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ABSTRACT

We propose a sinogram restoration method which consists of
a patch-wise non-linear processing, based on a sparsity prior
in terms of a learned dictionary. An off-line learning process
uses a statistical model of the sinogram noise and minimizes
an error measure in the image domain over the training set.
The error measure is designed to preserve low-contrast edges
for visibility of soft tissues. Our numerical study shows that
the algorithm improves on the performance of the standard
Filtered Back-Projection algorithm and effectively allows to
halve the radiation dose for the same image quality.

Index Terms— Computed Tomography, sinogram restora-
tion, Sparse-Land paradigm.

1. INTRODUCTION

One of the current challenges in Computed Tomography is
to obtain a high-quality image from a low-dose scan, which
brings less damage to the patient. The measurements in such
a scan are corrupted by a number of physical phenomena [1],
while the leading factor is the Poisson noise resulting from
poor photon count statistics.

A good way to address this problem is to build an elab-
orate statistical model of the acquisition process, which ac-
counts for all the sources of data deterioration, and to solve
a corresponding (usually, complex) optimization problem us-
ing an iterative method [1, 2]. However, high computational
cost and the need for an accurate and explicit modeling of the
system encourage researchers to seek for other solutions.

An approach alternative to explicit data modeling is to use
adaptive processing tools that can automatically adjust and
implicitly learn the data statistics. When the learning proce-
dure is accomplished in an off-line training, the resulting al-
gorithm can benefit from both low computational cost of the
non-iterative data processing and an improved performance
due to the training.

In this work we apply the Sparse-Land paradigm to sino-
gram restoration from a low-count noise. The core idea is to
impose a sparsity prior patch-wise on the 2D sinogram matrix,
in terms of a dictionary D - a linear transform with the prop-
erty that every patch of the signal can be well approximated
by a linear combination of just a few columns from D. The
transform is custom built for a specific family of images via a
training set. Aharon and Elad proposed the K-SVD algorithm
for training of the dictionary D [3], which is employed in a
powerful signal de-noising method [4].

CT reconstruction based on the K-SVD was proposed by
Liao and Sapiro in [5]. Utilizing the noise reduction scenario
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of [4], the algorithm conducts an on-line learning procedure
for the dictionary and the coefficients, encoding the recon-
structed image patch-wise. The image is then computed by
solving a quadratic optimization problem, which balances a
data fidelity term and a sparsity prior. This algorithm shows
very promising results on phantoms with explicit geometrical
structure in some missing data scenarios. However, there are
few important aspects of the algorithm which are problematic;
in this work we propose a different learning and reconstruc-
tion scheme, resolving those issues.

In contrast to the approach described in [5], our algo-
rithm focuses on the sinogram processing, later followed by a
standard Filtered Back-Projection (FBP) algorithm. The spar-
sity prior is applied in the sinogram domain where the noise
statistics is known and accounted for. For optimal results,
the training objective for the dictionary D considers the im-
age domain as well as the sinogram domain; we minimize
an error measure, applied to the difference between the ref-
erence image and the reconstructed version, over a training
set. This implies that, as opposed to [5], our work has an off-
line part that trains on examples of high-quality images and
their sinograms, while the amount of real-time computations
is low. The error functional is a weighted L2 norm, where
data-dependent weights are designed to preserve low-contrast
edges of the attenuation images. A numerical study shows
that the proposed algorithm improves the variance-resolution
trade-off of the standard FBP method, effectively allowing to
reduce the X-ray dose by 50% for the same image quality (for
the specific dose level used in the experiments).

2. THE ALGORITHM

Let f be the sought attenuation image. A CT scan produces
photons counts y`, corresponding to straight lines ` through f .
Ideally, the measured data comprises of a 2-D Radon trans-
form ḡ = Rf (the sinogram) of this image, where ḡ` =∫

`
f(x)d` is the line integral along the corresponding line.

The relation to the true photon counts is ȳ` = I0e
−ḡ` , where

I0 is the blank-scan count.
The algorithm in [5] recovers the image f from the noisy

sinogram ĝ by solving the following optimization problem:

{α̂, D̂, f̂} = arg minα,D,f{γ‖Rf − ĝ‖22+

+
∑

j µj‖αj‖0 +
∑

j ‖Dαj −Ejf‖22}.
(1)

Here D is a matrix with unit-norm columns, Ej extracts the
j-th square patch from the image. This patch is sparsely en-
coded by Dαj . ‖α‖0 is the number of non-zero elements in
α.

In the training stage, the K-SVD algorithm is employed
to optimize (1) for the dictionary D and the representations



{αj} simultaneously, using some preliminary image f . These
parameters are then kept constant and the objective becomes
quadratic optimization problem with respect to the image f .
Its solution is the output of the algorithm.

There are a number of drawbacks to the described ap-
proach. First, the data fidelity term ‖Rf−ĝ‖22 is formulated in
the Radon domain, while the goal is to perform a reconstruc-
tion in the image domain. Furthermore, the noise variance is
assumed uniform over the sinogram, which leads to the L2

norm error measure in this term; however, for low-dose mea-
surements, it is important to account for the data-dependent
noise statistics. Second, correct weights µj are essential for
the performance of the algorithm but are hard to compute in
this setting, since they depend on the unknown noise statis-
tics in the image domain. These weights are rendered as free
parameters. Finally, the algorithm output depends on the pre-
liminary reconstructed image used in the training stage.

We now describe our alternative application of the Sparse-
Land approach in CT. In the common statistical model of the
CT scan, the measurements y` are rendered as instances of the
random variables Y` ∼ Poisson(λ`), where λ` = I0e

−ḡ` .
Using a second-order approximation of the log-likelihood

expression log(P(Y` = y`|f)) for this model, one deduces
that the variance of the deviation between the measured sino-
gram value ĝ` = −log(y`/I0), and the ideal value ḡ` equals
1/λ` [6, 7]. In practice, this value is well approximated by
1/y`. Thus, the goal of sinogram restoration is to minimize
the weighted L2 norm ‖g − ĝ‖2,W w.r.t. g, with a diagonal
weight matrix W given by W(`) = y`.

Our proposed reconstruction algorithm uses an off-line
training procedure, in which two dictionaries are learned.
Then, given a noisy data, the sinogram restoration is per-
formed, followed by the standard FBP algorithm.

Off-line procedure: The training requires a set of high-
quality reference images and corresponding sinograms con-
taminated with Poisson noise. This data can be obtained by
scanning a number of physical phantoms (or a cadaver) twice,
with high and low X-ray doses. Training of the first dictionary
is conducted fully in the sinogram domain and uses only the
noisy sinograms ĝ. In the following objective function αj is
a representation vector of the patch Ejg in terms of D, and T
is the number of pixels in a patch. We impose a sparsity prior
on the representations αj of the sinogram patches. In prac-
tice, the sparse coding of the patches is substantially better
when each patch has zero mean value; therefore mean values
of the patches are subtracted before the processing and stored
for the sinogram re-assembly stage. This step is not reflected
in the equations, in order not to clutter the exposition.

{D1, α
∗} = arg minD,α

∑
j ‖αj‖0 s.t.

∀j, |Dαj − sj‖22,W ≤ T, sj = Ej ĝ.
(2)

According to the statistical model, in each sinogram loca-
tion ` the weighted error

√
y`(ḡ`− ĝ`) has unit variance and is

independent of other locations. Therefore the measure ‖·‖2,W

of the difference between the noisy sinogram patch sj and its
sparsely encoded version Dαj (assumed to approximate the
true sinogram) has the expected value of T .

The numerical solution of this optimization problem is ob-
tained by a weighted version of the K-SVD algorithm [3],
which is generalized for the weighted L2 norm by using a

criss-cross regression [8]. Its iterations consist of two main
steps:

• (Sparse coding) Solve for each j,

α∗j = arg min ‖αj‖0 s.t. ‖Dαj −Ej ĝ‖22,W ≤ T.
(3)

This is done using the Orthogonal Matching Pursuit
(OMP) algorithm [9].

• (dictionary update) For each column di of the dictio-
nary, minimize the error

d∗i = arg min
di,{αj}

∑

j∈Ωi

‖Dαj −Ej ĝ‖22,W, (4)

where Ωi is the index set of all patches sj which support
includes di.

Given the dictionary D1, we compute for each training
image f patch-wise representations αf

j of the noisy sinogram
corresponding to f . Then we perform an additional optimiza-
tion of the dictionary while keeping the representations fixed.
This time the objective function involves the reconstruction
transform T (which is the FBP operation in our case), and the
goal is to minimize an error functional in the image domain,
applied to the difference between the reference image and the
reconstruction:

D2 = arg min
D

∑

f∈T S
‖TM−1

E

∑

j

E>j Dαf
j − f‖2,Q. (5)

Here ME =
∑

j E>j Ej is the correction factor for patches
overlapping. The optimizer of (5) is a dictionary close to D1

which absorbs the effects of applying the reconstruction op-
erator T to the processed sinograms.

The error functional ‖·‖2,Q is the weighted L2 norm with
a diagonal weight function Q. It is designed to improve the
ability of the reconstruction algorithm to recover low-contrast
contours: an edge separating two areas of similar intensity is
more important than the sharp bone-tissue transition (which
is less sensitive to noise). Thus the weight map Q built for
each f ∈ T S is inversely proportional1 to its gradient norm.
On-line procedure: Given the dictionaries D1,D2, the pro-
cessing of a new noisy sinogram is consists of computing the
patch-wise representations {αj} n terms of D1 and recover-
ing the sinogram as the optimizer of the following objective:

gr = arg min
g

λ‖g − ĝ‖22,W +
∑

j

‖D2αj −Ejg‖22 (6)

Here λ controls the trade-off between the data fidelity and a
sparsity-promoting term. It is calibrated off-line on the train-
ing set, for the best visual quality. The closed-form solution
of this problem is

gr =


∑

j

E>j Ej + λW



−1 

∑

j

E>j D2αj + λWĝ


 .

(7)

1The regions where the gradient values are below a threshold get a small
constant weight. The threshold is tuned manually to separate gradient values
representing the visually smooth regions from those corresponding to con-
tours in the image.



Finally, the FBP algorithm with non-apodized Ram-Lak ker-
nel is applied to gr to produce the output image. The method
is labeled as Sparsity-based Sinogram Denoising (SSD).

The computational cost of this sinogram pre-processing
is linear in the image size, since the operation is local. The
sparse-coding OMP step uses only a few atoms from the dic-
tionary, therefore in practice the processing time is low. Ex-
perimentally, the on-line part of SSD takes roughly the same
time as the following FBP algorithm.

3. NUMERICAL STUDY

In the numerical experiments the sinogram ḡ is simulated by
applying a pixel-driven implementation of the discrete Radon
transform to a discrete reference image. In image of size n×n
pixels we sample 4n views (projections) of

√
2n bins each,

evenly distributed over the angle range [0, π] (these views
are the columns of the sinogram matrix). The noisy photon
counts y` are generated according to the stated model. The
X-ray dose is controlled by the value of the blank-scan I0. It
is set to 700 photons, which corresponds to a visibly strong
noise in the reconstructed images.

In the experiments we use geometric phantoms, as well
as clinical CT images. All images are of dimensions 256 ×
256. Each phantom is built of a large ellipse with boundary,
filled with many smaller ellipses with randomly chosen cen-
ters, radii and intensity levels. The clinical images are cour-
tesy of Visible Human Project2, they represent a set of axial
sections of the male abdomen. The training is conducted sep-
arately for each type of images.

Each sinogram is decomposed into a set of 8× 8 overlap-
ping patches, extracted with a 1-pixel shift. The dictionaries
D1,D2 of dimensions 64 × 128 are trained using 20 phan-
toms. Training data for D1 training consists of 3 ·105 patches
from the noisy sinograms. For phantoms, the average number
of atoms required to represent each patch (up to the predicted
error) in terms of D1 is 2.3 atoms when the dictionary is ini-
tiated by a subset of the patches and is 1.3 atoms in terms of
the trained dictionary. Corresponding numbers for CT images
are 5.8 and 2.8 atoms per patch.

One of the quality measures we use is the Signal-to Noise
Ratio (SNR), defined for the ideal signal x and a deteriorated
version x̂ by SNR(x̂) = −20log10(‖x − x̂‖2/‖x‖2). The
SNR of the noisy sinogram of a phantom increases during the
restoration process (using D1) from 26 dB to 35 dB. However,
a denoising action is also implicitly performed in the standard
FBP algorithm by the low-pass apodization filter, therefore
the difference in the image domain is not so drastic. The re-
stored sinogram is computed by expression (7) with the value
λ = 0.1. Then the FBP with the basic Ram-Lak filter is ap-
plied to produce the output image f̃SSD.

For comparison, we implement the FBP algorithm with an
ideal or an apodized3 Ram-Lak filter, which are labeled f̃F1

and f̃F2 respectively. f̃F1 is the sharpest (and most noisy) im-
age available by FBP. f̃F2 is computed by manually tuning the
parameters of the smoothing filter for the highest SNR value
on the training set. To appreciate the effective dose reduction,

2Look at www.nlm.nih.gov/research/visible/visible human.html.
3Apodization is performed by applying a low-pass filter, implemented as

multiplication of the Ram-Lak filter by a Butterworth window in the Fourer
domain.

we also produce an image f̃F2d applying the apodized FBP to
a sinogram simulated with a double X-ray dose.

In Figure 1 a visual comparison of SSD and FBP is per-
formed. In the phantom images (upper row) it can be observed
that the SSD image displays more faithful image texture than
the low-dose FBP images (no spikes and granularity are vis-
ible), as well as high detail resolution (the ellipse boundaries
are better restored). It is visually comparable to the high-dose
f̃F2d image. In clinical images (lower row) the SSD image
features a reduced noise level and better restored details com-
paring to the f̃F2.

A quantitative comparison of the results is given in Ta-
ble 3. The standard deviation of the noise is computed in an
image region with constant density. The resolution is quan-
tified by approximating the effective point spread function
(PSF), applied to f through the projection-reconstruction pro-
cess in order to obtain the estimate f̃ . Technically, we com-
pute the Full-Width-Half-Maximum (FWHM) of the rotation-
invariant 2D Gaussian kernel G, which minimizes the MSE
‖f̃ −G ∗ f‖2. Of course, it would be desirable to investigate
the image quality from the clinical point of view - this could
be done via an inspection by a radiologist. Hopefully, in a
more realistic setup, such comparison will be conducted in a
future work.

It can be observed from the table that the SSD image has
a low noise level while by the resolution FWHM measure
the image f̃SSD is second after the sharpest FBP image f̃F1

which is much more noisy. Images f̃F2d and f̃SSD display
close values in all the measures; SSD image is sharper but has
lower SNR, and the behavior of other measures depends on
the image type. Overall, these two images are quantitatively
comparable, which support our claim on the dose reduction
possibility.

Phantoms:
Name std.dev. resolution SNR (dB) Measure

of noise (FWHM) ‖ · ‖2,Q

Phantoms: ×10−2 ×10−2

f̃F1 12.0 1.35 12.2 1.45
f̃F2 6.2 1.81 16.9 0.63
f̃F2d 5.4 1.66 18.0 0.49
f̃SSD 5.8 1.49 17.6 0.55

Clinical images: ×107

f̃F1 78.37 1.33 21.0 5.24
f̃F2 63.34 1.40 22.48 3.86
f̃F2d 52.33 1.42 23.93 2.79
f̃SSD 39.26 1.27 25.42 1.95

Unfortunately, there is no possibility to directly compare
the proposed algorithm with one described in [5], since the
latter was presented with the assumption of uniform Gaus-
sian noise model and with no method of choosing the sparse-
coding error ε.

4. CONCLUSIONS

The introduced algorithm employs the statistical model of the
sinogram noise for noise reduction based on sparsity prior in
terms of a learned dictionary. The dictionary training op-



 

 

 

 

Fig. 1. Upper row: experiment with ellipse phantoms. Lower row: experiment with clinical images, displayed in HU window
[-150,270]. Left to right: Reference image, FBP output, SSD output, double-dose FBP result.

timizes the algorithm performance with respect to an edge-
preserving error functional in the image domain, expressed in
the form of a weighted L2 norm (notice also that any error
measure in the form of the weighed L2 norm can be easily in-
corporated in the algorithm instead of the proposed one). The
resulting tool for pre-processing of the noisy data reduces the
sinogram noise caused by low X-ray dose and effectively al-
lows to maintain the image quality available from higher dose
scan with the standard FBP algorithm.

The presented numerical experiments are admittedly syn-
thetic; we use the discrete Radon transform operator to gener-
ate the sinogram data from discrete images. Thus, no real-life
data distortions, like beam hardening or Compton scatter were
confronted. The idea is to present a comparative advantage
over the standard algorithm implemented in the same setup,
and display a treatment for the isolated (and major) corrup-
tion cause which is the Poisson noise on photon counts.

As with any algorithm, based on learning from examples,
there is a concern of whether the medical anomalies and spe-
cial objects will be faithfully recovered. While there is no
direct evidence to the robustness of the proposed algorithm,
we point to the fact the sparse encoding is performed locally
(8× 8 squares) and in the sinogram domain; thus, the dictio-
nary atoms will not capture any geometric properties of CT
images, but rather the statistical properties of the underlying
photon counts.

Due to local nature of the processing, the method can be
readily extended to the 3-D scan with a general source tra-
jectory. Another advantage is that the algorithm has a low
computational cost for online processing and can easily be
incorporated into an existing software of a CT scanner.
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