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ABSTRACT
We consider the problem of estimating a deterministic sparse
vector x0 from underdetermined measurements Ax0 + w,
where w represents white Gaussian noise and A is a given
deterministic dictionary. We analyze the performance of three
sparse estimation algorithms: basis pursuit denoising, orthog-
onal matching pursuit, and thresholding. These approaches
are shown to achieve near-oracle performance with high prob-
ability, assuming that x0 is sufficiently sparse. Our results are
non-asymptotic and are based only on the coherence of A, so
that they are applicable to arbitrary dictionaries.

Index Terms— Sparse estimation, basis pursuit, match-
ing pursuit, thresholding algorithm, oracle

1. INTRODUCTION

Consider the setting in which an unknown deterministic pa-
rameter x0 ∈ Rm is to be estimated from measurements
b = Ax0 + w, where A ∈ Rn×m is a deterministic dic-
tionary and w is white Gaussian noise. It is assumed that
x0 is sparse, i.e., that most elements of x0 are zero. Several
estimation approaches have been proposed for this setting.
These include greedy algorithms, such as thresholding and or-
thogonal matching pursuit (OMP) [1], and ℓ1-based methods,
such as the Dantzig selector [2] and basis pursuit denoising
(BPDN) [3] (also known as the Lasso).

Candès and Tao [2] have shown that the Dantzig selector
is close to optimal under the assumption of Gaussian random
noise. Specifically, they proved that, with high probability,
the ℓ2 distance between x0 and the Dantzig estimate is within
O(logm) of the performance of an ideal “oracle” estimator,
which knows the locations of the nonzero elements of x0. Re-
cently, Bickel et al. [4] have shown that BPDN also shares
this property. To the best of our knowledge, there are no such
guarantees for greedy algorithms under random noise.

The contributions [2, 4] state their results using the re-
stricted isometry property (RIP). This measure is useful when
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information about the RIP constants is available (e.g., when
A is selected randomly from an appropriate ensemble). How-
ever, in general it is NP-hard to evaluate the RIP constants.
These constants must then be bounded by efficiently com-
putable properties of A, such as the mutual coherence. Al-
though weaker than RIP results, coherence-based bounds are
appealing since they can be used with arbitrary dictionaries.

In this paper, we seek performance guarantees for sparse
estimators based directly on the mutual coherence of the ma-
trix A. While these results are suboptimal when the RIP con-
stants of A are known, the coherence approach allows us to
derive tighter bounds than those obtained by applying coher-
ence bounds to RIP-based results. Specifically, we demon-
strate that BPDN, OMP and thresholding all achieve perfor-
mance within a constant times logm of the oracle estimator,
under suitable conditions. Furthermore, for BPDN, our result
is tighter than previous performance guarantees [4].

2. BACKGROUND

Let x0 ∈ Rm be an unknown vector, and denote its support
set by Λ0. Let s = ∥x0∥0 be the number of nonzero entries
in x0. We assume that s is known to be substantially smaller
than m, i.e., most elements in x0 are zero. Suppose we obtain
the measurements

b = Ax0 +w (1)

where A ∈ Rn×m is a known dictionary and w is white Gaus-
sian noise with variance σ2. We assume that the columns
(“atoms”) ai of A are normalized such that ∥ai∥2 = 1.

Given an index set Λ, denote by AΛ the submatrix formed
from the columns of A referenced by Λ. Using this notation,
we briefly recall some characteristics of the matrix A. First,
A is said to satisfy the RIP of order s with parameter δs [2]
if, for every index set Λ of size s, we have

(1− δs)∥y∥22 ≤ ∥AΛy∥22 ≤ (1 + δs)∥y∥22 (2)

for all y ∈ Rs. Similarly, A is said to satisfy the restricted
orthogonality property (ROP) of order (s1, s2) with parameter
θs1,s2 [2] if, for every pair of disjoint index sets Λ1 and Λ2

having cardinalities s1 and s2, respectively, we have∣∣yT
1 A

T
Λ1
AΛ2y2

∣∣ ≤ θs1,s2∥y1∥2∥y2∥2 (3)



for all y1 ∈ Rs1 and for all y2 ∈ Rs2 .
While the RIP and ROP are accurate characterizations of

A, their computation for a predetermined dictionary is NP-
hard in general. By contrast, the mutual coherence

µ , max
i ̸=j

∣∣aTi aj∣∣ (4)

can be computed efficiently directly from (4). The RIP and
ROP constants can be bounded by µ, as demonstrated by the
following lemma [5]. Thus, RIP-based guarantees [2, 4] can
be applied to cases in which only the coherence is known.

Lemma 1 For any matrix A and any s, s1, and s2,

δs ≤ (s− 1)µ, (5)
θs1,s2 ≤ µ

√
s1s2. (6)

To fix notation, we now briefly describe techniques for ap-
proximating x0 from measurements given by (1). Two main
strategies are available to this end: ℓ1 relaxation methods and
greedy techniques. Relaxation approaches include BPDN,
which is a solution x̂BP to the quadratic program

min
x

1
2∥b−Ax∥22 + γ∥x∥1, (7)

and the Dantzig selector, given by a solution x̂DS to

min
x

∥x∥1 s.t. ∥AT (b−Ax)∥∞ ≤ τ. (8)

In (7) and (8), the constants γ and τ control a tradeoff between
sparsity and conformance to the measurements.

Rather than solving an optimization problem, greedy ap-
proaches estimate the support set Λ0 from the measurements
b. The simplest of these approaches is the thresholding al-
gorithm, which selects a support containing the s atoms most
highly correlated with b. The estimate itself is then chosen
by finding the least-squares (LS) solution within this support.

A somewhat more sophisticated greedy approach is OMP
[1]. This algorithm keeps track of a “residual” r, which con-
tains the portion of b yet to be accounted for by the estimate.
The algorithm iteratively finds the single atom which is most
highly correlated with r, adds it to the support set, and recal-
culates the residual. We consider a version of this algorithm
in which s iterations are performed, yielding an estimate with
s nonzero entries.

3. PERFORMANCE GUARANTEES

A common technique for assessing the quality of an estima-
tor is to compare its performance to the lowest mean-squared
error (MSE) obtainable in the given setting. One way to
achieve this is through the Cramér–Rao bound (CRB), a limit
on the MSE of any unbiased estimator. It has recently been
shown [6] that the CRB for our setting (1) is given by

σ2 Tr((AT
Λ0
AΛ0)

−1). (9)

Thus, no unbiased estimator can achieve an MSE below (9).
A different strategy for appraising estimators is to compare
practical techniques with the “oracle” estimator, which is the
LS solution among vectors x whose support is Λ0 [2]. The
MSE of the oracle estimator is also given by (9), so that the
CRB and oracle approaches are equivalent in this respect.

For reasonable dictionaries and sparsity levels, (9) is on
the order of sσ2. Thus, the oracle estimator has substan-
tially reduced the effect of the noise, whose input power is
E
{
∥w∥22

}
= nσ2. Our goal in this paper is to determine

whether comparable performance gains can be achieved by
practical methods.

This question was first addressed in the context of the
Dantzig selector (8) by Candès and Tao [2]. Their result is
derived using the RIP and ROP constants (2)–(3). For a given
dictionary A, one can obtain the following coherence-based
guarantee on the performance of the Dantzig selector by ap-
plying Lemma 1 to [2, Th. 1.1].

Theorem 1 (Candès and Tao) Assume that

s < 1 +
1

(1 +
√
2)µ

(10)

and consider the Dantzig selector (8) with parameter τ =
σ
√

2(1 + α) logm, for some constant α > 0. Then, with
probability exceeding

1− 1

mα
√
π logm

, (11)

the Dantzig selector x̂DS satisfies

∥x0 − x̂DS∥22 ≤ 32(1 + α)

[1− ((1 +
√
2)s− 1)µ]2

sσ2 logm. (12)

This theorem is significant because it demonstrates that,
while x̂DS does not quite reach the performance of the CRB
(9), it does come within a constant factor multiplied by logm,
with high probability. It turns out that the logm factor is an
unavoidable result of the fact that the locations of the nonzero
elements in x0 are unknown [7, §7.4].

Bickel et al. [4] have recently demonstrated similar results
for BPDN; they showed that, with high probability, BPDN
comes within a factor of C logm of the oracle performance,
for a constant C. In fact, their analysis is quite versatile, and
simultaneously provides a result for both the Dantzig selector
and BPDN. However, the constant C obtained in their BPDN
guarantee is always larger than 128, which is considerably
weaker than that of Theorem 1.

By directly using the mutual coherence of A, an improved
coherence-based performance guarantee can be obtained for
BPDN. This is demonstrated in the following theorem [5].

Theorem 2 Suppose that1 s < 1/(3µ), and let x̂BP be a
solution of BPDN (7) with γ =

√
8σ2(1 + α) log(m− k).

1Similar findings can also be obtained under the weaker requirement s <
1/(2µ), but the resulting expressions are somewhat more involved.



Then, with probability exceeding(
1− 1

(m− s)α

)(
1− e−s/7

)
, (13)

we have

∥x0 − x̂BP∥22 ≤
(√

3 + 3
√

2(1 + α) log(m− s)
)2

sσ2.

(14)

Let us compare Theorems 1 and 2 in terms of probabil-
ities of success. Eq. (13) is a product of two terms, both of
which converge to 1 as the problem dimensions increase. The
right-hand term may seem odd because it appears to favor
non-sparse signals, but this is only an artifact of the method
of proof (see [5] for details). This term converges to 1 expo-
nentially and typically has a negligible effect on the overall
probability of success. The left-hand term in (13), which is
the significant factor in the probability of success, tends to 1
polynomially as m−s increases, while in (11) the probability
tends to 1 polynomially in m. However, for both theorems to
hold, we must have m ≫ s, so this difference is negligible.
We also note that for m → ∞ and constant s, (11) tends to 1,
while (13) does not. On the other hand, if both m − s and s
tend to infinity, then both probabilities converge to 1.

We next compare the error bounds provided by the two
theorems. For large s and m− s, the result (14) for BPDN is
on the order of 18(1+α)sσ2 log(m−s), while the result (12)
for the Dantzig selector is C(1+α)sσ2 logm, where C ≥ 32
and, depending on the values of s and µ, may be much larger.

The above performance guarantees assumed only that x0

is sufficiently sparse. By contrast, for greedy algorithms, suc-
cessful estimation can only be guaranteed if one further as-
sumes that all nonzero components of x0 are somewhat larger
than the noise level. The reason is that greedy techniques
are based on a LS solution for an estimated support, an ap-
proach whose efficacy is poor unless all support elements are
correctly identified. To ensure support recovery, all nonzero
elements must be large enough to overcome the noise.

To formalize this notion, we denote by |xmin| and |xmax|,
respectively, the smallest and largest values of |x0,i| among
i ∈ Λ0. A performance guarantee for both OMP and the
thresholding algorithm can then be stated as follows [5].

Theorem 3 Suppose that

|xmin| − (2s− 1)µ|xmin| ≥ 2σ
√
2(1 + α) logm (15)

for some constant α > 0. Then, with probability at least

1− 1

mα
√
π(1 + α) logm

, (16)

the OMP estimate x̂OMP identifies the correct support Λ0 of
x0 and, furthermore, satisfies

∥x̂OMP − x0∥22 ≤ 2(1 + α)

(1− (s− 1)µ)2
sσ2 logm (17a)

≤ 8(1 + α)sσ2 logm. (17b)

If the stronger condition

|xmin| − (2s− 1)µ|xmax| ≥ 2σ
√
2(1 + α) logm (18)

holds, then with probability exceeding (16), the thresholding
algorithm also correctly identifies Λ0 and satisfies (17).

The performance guarantee (17) is better than that pro-
vided by Theorems 1 and 2. However, this result comes at
the expense of requirements on the magnitude of the entries
of x0. Our analysis thus suggests that greedy approaches may
outperform ℓ1-based methods when the entries of x0 are large
compared with the noise, but that the greedy approaches will
fail when the noise level increases. As we will see in Sec-
tion 4, simulations also appear to support this conclusion.

It is interesting to compare the success conditions (15)
and (18) of the OMP and thresholding algorithms. For given
problem dimensions, the OMP algorithm requires |xmin|, the
smallest nonzero element of x0, to be larger than a constant
multiple of the noise standard deviation σ. This is required
in order to ensure that all elements of the support of x0 will
be identified. The requirement of the thresholding algorithm
is stronger, as befits a simpler approach: In this case |xmin|
must be larger than the noise standard deviation plus a con-
stant times |xmax|. In other words, one must be able to sepa-
rate |xmin| from the combined effect of noise and interference
caused by the other nonzero components of x0. This results
from the thresholding technique, in which the entire support
is identified simultaneously from the measurements. By com-
parison, the iterative approach used by OMP identifies and
removes the large elements in x0 first, thus facilitating the
identification of the smaller elements in later iterations.

4. NUMERICAL RESULTS

The results of Section 3 guarantee that, with high probabil-
ity, a specified distance between x0 and its estimate will be
achieved. In other words, these are “nearly worst-case” guar-
antees in that they hold for all but a very unlikely set of noise
realizations. In practice, however, it is more common to mea-
sure the MSE of an estimator. The MSE is likely to be some-
what lower than the theoretical results of Section 3, as it av-
erages the errors of all noise realizations. Thus, our next goal
is to determine whether the behavior predicted by Theorems
1–3 is also manifested in the MSE of the various estimators.

To this end, we conducted a series of simulations in which
the MSEs of the estimators of Section 2 were compared. The
regularization parameters τ and γ of the Dantzig selector and
BPDN were chosen as recommended by Theorems 1 and 2,
respectively. For these estimators a value of α = 1 was cho-
sen; thus, the guaranteed probability of success for the two
algorithms has the same order of magnitude.

We chose the two-ortho dictionary A = [I H], where
I is the 128 × 128 identity matrix and H is the 128 × 128
Hadamard matrix with normalized columns. The RIP and
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Fig. 1. MSE of various estimators as a function of the SNR.

ROP constants of this dictionary are unknown, but the co-
herence can be readily calculated and is given by µ ≈ 0.088.
Similar experiments were performed on a variety of other dic-
tionaries and yielded comparable results (not reported here).

The parameter vector x0 was obtained by selecting a 5-
element support at random, choosing the nonzero entries from
a white Gaussian distribution, and then normalizing the re-
sulting vector so that ∥x0∥2 = 1. The measurements b were
obtained from (1), and x0 was estimated using the algorithms
defined in Section 2. The MSE of each estimate was then cal-
culated by averaging over repeated realizations of x0 and the
noise. The experiment was repeated for 10 values of the noise
variance σ2 and the results are plotted in Fig. 1.

To compare this plot with the theoretical results of Sec-
tion 3, observe first the situation at high signal-to-noise ra-
tio (SNR). Here, OMP, BPDN, and the Dantzig selector all
achieve performance which is proportional to the oracle MSE
(or CRB) of (9). Among these, OMP is closest to the CRB,
followed by BPDN and the Dantzig selector. This behavior
matches the proportionality constants given in the theorems of
Section 3. Furthermore, for small σ, the condition (15) holds
even for large α, and thus Theorem 3 guarantees that OMP
will recover the correct support of x0 with high probability,
explaining the convergence of this estimator to the oracle. By
contrast, the performance of the thresholding algorithm levels
off at high SNR; this is again predicted by Theorem 3, since,
even when σ = 0, the condition (18) does not always hold,
unless |xmin| is not much smaller than |xmax|. Thus, for our
choice of x0, Theorem 3 does not guarantee near-oracle per-
formance for the thresholding algorithm, even at high SNR.

With increasing noise, Theorem 3 requires a correspond-
ing increase in |xmin| to guarantee the success of the greedy
algorithms. Consequently, Fig. 1 demonstrates a deteriora-
tion of these algorithms when the SNR is low. On the other
hand, the theorems for the relaxation algorithms make no
such assumptions, and indeed these approaches continue to

perform well even when the noise level is high. In particu-
lar, the Dantzig selector outperforms the CRB at low SNR;
this is because the CRB is a bound on unbiased techniques,
whereas when the noise is large, biased techniques such as an
ℓ1 penalty become very effective. Robustness to noise is thus
an important advantage of ℓ1-relaxation techniques.

5. DISCUSSION

The performance of an estimator depends on the problem set-
ting under consideration. For example, suppose the parame-
ter x0 and the noise w are both deterministic and assume that
∥w∥2 ≤ ε. In this case, the estimation error of any algorithm
can be as high as ε; in other words, the assumption of spar-
sity has not yielded any reduction in noise power [8]. On the
other hand, in the Bayesian regime in which both x0 and the
noise vector are random, practical estimators come close to
the performance of the oracle estimator [9]. In this paper, we
have examined a middle ground between these two extremes,
namely the frequentist setting in which x0 is deterministic
but the noise is random. As we have shown, despite the fact
that less is known about x0 in this case than in the Bayesian
scenario, a variety of estimation techniques are guaranteed to
achieve performance close to that of the oracle estimator.
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