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ABSTRACT
In the past decade there has been a great interest in a
synthesis-based model for signals, based on sparse and redun-
dant representations. Such a model assumes that the signal
of interest can be composed as a linear combination of few
columns from a given matrix (the dictionary). An alternative
analysis-based model can be envisioned, where an analysis
operator multiplies the signal, leading to a cosparse outcome.
In this paper, we consider this analysis model, in the context
of a generic missing data problem (e.g., compressed sens-
ing, inpainting, source separation, etc.). Our work proposes
a uniqueness result for the solution of this problem, based
on properties of the analysis operator and the measurement
matrix. This paper also considers two pursuit algorithms for
solving the missing data problem, an L1-based and a new
greedy method. Our simulations demonstrate the appeal of
the analysis model, and the success of the pursuit techniques
presented.

Index Terms— Sparse Representation, Inverse Problems,
Algorithms, Cosparse Analysis Model

1. INTRODUCTION

A ubiquitous problem that has found many applications, from
signal processing to machine learning, is to estimate a high-
dimensional vector x0 ∈ Rd from a set of possibly incom-
plete linear observations y ∈ Rm,

y = Mx0. (1)

When the number of observations m is smaller than the data
dimension d, this is an ill-posed problem which admits in-
finitely many solutions. Solving it is hopeless unless we can
use additional prior knowledge on x0.

The assumption that x0 is sparse is known to be of signif-
icant help, and it is now well understood that under incoher-
ence assumptions on the matrix M, sufficiently sparse vectors
x0 can be robustly estimated by the solution of:

x̂ := arg min
x
‖x‖τ subject to y = Mx, (2)
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where 0 ≤ τ ≤ 1.
In many cases, x0 itself may not be sparse, but may still

admit a sparse representation z0 in some synthesis dictionary
D, i.e., x0 = Dz0, z0 ∈ Rn, in which case one will estimate
it using a modified optimization problem

x̂S := Dẑ; ẑ := arg min
z
‖z‖τ subject to y = MDz. (3)

The focus of this paper is on an alternative to the above
sparse synthesis data model; the cosparse analysis data
model. In this model, there is an analysis operator Ω ∈ Rp×d

such that the analysis coefficients sequence Ωx0 of the signal
x0 of interest is, in some sense, sparse. One could then solve,
in place of (3), the analysis-based optimization problem,

x̂A := arg min
x
‖Ωx‖τ subject to y = Mx. (4)

Typically the dimensions are m ≤ d ≤ p, n.
The analysis `τ -minimization method (4) has already

been widely used in practice and studied theoretically (e.g.,
[1], [2], [3], [4]). However, there seems to be little theoretical
discussion in the literature of the underlying cosparse analysis
model. In this paper, we highlight the different structure of
this new model and its implications. We look at the unique-
ness of ‘cosparse’ recovery problem in the analysis model,
and propose a new greedy algorithm which is based on the
concept of the cosparse analysis data model. We present
simulation results from applying the pursuit algorithms to
signals conforming to the proposed model, demonstrating
their appeal.

2. COSPARSE ANALYSIS DATA MODEL

The choice of the optimization principle (3) for data estima-
tion will not provide an exact estimator for x0, unless we as-
sume the k-sparse synthesis data model:

∃z0 ∈ Rn, x0 = Dz0, ‖z0‖0 = k. (5)

As it is now well understood, if the k-sparse synthesis model
holds for sufficiently small k (we will also say that x0 is
synthesis-sparse or simply sparse), then the optimization
problem (3) with τ = 1 indeed allows the recovery of x0 by



convex optimization ([5], [6]), which has bounded complex-
ity.

Just as for the sparse synthesis data model, one can hope
to estimate x0 using (4) only if x0 is ‘sufficiently cosparse’.
In contrast to the synthesis model, we need to define the `-
cosparse analysis data model as follows:

‖Ωx0‖0 = p− `. (6)

One can observe that the larger ` is, the lower dimensional
x0 is. When x0 satisfies the `-cosparse analysis model (6) for
large `, we will say informally that x0 is analysis-cosparse,
or simply cosparse. The integer ` in (6) will be called the
cosparsity of x0. We highlight that the cosparsity of x0 can
be very high while the coefficient sequence Ωx0 is not sparse
in the standard sparse synthesis model sense (see further dis-
cussion below).

2.1. Similarities with the Synthesis Model

Both models (synthesis and analysis) can be viewed as a more
general data model called the union of subspaces model. In
this model, it is assumed that there is a collection of subspaces
Sγ ⊂ Rd, γ ∈ Γ, such that a signal of interest x0 coincides
with an element from the union ∪γ∈ΓSγ .

The cosparse analysis model is associated to a union of
subspaces model as follows: given an analysis operator Ω and
its rows ωj ∈ Rd, 1 ≤ j ≤ p, the vectors that satisfy the
model (6) are simply in the orthogonal complement to linear
combinations of ` rows of Ω: when the zero entries of the
analysis coefficient vector Ωx ∈ Rp are in the index set Λ ⊂
J1, pK, we have ΩΛx = 0, i.e., x ∈ WΛ, where

WΛ := span(ωj , j ∈ Λ)⊥ = {x : 〈ωj ,x〉 = 0, j ∈ Λ} . (7)

Hence, x0 satisfies the cosparse analysis data model if it is
an element of ∪ΛWΛ, where the union is taken over sets of
cardinality ]Λ = `.

Similarly, the sparse synthesis model is recognized as a
union of subspaces model: leaving the details to the reader,
given a dictionary D ∈ Rd×n, we observe that x0 satisfies the
sparse synthesis data model if it belongs to ∪TVT where VT ’s
are k-dimensional subspaces spanned by k columns from D.

Being viewed as union of subspaces models, the synthesis
and analysis data models may be considered to be ‘equivalent’
if the subspaces WΛ and VT are of the same dimension and
the number of subspaces in the unions are the same. That is,
the two data models are similar when ` = d− k,

(
p
`

)
≈

(
n
k

)
.

2.2. Differences with the Synthesis Model

Given a dictionary D ∈ Rd×n for the sparse synthesis model,
it is easy to see that there exist signals with very sparse repre-
sentations. For example, if the signal x0 is a scalar multiple of
a column of D, then it has a 1-sparse representation. We also

observe that for any representation x0 = Dz with ‖z‖0 > d,
there is a sparser representation x0 = Dz′, ‖z′‖0 ≤ d.

In contrast, given a generic analysis operator Ω ∈ Rp×d

with no non-trivial linear dependencies among its rows,
the representation Ωx0 of x0 6= 0 cannot achieve sparsity
‖Ωx0‖0 ≤ p − d when p > d. Indeed, cosparsity ` ≥ d can
only be achieved when x0 = 0 since it implies that x0 ∈ Rd

is orthogonal to at least d linearly independent rows of Ω.
Also, ‖Ωx0‖0 can be as large as p unlike in the synthesis
case. Focussing on cosparsity, the number ` of zero entries in
Ωx0 can freely range from 0 to d− 1. This is the reason why
it is more natural to consider the notion of cosparsity, and
this has implications in understanding the uniqueness of the
‘sparse recovery’ problem for the cosparse analysis model.

3. UNIQUENESS

We now consider the uniquess of solutions to (1) under a
cosparse analysis model constraint. Once the index set Λ such
that ΩΛx0 = 0 is known, we can form the linear system,[

y
0

]
=

[
M
ΩΛ

]
x. (8)

This system has a unique solution x = x0 provided that the

matrix
[
M
ΩΛ

]
has rank d. This requires m ≥ d− `.

In practice, Λ is not known, and we are interested in
uniqueness guarantees of (1) under the cosparse analysis
model. This is an instance of a more general uniqueness
problem studied in [7, 8] for union of subspaces models. In
particular [7] shows that M is invertible on the union of sub-
spaces ∪γ∈ΓSγ if and only if M is invertible on all subspaces
Sγ + Sθ for all γ, θ ∈ Γ. In the context of the cosparse
analysis model this yields the following result:

Proposition 1. Suppose that for some fixed ` > 0, Ω and M
satisfy

(WΛ1 +WΛ2) ∩Null(M) = {0} (9)

for every pair of subsets Λ1 and Λ2 of J1, pK with #Λi ≥ `,
i = 1, 2. Then there is at most one solution x that satisfies

y = Mx and ‖Ωx‖0 ≤ p− `. (10)

To interpret the result of Proposition 1 in terms of rela-
tions between the number of measurementsm and the cospar-
sity `, let us now consider the case where Ω is in general po-
sition, which means that any collection of less than d rows
from Ω is linearly independent. This implies that dim(WΛ1 +
WΛ2) ≤ 2(d − `) whenever #Λi ≥ `. We further assume
that (i) M is of full rank, which yields dim(WΛ1 +WΛ2) +
dim(Null(M)) ≤ 2(d− `) + d−m; and (ii) M is ‘indepen-
dent’ of Ω, implying that when 2(d−`)+d−m ≤ d, then (9)
is satisfied. This leads to the following proposition (A general
version of this for union of subspaces is given in [8, Theorem
2.3].):



Proposition 2. Let Ω be an analysis operator in general po-
sition. Then, for almost all M (with respect to the Lebesgue
measure), a necessary and sufficient condition for (10) to
have at most one solution is m ≥ 2(d− `).

There are three interesting observations that we would
like to draw attention to. First, while m ≥ d − ` measure-
ments are required to identify x0 when Λ is known, here we
need twice as many to blindly identify Λ. Second, some read-
ers may notice that Proposition 2 is the counter part to the fol-
lowing result in the sparse synthesis model: roughly speaking,
in order to recover k-sparse x0 as the sparsest representation
that matches the observation, one needs at least m ≥ 2k mea-
surements. The proposition says that in the cosparse analysis
model, again roughly speaking, in order to recover `-cosparse
x0, at least m ≥ 2(d − `) measurements are necessary. This
suggests that d − ` is playing the role of k. Third, it is inter-
esting to note that the number of rows in Ω, p, plays no role
in the uniqueness result.

4. ALGORITHMS

In this section we present two algorithms, both targeting the
solution of the problem

x̂ = arg min
x
‖Ωx‖0 subject to Mx = y. (11)

4.1. The Analysis `1-minimization Algorithm

The first algorithm amounts to using `1-norm instead of `0-
norm in (11). Throughout the paper, we call this algorithm the
“analysis `1-minimization algorithm”, or simply, “analysis-
`1”.

4.2. The Greedy Analysis Pursuit Algorithm

The new algorithm we present is the Greedy Analysis Pur-
suit (GAP) algorithm. It is an adaptation of the well-known
greedy pursuit algorithm used for the synthesis model – the
Orthogonal Matching Pursuit (OMP). Similar to the synthesis
case, our goal is to detect the informative support of Ωx – in
the analysis case, this amounts to the locations of the zeros
in the vector Ωx, so as to introduce additional constraints to
the underdetermined system Mx = y. Note that to obtain a
solution, one needs to detect at least d−m of these zeros, and
thus if the cosparsity ` > d − m, detection of the complete
set of zeros is not mandatory.

The algorithm aims to detect the elements outside the set
Λ, this way carving its way towards the detection of the de-
sired support. Therefore, the support Λ̂ is initialized to be the
whole set {1, 2, 3, . . . , p}, and through the iterations it is
reduced towards a set of size ` (or less, d − m). A detailed
description of the algorithm is available in Figure 1.

• Task: Approximate the solution of (11).

• Parameters: Given are the matrices M, Ω, the vector y.
We also use a very small parameter λ > 0.

• Initialization: Set k = 0 and perform the following steps:

• Initialize Co-Support: Λ̂k = {1, 2, 3, . . . , p},

• Initialize Solution: x̂k =

»
M√
λΩΛ̂k

–† »
y
0

–
.

• GAP Iterations: k → k + 1 and perform the following
steps:

• Project: Compute α = Ωx̂k−1,

• Update Support: Λ̂k = Λ̂k−1 \ {arg maxi∈Λ̂k−1
|αi|},

• Update Solution: x̂k =

»
M√
λΩΛ̂k

–† »
y
0

–
.

• Stopping Criterion: If k ≥ p− d+m or x̂k − x̂k−1 is
small, stop.

• Output: The proposed solution is x̂k.

Fig. 1. The Greedy Analysis Pursuit (GAP) algorithm.

5. EMPIRICAL PERFORMANCE OF THE
ALGORITHMS

In this section, we show the results obtained by applying the
algorithms described in Section 4 to a synthetic problem. In
the experiment, M ∈ Rm×d was chosen to be a random
Gaussian matrix, and Ω ∈ Rp×d were constructed to be the
transpose of a random tight frame. Next, for a fixed cosparsity
`, random ` rows, say Λ, of Ω were selected. The target sig-
nal x0 was constructed by finding an orthonormal basis B for
WΛ, generating an independent random normal vector c that
corresponds to the size of B, and constructing x0 as x0 = Bc.
The observation was obtained by y = Mx0.

We have used the Matlab cvx package [9] with high-
est precision to solve the analysis `1 optimization prob-
lem (4) and the final solution was debiased. For GAP, we
have implemented the algorithm in Matlab. The parame-
ter λ was taken to be 10−6 and for the stopping criterion,
‖x̂k − x̂k−1‖2/‖x̂k‖2 < 10−5 was used. The code is avail-
able on the web at http://small-project.eu/software-data.

Figure 2 shows the so-called phase transition diagrams
obtained from the experiment. The gray level of each square
in a diagram indicates what proportion of the corpus of 50
randomly drawn target signals x0 was correctly identified
(perfect recovery), for a given set of parameters δ, ρ, and σ as
described below. Black corresponds to zero recovery while
white corresponds to all 50 instances of recovery. In all cases,
the signal dimension d is set to 200. We varied the number
m of measurements, the co-sparsity ` of the target signal, and



the dictionary size p according to the following formulae:

m = δd, ` = d− ρm, p = σd. (12)

δ can be interpreted as the compression ratio or the amount of
measurements available in relation to the signal dimension d,
and ρ as the relative dimension of the signal to m. Lastly, σ
indicates the amount of redundancy of the analysis operator.
A relative error of size less than 10−6 was counted as perfect
recovery. In the case of σ = 1, the weak phase transition
curve of Donoho and Tanner [10] is also plotted in red.

Fig. 2. Recovery Rate of GAP (left) and Analysis-`1 (right)
for d = 200. From top to bottom, σ = 1 (non-redundant case)
and 1.2 (more redundant case).

One may loosely interpret that an algorithm performs bet-
ter than the other if its phase diagram has a larger bright area
than that of the other. The figure shows that GAP performs
better than analysis-`1 in both complete (σ = 1) and over-
complete (σ = 1.2) cases. Looking at the diagrams more
closely, the recovery (white) region for GAP starts at smaller
δ than that of analysis-`1. This means that GAP can have per-
fect recovery with fewer measurements. We also observe that
the recovery region for GAP is taller, which means that GAP
can recover less cosparse vectors (larger ρ) than analysis-`1.

We also observe that for the generic Ω used in this ex-
periment, redundancy (σ > 1) comes with a price; below a
critical under-sampling ratio δ, recovery becomes impossible.
We believe that this is due to the exponentially growing num-
ber of low dimensional subspaces associated to the cosparse
analysis model.

To give an idea on how the algorithms compare in terms
of computational cost, for p = d = 200, m = 100, and
` = 190, GAP and analysis-`1 took 77.3 and 69.7 seconds,
respectively, to complete 50 runs. However, when the redun-
dancy σ is large, GAP, as expected, took longer: for p = 240,
d = 200, m = 100, ` = 190, the run time were 322.8 and
96.8 seconds, respectively for GAP and analysis-`1.

6. CONCLUSION

We have described a cosparse analysis data model which is
an alternative to the widely used sparse synthesis data model.
Although analysis representations have been studied before,
this cosparse analysis model offers a new perspective on such
approaches. We have also presented a uniqueness result for
this model, hence provided a ground for the possibility of re-
covering a cosparse signal when only a partial information
about the signal is available. Furthermore, we have shown by
synthetic experiments that there are algorithms that achieve
the perfect recovery of cosparse signals.
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