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ABSTRACT

We address the problem of denoising for image patches. The ap-
proach taken is based on Bayesian modeling of sparse representa-
tions, which takes into account dependencies between the dictio-
nary atoms. Following recent work, we use a Boltzman machine
to model the sparsity pattern. In this work we focus on the special
case of a unitary dictionary and obtain the exact MAP estimate for
the sparse representation using an efficient message passing algo-
rithm. We present an adaptive model-based scheme for sparse signal
recovery, which is based on sparse coding via message passing and
on learning the model parameters from the data. This adaptive ap-
proach is applied on noisy image patches in order to recover their
sparse representations over a fixed unitary dictionary. We compare
the denoising performance to that of previous sparse recovery meth-
ods, which do not exploit the statistical dependencies, and show the
effectiveness of our approach.

Index Terms— Sparse representations, MAP, Boltzmann ma-
chine, unitary dictionary, message passing, image denoising.

1. INTRODUCTION

Signal modeling based on sparse representations is used in numerous
signal and image processing applications, such as denoising, restora-
tion, source separation, compression and sampling (for a compre-
hensive review see [1]). The core idea in all of these applications is
to recover a sparse representation of the signal over a pre-specified
dictionary of atoms.

It is very common to treat these atoms independently from each
other. This is an implicit assumption in standard recovery algorithms
such as orthogonal matching pursuit (OMP) [2] and it is assumed
explicitly in many Bayesian approaches for signal recovery (see for
example [3]). Note however that the independence assumption lim-
its the representation power of the signal model and is inaccurate for
many types of real-life signals. This motivates the formulation of
structured sparsity models. In image processing this structure typi-
cally takes the form of wavelet trees (see for example [4]).

A recent work [5] suggested using a Bayesian model for the
sparse representations, where the sparsity pattern is modeled by a
Boltzmann machine (BM). This is a commonly used Markov random
field (MRF) for capturing statistical dependencies in a general and
flexible manner. The nonzero representation coefficients are mod-
eled by Gaussian distributions with atom-dependent variances.
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The current work relies on the proposed BM generative model.
In this context, we address two specific questions: how to perform
a pursuit algorithm for finding the sparse representation of a given
noisy signal and how to estimate the BM parameters given a set of
sparse supports. We suggest using a message passing algorithm for
an exact maximuma posteriori (MAP) estimation of the sparse rep-
resentation, when the dictionary is unitary and the interaction matrix
is banded. As for learning the BM parameters, we adopt a maxi-
mum pseudo-likelihood (MPL) approach, which allows for solving
this problem using convex optimization methods. For more details
on these topics see [6].

In this work we consider the problem of evaluating both the
model parameters and the sparse representations from a given set
of signals. The joint estimation problem is handled using a block-
coordinate relaxation technique that iteratively updates the represen-
tations, and then the parameters. We demonstrate the effectiveness
of the BM model and the estimated parameters on denoising of im-
age patches.

2. BM-BASED MAP RECOVERY

The main goal of this paper is exploiting statistical dependencies
between the dictionary atoms used for the sparse representation, in
order to improve the denoising performance of image patches. In
order to set the ground for the image experiments, we first provide a
brief review of the proposed generative model, the MAP estimation
problem that follows from it and an efficient algorithm that solves
this problem under some modeling assumptions.

We consider a signaly which is built asy = Ax+e, whereA is a
unitary dictionary of sizem-by-m, x is a sparse representation over
this dictionary ande is additive white Gaussian noise with variance
σ2
e . The idea to model the noise-free signaly0 asAx with a sparse

representation vectorx is a very common and long-studied concept
in signal and image processing. We denote the sparsity pattern ofx
by S ∈ {−1, 1}m, whereSi = 1 implies that the indexi belongs to
the support ofx, whereasSi = −1 implies thatxi = 0. The nonzero
coefficients ofx are denoted byxs, wheres is the support ofx. We
assume a Gaussian distribution with zero mean and varianceσ2

x,i for
each nonzero representation coefficientxi.

We now turn to describe the prior distribution onS. MRFs are
a useful tool for capturing statistical dependencies between a set of
random variables. An MRF provides a full and concise description
for the joint distribution of these variables, where the statistical de-
pendencies are conveniently displayed in the form of an undirected
graph. We focus on the special case of a BM, which can serve as a
useful and powerful prior onS. The BM distribution is given by:

Pr(S) =
1

Z
exp

(

bTS +
1

2
STWS

)

, (1)



whereW is symmetric with zero entries on the main diagonal and
Z is a constant which normalizes the distribution. The BM distribu-
tion can be easily represented by an MRF - a biasbi is associated
with a nodei and a nonzero entryWij in the interaction matrix re-
sults in an edge connecting nodesi andj with the specified weight.
Consequently, the zero entries inW have the simple interpretation
of missing edges in the corresponding graph.

In our setup we assume a BM prior onS with a low order banded
W matrix. In anLth order banded matrix only the2L+ 1 principle
diagonals consist of nonzero elements. This type of BMs can serve
as a useful relaxation for a general dependency model, as they can
achieve a substantial decrease in computational complexity, while
still capturing the significant dependencies. More specifically, in-
ference tasks like finding the most probable configuration can be
computed exactly and efficiently in this case by means of a message
passing algorithm.

Next, we turn to describe the design objective for the sparse re-
covery problem. Our goal is to recoverx giveny. However, due to
algorithmic considerations implied by our Bayesian framework, we
suggest to first perform MAP estimation ofS giveny and then pro-
ceed with MAP estimation ofx given y and the estimated support
ŝ. The latter takes a simple closed-form formula, as in the oracle
estimator (see [3]):

x̂sMAP
= argmax

xs∈Rk

Pr(x|y, ŝ) =
(

AT
ŝ Aŝ + σ2

eΣ
−1
ŝ

)

−1

AT
ŝ y. (2)

For MAP estimation ofS given y we can take advantage of a
useful theorem that holds for a unitary dictionary: The BM distri-
bution is a conjugate prior for this problem, namelyPr(S|y) is a
BM with the same interaction matrixW and a modified bias vec-
tor q, which depends on the original bias vectorb, the variances
{

σ2
x,i

}m

i=1
, the noise varianceσ2

e , the dictionary atoms and the sig-
nal y. It follows that finding the MAP estimator forS becomes an
inference task on a BM with parametersW, q. Using our modeling
assumption onW (banded with a low orderL), we have that the
MAP problem can be solved exactly by message passing. A proof of
the above mentioned theorem and a concrete message passing algo-
rithm for this setup are given in [6].

3. ADAPTIVE SPARSE SIGNAL RECOVERY

In an actual problem suite we are given a set of signals
{

y(l)
}N

l=1
from which we would like to estimate both the sparse representations
and the model parameters. We address this joint estimation problem
in this section. Note that throughout this section we will assume that
the unitary dictionaryA and the noise varianceσ2

e are known.

We begin by assuming that the sparse representations are known,
namely we are given a data set of independent and identically dis-

tributed (i.i.d.) examplesD =
{

y(l), x(l), S(l)
}N

l=1
, from which we

would like to learn the model parametersΘ =
[

W, b,
{

σ2
x,i

}m

i=1

]

.
To estimateΘ we suggest a maximum likelihood (ML) approach,
and using the BM generative model we can write:

Θ̂ML = argmax
Θ

Pr (D|Θ) = argmax
Θ

m
∑

i=1

L(σ2
x,i)+L(W, b), (3)

where
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(4)

L(W, b) =
1

2

N
∑

l=1

[

(

S(l)
)T

WS(l) + bTS(l)

]

−N ln(Z(W, b))

(5)
are the log likelihood functions for the model parameters. This de-
composition allows separate estimation of the variances{σ2

xi
}mi=1

and the Boltzmann parametersW, b.
Starting with the variances we have the close-form estimator:

σ̂2
x,i =

(

N
∑

l=1

(

x
(l)
i

)2
1[i∈s(l)]

)

/
(

N
∑

l=1
1[i∈s(l)]

)

. (6)

Similar estimators for the variances were also used in [5].
ML estimation ofW, b is computationally intensive due to the

exponential complexity inm associated with the partition function
Z(W, b). Therefore, we turn to approximated ML estimators. A
widely used approach is applying Gibbs sampling and mean-field
techniques, as practiced in [5]. However, these methods are usually
computationally demanding. A simpler approach is to replace the
likelihood function by a pseudo-likelihood, leading to MPL estima-
tion [7]. The basic idea is to replace the BM priorPr(S|W, b) by
the product of all the conditional distributions of each nodeSi given
the rest of the nodesSiC :

∏m

i=1 Pr (Si|SiC ,W, b). This leads to the
following log-PL objective (up to an additive constant):

Lp(W, b) =
N
∑

l=1

(

S(l)
)T (

WS(l) + b
)

− 1T ρ
(

WS(l) + b
)

(7)

whereρ(z) = ln(cosh(z)) and the functionρ(·) operates on a vec-
tor entry-wise. This function is concave with respect toW, b, imply-
ing that maximization of this function can be done efficiently using
convex optimization techniques.

We suggest using the sequential subspace optimization (SESOP)
method [8] for the MPL estimation problem. This method is very
useful for large-scale unconstrained convex problems, as opposed
to gradient descent which suffers from a slow convergence rate and
Newton iterations which does not scale up well. The core idea is
to optimize over a low-dimensional subspace spanned by several re-
cent update directions and the current gradient. In each iteration of
SESOP we perform an inner optimization stage to find the steps sizes
in each direction, using Newton method.

When W is constrained to be banded, we suggest a post-
processing of the MPL estimate. More specifically, we define the
energy ofW as thel1 norm for the entries in the banding zone. The
basic idea is to perform pairwise permutations inŴ , namely switch
the roles of pairs of atoms, so that the energy will be maximal. A
greedy approach can be used, so that in each iteration we replace
the roles of one pair of atoms, where this replacement is optimal
in the sense of maximizing the energy. The algorithm converges
when we cannot increase the energy anymore. At this point we
set all entries located outside the banding zone to zero. The sug-
gested post-processing stage serves as a projection onto the banding
constraint. Note that the estimated biases and variances should be
modified to account for the changes in the atom roles.

We now turn to the joint estimation problem, where both the
sparse representations and the model parameters are unknown. We
suggest using a block-coordinate optimization approach for approx-
imating the solution of the joint estimation problem, which results in
an iterative scheme for adaptive sparse signal recovery. Each itera-
tion in this scheme consists of two stages. The first is sparse coding
where we apply the proposed message passing algorithm and then
(2) to obtain MAP estimates for the sparse representations based
on the most recent estimate for the model parameters. This is fol-
lowed by model update where we re-estimate all the model parame-



σe Lena Barbara Boats House Peppers Average

2
2.47 2.43 2.63 2.46 2.7 2.59 2.23 2.19 2.81 2.55 2.58 2.45
2.39 2.24 2.33 2.22 2.43 2.31 2.17 2.01 2.42 2.3 2.35 2.22

5
4.3 4.29 4.83 4.78 5.09 5.05 4.15 3.97 4.86 4.85 4.66 4.61
4.18 3.92 4.61 4.31 4.91 4.64 4.03 3.83 4.7 4.32 4.5 4.21

10
6.43 6.26 7.91 7.56 7.8 7.59 6.28 5.9 7.63 7.45 7.24 6.99
6.1 5.98 7.51 7.22 7.37 7.09 6.02 5.74 7.29 6.92 6.89 6.62

15
8.14 7.82 10.47 9.62 9.89 9.48 7.8 7.15 9.92 9.41 9.31 8.75
7.58 7.27 9.9 9.67 9.25 8.86 7.4 7.1 9.3 8.83 8.74 8.41

20
9.6 9.21 12.61 11.34 11.61 11.05 9.21 8.21 11.83 11.08 11.05 10.25
8.85 8.59 11.87 12.04 10.8 10.57 8.68 8.43 10.88 10.53 10.29 10.12

25
10.89 10.36 14.43 12.89 13.12 12.5 10.63 9.35 13.57 12.52 12.62 11.61
9.95 9.84 13.5 13.72 12.12 11.92 9.86 9.57 12.34 12.13 11.64 11.54

Table 1. Summary of average denoising results (Root-MSE per pixel). In eachcell four denoising results are reported. Top left: Unitary
OMP. Top right: K-SVD. Bottom left: Independent adaptive recovery.Bottom right: BM adaptive recovery.

ters given the current estimate of the sparse representations. We use
(6) for the variances and MPL estimation via SESOP for the Boltz-
mann parameters. Then the post-processing stage mentioned above
is applied on these estimates.

4. SIMULATIONS ON IMAGE PATCHES

In this section we address real-life signals - patches of size8-by-
8 that are extracted out of natural images. The adaptive BM-based
sparse recovery scheme that was suggested in the previous section is
applied on noisy image patches using a unitary discrete cosine trans-
form (DCT) dictionary, in order to demonstrate the effectiveness of
our approach. Note that we are not suggesting here an improved im-
age denoising algorithm, and in contrast to common denoising meth-
ods, we do not exploit self-similarities in the image (see for example
[9]). Therefore our comparison is limited to denoising schemes that
recover each patch separately.

We compare our algorithm to three denoising schemes: OMP
with a unitary DCT dictionary, K-SVD which uses an adaptive dic-
tionary with a redundancy factor of4 as in [10], and an adaptive
sparse recovery approach which is based on a unitary DCT dictio-
nary and an independent-based prior as in [3]. In the latter each
atom is assigned a different prior probabilitypi to be turned "on",

which is estimated from the data usingpi ≈ 1
N

∑N

l=1 1
[

S
(l)
i = 1

]

for all i, where1[·] is the indicator function.
To initialize the parameters of the two adaptive model-based ap-

proaches, we set all the variances to502 and use an i.i.d. prior on the
support, namelyPr(Si = 1) = p for all i. This prior is obtained by
the Boltzmann parameterŝW = 0m×m and b̂i = 0.5 ln(p/(1−p)).
Note thatp has the intuitive meaning of the ratiok/m wherek is our
prior belief on the mean cardinality of the support. We use a prior be-
lief that the average cardinality for image patches isk = 10, which
leads to initial biasesbi = −0.84 for all i. We then perform two iter-
ations for each of the adaptive schemes. In the BM-based schemeW
is constrained to be a9th order banded matrix. As for denoising via
OMP, it consists of one iteration where we apply the OMP algorithm
using the unitary DCT dictionary. Finally, for K-SVD denoising we
set an overcomplete DCT dictionary for the initialization, following
the suggestion in [10], and apply10 iterations with OMP for the
sparse coding stage. Throughout this section we use the abbrevi-
ations "unitary OMP", "K-SVD", "independent adaptive recovery"
and "BM adaptive recovery" to denote the four methods.

Average denoising errors per pixel and per patch are evaluated
for all the four methods on5 widely used test images and6 noise

levels: σe ∈ {2, 5, 10, 15, 20, 25}. For each test image we extract
overlapping patches and for each patch we apply a pre-processing
stage of DC removal by subtracting the average value of the noisy
patch, so that a smooth patch corresponds to a zero representation.
A summary of the denoising results is given in Table 1.

We begin by focusing on the three methods which are based on
a fixed unitary DCT dictionary. The experiments show that the qual-
ity of the denoising improves as we use a more elaborate prior on
the support. For the unitary OMP which makes use of the sparsity
assumption alone, the denoising performance is the worst. Inde-
pendent adaptive recovery achieves a significant improvement with
respect to unitary OMP: the average gain varies from0.3[dB] to
0.8[dB] for the different noise levels. When we turn to BM adaptive
recovery, we get that this method outperforms the independent-based
one for all tested images and noise levels, apart from the image ’Bar-
bara’ with noise levelsσe ≥ 20. The performance gaps vary from
0.1[dB] to 0.6[dB] for the different noise levels.

Next, we compare the denoising performance of the two adap-
tive model-based schemes with that of K-SVD. We can see that BM
adaptive recovery succeeds in outperforming K-SVD for most tested
images and noise levels (25 out of 30 experiments), despite the fact
that K-SVD has4 times more atoms. Note that for low noise lev-
els (σe ≤ 10) there are significant performance gaps - the average
gain is0.6[dB] 1. In fact, even independent adaptive recovery is su-
perior to K-SVD for most experiments (22 out of 30), but here the
performance gaps are much less significant.

To give a visual flavor to the numerical observations that were
provided above, we show in Fig. 1 a result on one noisy image patch
that demonstrates a typical scenario where our approach outperforms
others methods. Note that the scale is adjusted to the dynamic range
of the given image patch, in order to make the visual differences
more coherent. We can see that unitary OMP uses6 atoms for the
recovery:3 correspond to low frequencies and the other3 describe
complex textures, which are associated more with the noise than
the signal. For K-SVD which learns the dictionary from the data
3 atoms are sufficient and the recovery is improved to some extent.

1For image denoising the recovered overlapping patches should be aver-
aged, as practiced in [10], in order to prevent artifacts on block boundaries
and boost the global denoising performance on the entire image. The per-
formance gaps observed in the denoising of image patches vanish when we
apply the averaging process described above and examine the performance
on the resulting image. This is a known phenomena, which has also been
observed in previous works on the MMSE estimator [3]. Furtherwork is
required to maintain the performance gap after the averaging process.
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Fig. 1. Results for one patch of the image ’Lena’ with a noise level
σe = 10. Top - image patches: (a) Noise-free, (b) Noisy, (c) Recov-
ery with unitary OMP, (d) Recovery with K-SVD, (e) Independent
adaptive recovery, (f) BM adaptive recovery. Bottom - the recovered
atoms for: (a) Unitary OMP, (b) K-SVD, (c) Independent adaptive
recovery, (d) BM adaptive recovery.

The model-based adaptive schemes obtain improved recoveries in
respect to the unitary OMP by eliminating the3 atoms which are as-
sociated with the noise and replacing them by other atoms which are
more adequate. The BM adaptive recovery exploits the dependen-
cies to make a more educated choice for the atom replacement.

To conclude this section we show some results that are related
with the Boltzmann parameters that were learned from a corpus of
noisy patches. Fig. 2 shows such results for the test image ’peppers’
with a noise levelσe = 10. On the top we can see the5 atoms
which are characterized by the highest biasesb̂i. These atoms corre-
spond to low frequencies. On the middle, the5 pairs of atoms which
correspond to the strongest "excitatory" interactions (Ŵij > 0) are
shown. We see that for each pair of atoms we typically have a high
resemblance between the patterns of the two atoms. This explains
their tendency to be used or not used together. Similarly, we can see
on the bottom the5 pairs of atoms which correspond to the strongest
"inhibitory" interactions (̂Wij < 0). Here we have that the atoms in
each pair correspond to patterns with very different natures.

5. CONCLUSIONS AND FUTURE WORK

In this work we have developed a scheme for adaptive model-based
recovery of sparse representations that takes into account atom de-
pendencies. We adapted a Bayesian model for these representations,
which is based on a Boltzmann machine, and designed efficient es-
timators for the model parameters. We demonstrated the effective-
ness of our proposed approach by real-life experiments on noisy im-
age patches. In these real-life experiments we considered two ap-
proaches for adaptive sparse recovery: one is based on dictionary
training and the sparsity assumption alone, and the second uses an
adaptive and meaningful prior for signal modeling, while the dic-
tionary remains fixed to some reasonable setting. We derived an
exciting observation - in terms of denoising performance, we can
often benefit more from introducing a well-adjusted prior for the se-
lection of atoms in a fixed dictionary than from dictionary training.
A research direction we are considering is merging dictionary train-
ing into the adaptive scheme, in order to benefit from both the BM
generative model and a dictionary which is better fitted to the data.

bi =1.08 bi =1.07 bi =0.82 bi =0.71 bi =0.49

Wij =0.37 Wij =0.34 Wij =0.33 Wij =0.32 Wij =0.31

Wij =-0.24 Wij =-0.2 Wij =-0.2 Wij =-0.19Wij =-0.19

Fig. 2. Results for the Boltzmann parameters that were learned from
the patches of the image ’peppers’ with a noise levelσe = 10. Top:
the 5 atoms with the highest biases. Middle: the5 pairs of atoms
with the strongest "excitatory" interactions. Bottom: the5 pairs of
atoms with the strongest "inhibitory" interactions.
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