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ABSTRACT The current work relies on the proposed BM generative model.

tions, which takﬁs “.”to account dekpendenues betlween the dr'](_:t'%'parse supports. We suggest using a message passing algorithm for
hary %tolmﬁ. Following recent IWOL.’ we I‘jse 6} Bo tzmar; mac 'r_‘:’jm exact maximuna posteriori (MAP) estimation of the sparse rep-

to model t € sparsllty. pattem. In IS Work we focus on L € SPECIHesentation, when the dictionary is unitary and the interaction matrix
case of a unitary dictionary and obtain the exact MAP estimate fo[S banded. As for learning the BM parameters, we adopt a maxi-

the sparse representation using an efficient message passing algq;m pseudo-likelihood (MPL) approach, which allows for solving
rithm. We present an adaptive model-based scheme for sparse SIgG problem using convex optimization methods. For more details
recovery, which is based on sparse coding via message passing these topics see [6].

on learning the model parameters from the data. This adaptive ap-

ods, V.Vh'Ch do not exploit the statistical dependencies, and show tr}ﬁtions, and then the parameters. We demonstrate the effectiveness
effectiveness of our approach. of the BM model and the estimated parameters on denoising of im-

Index Terms— Sparse representations, MAP, Boltzmann ma-age patches.
chine, unitary dictionary, message passing, image denoising.

2. BM-BASED MAP RECOVERY
1. INTRODUCTION
The main goal of this paper is exploiting statistical dependencies

Signal modeling based on sparse representations is used in numerd@ween the dictionary atoms used for the sparse representation, in
signal and image processing applications, such as denoising, restoffder to improve the denoising performance of image patches. In
tion, source separation, compression and sampling (for a comprérder to set the ground for the image experiments, we first provide a
hensive review see [1]). The core idea in all of these applications iBrief review of the proposed generative model, the MAP estimation
to recover a sparse representation of the signal over a pre-specifiegPblem that follows from it and an efficient algorithm that solves
dictionary of atoms. this problem under some modeling assumptions.

It is very common to treat these atoms independently from each  We consider a signgiwhich is builtasy = Az+e, whereAis a
other. This is an implicit assumption in standard recovery algorithma!nitary dictionary of sizen-by-m, x is a sparse representation over
such as orthogonal matching pursuit (OMP) [2] and it is assumedhis dlcthnary anc is addltlvelwhlte Ggussmn noise with variance
explicitly in many Bayesian approaches for signal recovery (see fofe. The idea to model the noise-free signalas Az with a sparse
example [3]). Note however that the independence assumption linfépresentation vectar is a very common and long-studied concept
its the representation power of the signal model and is inaccurate féi signal and image processing. We denote the sparsity pattern of
many types of real-life signals. This motivates the formulation ofPy S € {—1,1}"™, whereS; = 1 implies that the index belongs to
structured sparsity models. In image processing this structure typthe support ok, whereasS; = —1implies thatz; = 0. The nonzero
cally takes the form of wavelet trees (see for example [4]). coefficients ofr are denoted by, wheres is the support of:. We

A recent work [5] suggested using a Bayesian model for the2Ssume a Gaussian distribution with zero mean and varishgéor
sparse representations, where the sparsity pattern is modeled by&ch nonzero representation coefficient
Boltzmann machine (BM). This is a commonly used Markov random ~ We now turn to describe the prior distribution 6n MRFs are
field (MRF) for capturing statistical dependencies in a general an@ Useful tool for capturing statistical dependencies between a set of
flexible manner. The nonzero representation coefficients are modandom variables. An MRF provides a full and concise description
eled by Gaussian distributions with atom-dependent variances. ~ for the joint distribution of these variables, where the statistical de-
pendencies are conveniently displayed in the form of an undirected

This work was supported by the Israel Science Foundatioen@dants  graph. We focus on the special case of a BM, which can serve as a
1081/07 and 599/08, by the European Commission’s FP7 NetwioBko  useful and powerful prior o8. The BM distribution is given by:
cellence in Wireless COMmunications NEWCOM++ (grant agreémen
216715) and by the EU Framework 7 FET-Open project FP7-1GGB23-
SMALL: Sparse Models, Algorithms and Learning for Large-8aata.

Pr(S) = %exp (st + %STWS) , 1)



whereW is symmetric with zero entries on the main diagonal and 1 NT . T ol

Z is a constant which normalizes the distribution. The BM distribu- LW, b) = 9 Z {(S( )) ws® o7 st ﬂ — Nn(Z(W, b))
tion can be easily represented by an MRF - a bias associated =1 )
with a nodei and a nonzero entri’;; in the interaction matrix re-
sults in an edge connecting nodesnd;j with the specified weight.
Consequently, the zero entriesTiti have the simple interpretation
of missing edges in the corresponding graph.

In our setup we assume a BM prior Srwith a low order banded
W matrix. In anLth order banded matrix only ti#&. + 1 principle 62, = (% (xgn)a[i@(l)])/( & l[ies(l)]>. (6)
diagonals consist of nonzero elements. This type of BMs can serve ' =t =1
as a useful relaxatlpn for a gene.ral dependgncy model, as they C&milar estimators for the variances were also used in [5].
achieve a substantial decrease in computational complexity, while ML estimation of ¥, b is computationally intensive due to the
still capturing the S|_gn|_f|cant dependencies. More spec_lflcally, In'exponential complexity inn associated with the partition function
ference tasks like finding the most probable configuration can b

! oot (W,b). Therefore, we turn to approximated ML estimators. A
computed exa_lctly and efficiently in this case by means of a messa%dely used approach is applying Gibbs sampling and mean-field
passing algorithm. ) ] o techniques, as practiced in [5]. However, these methods are usually

Next, we turn to describe the design objective for the sparse respmputationally demanding. A simpler approach is to replace the
covery problem. Our goal is to recovergiveny. However, due to jikelihood function by a pseudo-likelinood, leading to MPL estima-
algorithmic considerations implied by our Bayesian framework, We;jgon [7]. The basic idea is to replace the BM priBr(S|W, b) by
suggest to first perform MAP estimation sfgiveny and then pro- e product of all the conditional distributions of each nédeiven
ceed with MAP estimation of giveny and the estimated support he rest of the nodeS.c: T1™ . Pr (Si|S;c, W,b). This leads to the
$. The latter takes a simple closed-form formula, as in the 0rac'%|lowing log-PL objéctive ’(EE, to an adzditive constant):
estimator (see [3]):

are the log likelihood functions for the model parameters. This de-
composition allows separate estimation of the variafegs }7~,
and the Boltzmann parametéis b.

Starting with the variances we have the close-form estimator:

L,(W,b) = zN: (s“))T (WS“) + b) ~17, (WS”) + b) @)

—1
Fapiar = AIGMPr(aly, 3) = (A?Aé +a§2g1) ATy, (2)
x g ERF
© wherep(z) = In(cosh(z)) and the functiorp(-) operates on a vec-

tor entry-wise. This function is concave with respectitob, imply-
ing that maximization of this function can be done efficiently using
convex optimization techniques.

We suggest using the sequential subspace optimization (SESOP)
method [8] for the MPL estimation problem. This method is very
useful for large-scale unconstrained convex problems, as ogpose
inference task on a BM with parametdi§ ¢. Using our modeling to gradient descent which suffers from a slow convergence rate and

: Newton iterations which does not scale up well. The core idea is

assumption oriV” (banded with a low order), we have that the tp optimize over a low-dimensional subspace spanned by several re-
MAP problem can be solved exactly by message passing. A proof aof OP P b y

; . cent update directions and the current gradient. In each iteration of
the above mentioned theorem and a concrete message passing algg-, . S ) :
. . i . SOP we perform an inner optimization stage to find the steps sizes
rithm for this setup are given in [6].

in each direction, using Newton method.
When W is constrained to be banded, we suggest a post-
3. ADAPTIVE SPARSE SIGNAL RECOVERY processing of the MPL estimate. More specifically, we define the
energy ofi¥/ as thel; norm for the entries in the banding zone. The
] ) ) Ny basic idea is to perform pairwise permutationsiin namely switch
In an actual problem suite we are given a set of S'g’{@‘g }121 the roles of pairs of atoms, so that the energy will be maximal. A
from which we would like to estimate both the sparse representationgreedy approach can be used, so that in each iteration we replace
and the model parameters. We address this joint estimation problethe roles of one pair of atoms, where this replacement is optimal
in this section. Note that throughout this section we will assume thain the sense of maximizing the energy. The algorithm converges
the unitary dictionary4 and the noise variancee are known. when we cannot increase the energy anymore. At this point we

We begin by assuming that the sparse representations are knowigt all entries located outside the banding zone to zero. The sug-
namely we are given a data set of independent and identically digested post-processing stage serves as a projection onto the banding

For MAP estimation ofS giveny we can take advantage of a
useful theorem that holds for a unitary dictionary: The BM distri-
bution is a conjugate prior for this problem, namély(S|y) is a
BM with the same interaction matrid” and a modified bias vec-
tor ¢, which depends on the original bias vectgrthe variances
{02}, the noise variance?, the dictionary atoms and the sig-
naly. It follows that finding the MAP estimator fo$ becomes an

. . W m eY . constraint. Note that the estimated biases and variances should be
tributed (i.i.d.) example® = {y A }1:1' fromwhichwe 1 jified to account for the changes in the atom roles.
would like to learn the model parametess= [W, b, {07 ;} " ]. We now turn to the joint estimation problem, where both the
To estimate® we suggest a maximum likelihood (ML) approach, sparse representations and the model parameters are unknown. We
and using the BM generative model we can write: suggest using a block-coordinate optimization approach for approx-

m imating the solution of the joint estimation problem, which results in
O, = argmaxPr (D) = argmaxz ﬁ(aii)_i_ﬁ(m b), (3) an iterative scheme for adaptive sparse signal recovery. Each itera
S} = tion in this scheme consists of two stages. The first is sparse coding
where where we apply the proposed message passing algorithm and then
(2) to obtain MAP estimates for the sparse representations based
Z { 1 (fﬁz(-l))Q +1In (ai Z)} 1 [Z c S(l)] (4) on the most recent estimate for the model parameters. This is fol-

L(o2,) = e :
(02.4) lowed by model update where we re-estimate all the model parame-

2

x,i

DO =

=1



Oc Lena Barbara Boats House Peppers Average
9 2.47 2.43 2.63 2.46 2.7 2.59 2.23 | 2.19 2.81 2.55 2.58 2.45
2.39 2.24 2.33 2.22 2.43 231 217 | 201 || 242 2.3 2.35 2.22
5 4.3 4.29 4.83 4.78 5.09 5.05 4.15 | 3.97 || 4.86 4.85 4.66 4.61
4.18 3.92 4.61 4.31 4.91 4.64 4.03 | 3.83 4.7 4.32 4.5 4.21
10 6.43 6.26 7.91 7.56 7.8 7.59 6.28 5.9 7.63 7.45 7.24 6.99
6.1 5.98 7.51 7.22 7.37 7.09 6.02 | 5.74 || 7.29 6.92 6.89 6.62
15 8.14 7.82 10.47 | 9.62 9.89 9.48 7.8 7.15 9.92 9.41 9.31 8.75
7.58 7.27 9.9 9.67 9.25 8.86 7.4 7.1 9.3 8.83 8.74 8.41
2 9.6 9.21 12.61 | 11.34 || 11.61 | 11.05 9.21 | 8.21 | 11.83 | 11.08 || 11.05 | 10.25
8.85 8.59 || 11.87 | 12.04 10.8 | 10.57 || 8.68 | 8.43 || 10.88 | 10.53 || 10.29 | 10.12
95 10.89 | 10.36 || 14.43 | 12.89 || 13.12 | 12,5 10.63 | 9.35 || 13.57 | 12.52 || 12.62 | 11.61
9.95 9.84 13,5 | 13.72 || 12.12 | 11.92 || 9.86 | 9.57 || 12.34 | 12.13 | 11.64 | 11.54

Table 1. Summary of average denoising results (Root-MSE per pixel). In ealtiiour denoising results are reported. Top left: Unitary
OMP. Top right: K-SVD. Bottom left: Independent adaptive recovBgttom right: BM adaptive recovery.

ters given the current estimate of the sparse representations. We ueeels: o. € {2,5,10, 15,20, 25}. For each test image we extract
(6) for the variances and MPL estimation via SESOP for the Boltz-overlapping patches and for each patch we apply a pre-processing
mann parameters. Then the post-processing stage mentioned abatage of DC removal by subtracting the average value of the noisy

is applied on these estimates. patch, so that a smooth patch corresponds to a zero representation.
A summary of the denoising results is given in Table 1.
4. SIMULATIONS ON IMAGE PATCHES We begin by focusing on the three methods which are based on

) ) o ) a fixed unitary DCT dictionary. The experiments show that the qual-
In this section we address real-life signals - patches of 8ibg- ity of the denoising improves as we use a more elaborate prior on
8 that are extracted out of natural images. The adaptive BM-basqq[{e support. For the unitary OMP which makes use of the sparsity
sparse recovery scheme that was suggested in the previous sectioRégumption alone, the denoising performance is the worst. Inde-
applied on noisy image patches using a unitary discrete cosine trarl§endent adaptive recovery achieves a significant improvement with
form (DCT) dictionary, in order to demonstrate the effectiveness o espect to unitary OMP: the average gain varies fi@8{dB] to
our approach. Note that we are not suggesting here an improved iny:g[4 B] for the different noise levels. When we turn to BM adaptive
age denoising algorithm, and in contrast to common denoising methecovery, we get that this method outperforms the independent-based
ods, we do not exploit self-similarities in the image (see for examplyne for all tested images and noise levels, apart from the image 'Bar-
[9]). Therefore our comparison is limited to denoising schemes thahara’ with noise levels. > 20. The performance gaps vary from
recover each patch separately. . 0.1[dB] to 0.6[dB] for the different noise levels.

_We compare our algorithm to three denoising schemes: OMP Next, we compare the denoising performance of the two adap-
with a unitary DCT dictionary, K-SVD which uses an adaptive dic- tiye model-based schemes with that of K-SVD. We can see that BM
tionary with a redundancy factor af as in [10], and an adaptive aqaptive recovery succeeds in outperforming K-SVD for most tested
sparse recovery approach which is based on a unitary DCT dictiqmages and noise level2¥ out of 30 experiments), despite the fact
nary and an independent-based prior as in [3]. In the latter eacthat K-SVD hast times more atoms. Note that for low noise lev-
atom is assigned a different prior probability to be turned "on",  gjg . < 10) there are significant performance gaps - the average
which is estimated from the data usipg~ % ZlN:1 1 [SZ.“) = 1} gain is0.6[dB] *. In fact, even independent adaptive recovery is su-

for all i, wherel[] is the indicator function. perior to K-SVD for most experiment2% out of 30), but here the
To initialize the parameters of the two adaptive model-based agR€rformance gaps are much less significant. _

support, namelyPr(S; = 1) = p for all 7. This prior is obtained by provided above, we sho_w in Fig. la result on one noisy image patch
2 that demonstrates a typical scenario where our approach outpsrform

the Boltzmann parametet¥ = 0™*™ andb; = 0.5In(?/(1—p)). S :
Note thatp has the intuitive meaning of the ratig wherek is our others methods. Note that the scale is adjusted to the dynamic range
of the given image patch, in order to make the visual differences

prior belief on the mean cardinality of the support. We use a prior be -
more coherent. We can see that unitary OMP @satoms for the

lief that the average cardinality for image patches is 10, which . h
g y gep recovery:3 correspond to low frequencies and the otBetescribe

leads to initial biases; = —0.84 for all . We then perform two iter- X . . .
ations for each of the adaptive schemes. In the BM-based scHeme complex textures, which are associated more with the noise than
the signal. For K-SVD which learns the dictionary from the data

is constrained to be @th order banded matrix. As for denoising via ffici dth o d
OMP, it consists of one iteration where we apply the OMP algorith> 2l0MS are sufficient and the recovery Is improved to some extent.
using the unitary DCT dictionary. Finally, for K-SVD denoising we e — )
set an overcomplete DCT dictionary for the initialization, following _-©f image denoising the recovered overlapping patches clbauaver-
the suggestion in [10], and apply iterations with OMP for the aged, as practiced in [10], in order to prevent artifacts lockbboundaries

. ’ : - and boost the global denoising performance on the entire im@ge per-
sparse coding stage. Throughout this section we use the abbreyi-

. e - . . M Srmance gaps observed in the denoising of image patcheshvahisn we
ations "unitary OMP", "K-SVD", "independent adaptive recovery” 5, the averaging process described above and examineterpance

and "BM adaptive_re_covery" to denqte the four methods. on the resulting image. This is a known phenomena, which hasbalen
Average denoising errors per pixel and per patch are evaluatesbserved in previous works on the MMSE estimator [3]. Furtherk is
for all the four methods of widely used test images aridnoise  required to maintain the performance gap after the averagoaeps.




Fig. 1. Results for one patch of the image 'Lena’ with a noise level
oe = 10. Top - image patches: (a) Noise-free, (b) Noisy, (c) Recov
ery with unitary OMP, (d) Recovery with K-SVD, (e) Independent
adaptive recovery, (f) BM adaptive recovery. Bottom - the receder

atoms for: (a) Unitary OMP, (b) K-SVD, (c) Independent adaptive

recovery, (d) BM adaptive recovery.

Fig. 2. Results for the Boltzmann parameters that were learned from
the patches of the image 'peppers’ with a noise leve:= 10. Top:
‘the 5 atoms with the highest biases. Middle: theairs of atoms
with the strongest "excitatory” interactions. Bottom: thpairs of
atoms with the strongest "inhibitory" interactions.
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