge of k, rather than on representation error. Following the MAP
analysis done in Section 3, the result is multiplied by c2 as well.

8. Averaged RandOMP estimation and its MSE. The algorithm generates J0 = 100 representations
and averages them. As in the OMP, the stopping rule for those is the number of atoms k, and the
result is also multiplied by c2.

The above process is averaged over 1, 000 signal generations, and the resulting values are shown in Figures
4 for k = 3. First we draw attention to several general observations. As expected, we see in all these
graphs that there is a good alignment between the theoretical and the empirical evaluation of the MSE for
the oracle, the MMSE, and the MAP estimators. In fact, since the analysis is exact for this experiment,
the differences are only due to the finite number of tests per σ. We also see that the denoising performance
weakens as k grows. This is different from the behavior observed in Figure 3, and the reason for this is
the lack of the shrinkage (multiplication by c2) force in the early tests. A third and intriguing observation
that we will not explore here is the fact that there appears to be a critical input noise power (σ ≈ 0.4)
for which the MAP and the MMSE estimators (and their approximations) give their worst denoising
performance, as exhibited by the hump in all the MMSE/MAP cases.

The OMP algorithm is an attempt to approximate the MAP estimation, replacing the need for
sweeping through all the possible supports by a greedy detection of the involved atoms. As such, we
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expect it to be competitive and close to the MAP results we get (either analytically or empirically).
In fact, for k = 1 it aligns perfectly with the empirical MAP, since both are going through the same
computational stages. As k grows, there are some differences between the empirical MAP and the OMP,
especially for low noise, but for the cases studied here these differences are relatively small.

Just as OMP is an attempt to approximate the MAP estimation, the RandOMP averaging is approx-
imating the MMSE estimator, thereby yielding much better denoising than OMP. The core idea is to
replace the summation over all possible supports with a much smaller selected group of representations
that are sampled from the distribution governed by the weights in Equation (23). Indeed, the repre-
sentations chosen by RandOMP are those that correspond to large weights, since they are built in a
way that leads to small projection error ‖y − yP ‖2 for the k atoms chosen. Since the sampling already
mimics approximately the required distribution, all that remains is a simple averaging, as indeed we do
in practice. What is required is to tune the sampling to be faithful, and for that we revisit the case of
k = 1.

Considering the case of k = 1, we see from Equation (23) that an atom should be chosen as a candidate
representation with a probability proportional to exp{−c2‖y−yP ‖2/2σ2}. This in turn implies that this
probability is also proportional to2 exp{c2|yT di|2/2σ2}. Thus, RandOMP as described in Section 2 is
with perfect agreement with this probability. We see that RandOMP remains close to the empirical
MMSE for k = 3, implying that while our sampling strategy is not perfect, it is fair enough. Further
investigation is required to better sample the representations in order to get closer to the MSE estimate.

Finally, we note an additional advantage of RandOMP: the MMSE estimator varies continuously with
y, whereas the MAP estimator does not, possibly leading to artifacts.
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Figure 4: Empirical and theoretical evaluations of the MSE as a function of the input noise for k = 3.

3.5 Summarizing This Section

Under the assumptions of this section, we obtain simple explicit expressions for the optimal (MMSE)
estimator and its resulting MSEy. The optimal estimator turns out to be a weighted average of the
orthogonal projections of the noisy signal on the feasible subspaces, multiplied by a “shrinkage factor”

2Since the columns of the dictionary are normalized, the projection is given by yP = (yT di) · di. Thus, ‖y − yP ‖2 =
‖y‖2 − (yT di)

2. The term exp{−c2‖y‖2} is therefore a constant that cancels-out in the normalization.
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c2, which tends to zero when the noise variance, σ2, is large compared to the signal variance, σ2
x, and to

1 when the opposite is true. The weights in the weighted average depend on the distances between y and
the subspaces, favoring short distances of course, especially when c2‖y‖2/σ2 is large.

While the expressions obtained are indeed simple, they involve either an intolerable summations over(
m
k

)
(for the MMSE estimate), or searching over this amount of sub-spaces (for the MAP). Thus, these

formulas are impractical for a direct use. In that sense, one should consider the RandOMP approach
in Section 2 as a sampler from this huge set of subspaces over which we average. Roughly speaking,
since the RandOMP algorithm tends to find near-by sub-spaces that lead to sparse representations, it
gives priority to elements in the summation in Equation (23) that are assigned higher weights. We see
experimentally that RandOMP samples well from the representations, judging by the proximity of its
results to the MMSE error (both empirical and theoretical).

The results of this section can easily be extended to the case where we allow a range of values of k
with given probabilities. That is, we can extend these results for the case where

P (S) = f(|S|), (28)

for general non-negative functions f .

4 Summary and Conclusions

The Orthogonal Matching Pursuit is a simple and fast algorithm for approximating the sparse repre-
sentation for a given signal. It can be used for denoising of signals, as a way to approximate the MAP
estimation. In this work we have shown that by running this algorithm several times in a slightly modified
version that randomizes its outcome, one can obtain a collection of competing representations, and those
can be averaged to lead to far better denoising performance. This work starts by showing how to obtain
a set of such representations to merge, how to combine them wisely, and what kind of results to expect.
The analytic part of this paper explains this averaging as a way to approximate the MMSE estimate as a
sampler of the summation required. Future work on this topic should consider better sampling strategies
for better approximation of the MMSE result, an analytical and numerical study of the required number
of samples, an assessment of the robustness of this approach with respect to non-Gaussian distribution
of signals and limited accuracy in determining their variance, and exploration of special cases for which
practical deterministic algorithms are within reach.
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