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Abstract. This paper proposes a simple, accurate, and robust approach to single 
image nonparametric blind Super-Resolution (SR). This task is formulated as a 
functional to be minimized with respect to both an intermediate super-resolved 
image and a nonparametric blur-kernel. The proposed approach includes a con-
volution consistency constraint which uses a non-blind learning-based SR result 
to better guide the estimation process. Another key component is the unnatural 
bi-l0-l2-norm regularization imposed on the super-resolved, sharp image and the 
blur-kernel, which is shown to be quite beneficial for estimating the blur-kernel  
accurately. The numerical optimization is implemented by coupling the splitting 
augmented Lagrangian and the conjugate gradient (CG). Using the pre-estimated 
blur-kernel, we finally reconstruct the SR image by a very simple non-blind SR 
method that uses a natural image prior. The proposed approach is demonstrated 
to achieve better performance than the recent method by Michaeli and Irani [2] 
in both terms of the kernel estimation accuracy and image SR quality. 

Keywords: Super-resolution; blur-kernel estimation; nonparametric; dictionary 
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1 Introduction 

Since the seminal work by Freeman and Pasztor [3] and Baker and Kanade [4], single 
image super-resolution (SR) has drawn a considerable attention. A careful inspection of 
the literature in this area finds that existing approaches, either reconstruction-based or 
learning-based, focus on developing advanced image priors, however mostly ignoring 
the need to estimate the blur-kernel. Two recent comprehensive surveys on SR, cover- 
ing work up to 2012 [5] and 2013 [33], testify that SR methods generally resort to the 
assumption of a known blur-kernel, both in the single image and the multi-image SR 
regimes. More specifically, in the context of multi-image SR, most methods assume a  
squared Gaussian kernel with a suitable standard deviation δ, e.g., 3×3 with δ  0.4 [6],  
5×5 with δ  1 [7], and so on. As for single image non-blind SR, we mention few com- 
monly used options: bicubic low-pass filter (implemented by Matlab’s default func- 
tion imresize) [8-13, 21, 34, 35], 7×7 Gaussian kernel with δ  1.6 [13], 3×3 Gaussian 
kernel with δ  0.55 [14], and a simple pixel averaging kernel [15].  

Interestingly, a related critical study on single image SR performance is presented 
in [1]. The authors have examined the effect of two components in single image SR, 



i.e., the choice of the image prior and the availability of an accurate blur model. Their 
conclusion, based on both the empirical and theoretical analysis, is that the influence 
of an accurate blur-kernel is significantly larger than that of an advanced image prior. 
Furthermore, [1] shows that “an accurate reconstruction constraint1 combined with a 
simple gradient regularization achieves SR results almost as good as those of state-of-
the-art algorithms with sophisticated image priors”.  

Only few works have addressed the estimation of an accurate blur model within the 
single image SR reconstruction process. Among few such contributions that attempt 
to estimate the kernel, a parametric model is usually assumed, and the Gaussian is a 
common choice, e.g., [16, 17, 36]. However, as the assumption does not coincide with 
the actual blur model, e.g., combination of out-of-focus and camera shake, we will na- 
turally get low-quality SR results.   

This paper focuses on the general single image nonparametric blind SR problem. 
The work reported in [18] is such an example, and actually it does present a nonpara- 
metric kernel estimation method for blind SR and blind deblurring in a unified frame- 
work. However, it is restricting its treatment to single-mode blur-kernels. In addition, 
[18] does not originate from a rigorous optimization principle, but rather builds on the 
detection and prediction of step edges as an important clue for the blur-kernel estima- 
tion. Another noteworthy and very relevant work is the one by Michaeli and Irani [2]. 
They exploit an inherent recurrence property of small natural image patches across di- 
fferent scales, and make use of the MAPk-based estimation procedure [19] for recove- 
ring the kernel. Note that, the effectiveness of [2] largely relies on the found nearest 
neighbors to the query low-res patches in the input blurred, low-res image. We should 
also note that, in both [18] and [2] an l2-norm-based kernel gradient regularization is 
imposed for promoting kernel smoothness.  

Surprisingly, in spite of the similarity, it seems there exists a big gap between blind 
SR and blind image deblurring. The attention given to nonparametric blind SR is very 
small, while the counterpart blind deblurring problem is very popular and extensively 
treated. Indeed, a considerable headway has been made since Fergus et al.'s influential 
work [20] on camera shake removal. An extra down-sampling operator in the obser-
vation model is the only difference between the two tasks, as both are highly ill-posed 
problems, which admit possibly infinite solutions. A naturally raised hope is to find a 
unified and rigorous treatment for both problems, via exploiting appropriate common 
priors on the image and the blur-kernel.  

Our contribution in this paper is the proposal of a simple, yet quite effective frame- 
work for general nonparametric blind SR, which aims to serve as an empirical answer 
towards fulfilling the above hope. Specifically, a new optimization functional is pro- 
posed for single image nonparametric blind SR. The blind deconvolution emerges na- 
turally as a special case of our formulation. In the new approach, the first key compo- 
nent is harnessing a state-of-the-art non-blind dictionary-based SR method, generating 
a super-resolved but blurred image which is used later to constrain the blind SR.  

The second component of the new functional is exploiting the bi-l0-l2-norm regula- 
rization, which was previously developed in [31] and imposed on the sharp image and 

                                                        
1  I.e., knowing the blur kernel. 



the blur-kernel for blind motion deblurring2. We demonstrate that this unnatural prior 
along with a convolution consistency constraint, based on the super-resolved but blur- 
red image, serve quite well for the task of accurate and robust nonparametric blind SR. 
This suggests that appropriate unnatural priors, especially on the images, are effective 
for both blind SR and blind deblurring. In fact, it has become a common belief in the 
blind deblurring community that [31, 22, 25, 26, 27] unnatural image priors are more 
essential than a natural one, be it a simple gradient-based or a complex learning-based 
prior.  
    We solve the new optimization functional in an alternatingly iterative manner, es-
timating the blur-kernel and the intermediate super-resolved, sharp image by coupling 
the splitting augmented Lagrangian (SAL) and the conjugate gradient (CG). With the 
pre-estimated blur-kernel, we generate the final high-res image using a simpler recon-
struction-based non-blind SR method [38], regularized by the natural hyper-Laplacian 
image prior [31, 32, 37]. Comparing our results against the ones by [2] with both syn-
thetic and realistic low-res images, our method is demonstrated to achieve quite com- 
parative and even better performance in both terms of the blur-kernel estimation accu-
racy and image super-resolution quality.  
    The rest of the paper is organized as follows. Section 2 details the motivation and 
formulation of the proposed nonparametric blind SR approach, along with an illustra-
tive example for a closer look at the new method. In Section 3, the numerical scheme 
with related implementation details for the optimization functional is presented. Sec-
tion 4 provides the blind SR results by the proposed approach and [2], with both syn-
thetic and realistic low-res images. Section 5 finally concludes the paper.  

2 The Proposed Approach 

In this section we formulate the proposed approach as a maximum a posteriori (MAP) 
based optimization functional. Let o be the low-res image of size N1×N2, and let u be 
the corresponding high-res image of size sN1×sN2, with s > 1 an up-sampling integer 
factor. The relation between o and u can be expressed in two ways: 

    o DKu n  (1) 

    o DUk n  (2) 

where U
 
and K

 
are assumed to be the BCCB3 convolution matrices corresponding to 

vectorized versions of the high-res image u and the blur-kernel k, and D represents a 
down-sampling matrix. In implementation, image boundaries are smoothed in order to 
prevent border artifacts. Our task is to estimate u and k given only the low-res image 
o and the up-sampling factor s.  

In the non-blind SR setting, the work reported in [1] suggests that a simpler image 
gradient-based prior (e.g., the hyper-Laplacian image prior [32, 37]) can perform near- 

                                                        
2  In [31] the bi-l0-l2-norm regularization is shown to achieve state-of-the-art kernel estimation 

performance. Due to this reason as well as the similarity between blind deblurring and blind 
SR, we extend the bi-l0-l2-norm regularization for the nonparametric blind SR problem.  

3  BCCB: block-circulant with circulant blocks. 
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ly as good as advanced learning-based SR models. In such a case, the restoration of u 
is obtained by  

 2
2ˆ arg min  || ||  (( ) ),j

j
      

u
u DKu o u  (3) 

where   is defined as ( ) | |z z    with 0 1   leading to a sparseness-promoting 
prior, ( ; )h v     with ,h v   denoting the 1rst-order difference operators in the 
horizontal and vertical directions, respectively, and   is a positive trade-off parame-
ter. In this paper, the fast non-blind SR method [38] based on the total variation prior 
(TV; 1  ) is used for final SR image reconstruction. Nevertheless, the blind case is 
more challenging, and a new perspective is required to the choice of image and kernel 
priors for handling the nonparametric blind image SR. 

2.1 Motivation and MAP Formulation 

It is clear from (1) and (2) that the blur-kernel information is hidden in the observed 
low-res image. Intuitively, the accuracy of the blur-kernel estimation heavily relies on 
the quality of its counterpart high-res image that is reconstructed alongside with it. In 
blind deconvolution, it is generally agreed [19, 22] that commonly used natural image 
priors are likely to fail in recovering the true blur-kernel, as these priors prefer a blurr- 
ed image over a sharp one. This applies not only to the simple lα-norm-based sparse 
prior ( 0 1  ),  but also the more complex learning-based Fields of Experts [23] as 
well as its extension [24], and so on. As a consequence, unnatural sparse image priors 
are more advocated recently in the blind deblurring literature [31, 22, 25, 26, 27].  

Due to the close resemblance between blind image SR and the simpler blind decon- 
volution problem, and the fact that SR is more ill-posed, the same rationale is expect- 
ed to hold for both problems, implying that we should use a “more extreme” prior for 
the high-res image. We note, however, that this refers to the first phase of blind image 
SR, i.e., the stage of blur-kernel estimation. Such an unnatural prior would lead to sa- 
lient edges free of staircase artifacts which in turn are highly effective as core clues to 
blur-kernel estimation. It is natural that this would sacrifice some weak details in the 
high-res image, but as we validate hereafter, more precise and robust blur-kernel esti- 
mation can be achieved this way.  

Prior to introducing our advocated image and kernel priors for the blind image SR 
task, we discuss another term to be incorporated into our MAP formulation. We assu-
me the availability of an off-the-shelf fast learning-based SR method that is tuned to a 
simple and narrow bicubic blur. In this paper three candidate methods are considered, 
including: Neighborhood Embedding (NE) [21], Joint Sparse Coding (JSC) [10], and 
Anchored Neighbor Regression (ANR) [11]. Because the bicubic low-pass filter does 
not coincide with most realistic SR scenarios, such an algorithm generally generates a 
super-resolved but blurred image, denotes as u . The relation between u  and the un-
known high-res image u can be roughly formulated as  Ku u . Therefore, we simply 
force a convolution consistency constraint to our MAP formulation, which results in 
an optimization problem of the form 

 2 2
 02 2

,
min  || ||  ( , ) +  || || ,      

u k
DKu o u k Ku uR  (4) 



where   is a positive trade-off tuning parameter, and  0 ( , )u kR  is the image and ker-
nel prior to be depicted in subsection 2.2. We set 0.01, 100    for all the expe-
riments in this paper. We emphasize that the convolution consistency constraint has 
greatly helped in decreasing unpleasant jagged artifacts in the intermediate super-
resolved, sharp image u, driving the overall minimization procedure to a better blur-
kernel estimation.  

2.2 Bi-l0-l2-Norm Regularization for Nonparametric Blind SR 

The unnatural image priors that have been proven effective in blind deconvolution are 
those that approximate the l0-norm in various ways [25, 26, 27, 22]. Instead of strug-
gling with an approximation to the l0-norm, in this paper, just like in [31], our strategy 
is to regularize the MAP expression by a direct bi-l0-l2-norm regularization, applied to 
both the image and the blur-kernel. Concretely, the regularization is defined as 

 2 2
 0 0 02 2( , ) (|| || || || ) (|| || || || ), 

     u k

u ku ku k u u k kR    (5) 

where , , ,    u u k k  are some positive parameters to be provided. 
    In Equation (5), the first two terms correspond to the l0-l2-norm-based image regu- 
larization. The underlying rationale is the desire to get a super-resolved, sharp image 
with salient edges from the original high-res image, which have governed the primary 
blurring effect, while also to force smoothness along prominent edges and inside ho- 
mogenous regions. It is natural that such a sharp image is more reliable for recovering 
the true support of the desired blur-kernel than the ones with unpleasant staircase and 
jagged artifacts, requiring a kernel with a larger support to achieve the same amount 
of blurring effect. According to the parameter settings, a larger weight is placed on 
the l2-norm of u  than its l0-norm, reflecting the importance of removing stair- case 
artifacts for smoothness in the kernel estimation process.  
    Similarly, the latter two terms in (5) correspond to the l0-l2-norm regularization for 
the blur-kernel. We note that the kernel regularization does not assume any parametric 
model, and hence it is applicable to diverse scenarios of blind SR. For scenarios such 
as motion and out-of focus blur, the rationale of the kernel regularization roots in the 
sparsity of those kernels as well as their smoothness. Compared against the l0-l2-norm 
image regularization, the l0-l2-norm kernel regularization plays a refining role in spar- 
sitification of the blur-kernel, hence leading to an improved estimation precision. The 
l0-norm part penalizes possible strong and moderate isolated components in the blur-
kernel, and the l2-norm part suppresses possible faint kernel noise, just as practiced 
recently in the context of blind motion deblurring in [26]. We should note that beyond 
the commonly used l2-norm regularization, there are a few blind deblurring methods 
that use l1-norm as well, e.g. [20, 25].  

Now, we turn to discuss the choice of appropriate regularization parameters in Eq-
uation (5). Take the l0-l2-norm-based image regularization for example. If ,   u u  are 
set too small throughout iterations, the regularization effect of sparsity promotion will 
be so minor that the estimated image would be too blurred, thus leading to poor quali-
ty estimated blur-kernels. On the contrary, if ,   u u  are set too large, the intermediate 
sharp image will turn to too “cartooned”, which generally has fairly less accurate edge 



structures accompanied by unpleasant staircase artifacts in the homogeneous regions, 
thus degrading the kernel estimation precision. To alleviate this problem, a continua-
tion strategy is applied to the bi-l0-l2-norm regularization so as to achieve a compro-
mise. Specifically, assume that current estimates of the sharp image and the kernel are 

iu  and ik . The next estimate, 1iu , 1ik , are obtained by solving a modified minimi-
zation problem of (4), i.e.,  

 1
2 21 1 2 2 ,

( , ) arg min || || ( , ) || || ,ii i           
u k

u k DKu o u k Ku uR  (6) 

where 1 ( , )i u kR  is given by 

 
1

2 2
0 02 2 ( , ) (|| || || || ) (|| || || || ),i iic c 

       u k

u ku u kku k u u k kR    (7) 

where  ,c cu k  are the continuation factors, which are respectively set as 2 / 3 , 4 / 5 , and 
icu  denotes cu  to the power of i 4; as for the regularization parameters    , , ,   u u k k , 

they are uniformly set as 1,  10,  0.2,  1      u u k k  for all the experiments in 
this paper. With this continuation strategy, the regularization effect is diminishing as 
we iterate, which leads to more and more accurate salient edges in a progressive man-
ner, and is shown quite beneficial for improving the blur-kernel estimation precision. 
   We will demonstrate hereafter that the proposed regularization (7) plays a vital role 
in achieving high estimation accuracy for the blur-kernel, and an l0-norm-based image 
prior alone is not sufficient for serving this task. 

2.3 A Closer Look at the Proposed Approach 

To get a better insight for the proposed regularization on the sharp image and the blur-
kernel, an illustrative example is provided in this subsection, relying on the numerical 
scheme to be presented in Section 3. Equation (7) is analyzed in a term-by-term way 
with three of its representative reduced versions studied, i.e., 

 
2

2
0 0 2 ( , ) (|| || ) (|| || || || ),i iic c 

      k

ku u kku k u k kR   (8) 

 
3

2
0 2 ( , ) (|| || ) (|| || ),i iic c    u u kku k u kR   (9) 

 
4 0 ( , ) (|| || ).i ic  u uu k uR   (10) 

Naturally, several other reduced versions of Equation (7) can be tried as well; we se- 
lect (8)-(10)5 just for the convenience of presentation and illustration. With the given 
parameter values in subsection 2.2, we demonstrate that the success of Equation (7) 
depends on the involvement of all the parts in the regularization term. In addition, the 
superiority of the continuation strategy as explained above is validated. Actually, a si- 

                                                        
4  The same meaning applies to ick . 
5  We should note that we have also selected a uniform set of parameter values for each of the 

formulations (8), (9) and (10), respectively, in order to optimize the obtained blind SR perf- 
ormance on a series of experiments. However, it was found that these alternative are still in-
ferior to (7), just similar to the observation made in blind motion deblurring [31] .  



milar analysis has been made in the context of blind motion deblurring [31], demons- 
trating well the effectiveness of the bi-l0-l2-norm regularization. 
    In Fig. 1, a low-res version of the benchmark high-res image Lena is provided, that 
is blurred by a 7×7 Gaussian kernel with δ  1.5 and down-sampled by a factor 2. We  
note that other blur-kernel types are tried in Section 4. Since we are blind to the kernel 
size, we just assume it to be 31×31. The SSD metric (Sum of Squared Difference) [19] 
is utilized to quantify the error between the estimated blur-kernel and its counterpart 
ground truth. For every regularization option, i.e., Equations (7)-(10), we test each of 
the three non-blind SR approaches, NE, JSC, ANR, for generating u . We also test the 
overall scheme without the continuation – this is denoted in the figure as 5-NE, 5-JSC, 
and 5-ANR. 

 
Fig. 1. An illustrative example of the bi-l0-l2-norm regularization for nonparametric blur-kernel 
estimation in single image blind SR. This figure shows the two times interpolated low-res image 
Lena (Nearest Neighbor), the ground truth blur-kernel, and the estimated ones using regulariza-
tions (7)-(10) with NE, JSC, ANR for generating the reference image u . The parts denoted by 
5-NE/JSC/ANR correspond to the full scheme without continuation. 

Clearly, the regularization by Equation (7) achieves the highest estimation accuracy 
compared to its degenerated versions. Take ANR for example: the SSD corresponding 
to 7-ANR is 0.0008, while those of 8-ANR, 9-ANR, 10-ANR and 5-ANR are 0.0034, 
0.0106, 0.0109, and 0.0041, respectively. It is visually clear that the kernel of 5-ANR 
has a larger support than that of 7-ANR, validating the negative effect of the naive l0-
norm without continuation on the kernel estimation. Also, from the result of 10-ANR 
we deduce that the l0-norm-based prior (with continuation) alone, is not sufficient. As 
incorporating other regularization terms into Equation (10), particularly the l0-norm-
based kernel prior and the l2-norm-based image prior, higher estimation precision can 
be achieved because of the sparsification on the blur-kernel and the smoothness along 
dominant edges and inside homogenous regions of the image. Lastly, we note that it is 
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crucial to incorporate the convolution consistency constraint based on an off-the-shelf 
non-blind SR method: when   is set to 0 while other parameters in (6) are unaltered, 
the SSD of the estimated kernel increases to 0.0057.    

 
Fig. 2. Super-resolved images. First column: Non-blind results using the NE [21], JSC [10] and 
ANR [11] algorithms with the default bicubic blur-kernel. Second column: Blind results using 
[21, 10, 11] with blur-kernels estimated from the proposed method respectively based on 7-NE, 
7-JSC, and 7-ANR. Third column: Blind results using the TV-based SR approach [38] with the 
estimated kernels.  

   In Fig. 2, super-resolved high-res images are estimated using learning-based non-
blind SR algorithms [21, 10, 11], based on both the default bicubic low-pass filter and 
the kernels estimated by 7-NE, 7-JSC, 7-ANR shown in Fig. 1. It is clear that the 
super-resolved images shown in the second column of Fig. 2 are of much better visual 
perception and higher PSNR (peak signal-to-noise ratio) than those shown in the first 
column. We note that ANR [11] (29.5092 dB) performs slightly better than JSC [10] 
(29.3787 dB) when fed with our estimated blur-kernels, and both approaches are su-
perior to NE [21] (28.92858 dB), which accords with the experimental results in [11] 
that assume the known blur-kernels. It is also interesting to note that the TV-based SR 
method [38] (i.e., the third column in Fig. 2), along with our estimated blur-kernels, 
achieves better performance than all the candidate non-blind SR methods [21, 10, 11], 
among which the proposed 7-ANR+[38] ranks the best (29.7531 dB). Recall the claim 
in [1] that an accurate reconstruction constraint plus a simpler lα-norm-based sparse 
image prior is almost as good as state-of-the-art approaches with sophisticated image 
priors. This aligns well with the results shown here. In Section 4, we utilize [38] for 
the final non-blind SR image reconstruction. 

3 Numerical Algorithm 

We now discuss the numerical aspect of minimizing the non-convex and non-smooth 
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functional (7). Because of the involved l0-norm, the optimization task is generally NP-
hard. We do not attempt to provide a rigorous theoretical analysis on the existence of 
a global minimizer of (6) or make a claim regarding the convergence of the proposed 
numerical scheme. We do note, however, that there are few encouraging attempts that 
shed some theoretical light on problems of related structure to the one posed here (see 
[28, 29]). Nevertheless, considering the blind nature of our problem, the focus here is 
on a practical numerical algorithm.  

3.1 Alternating Minimization 

We formulate the blur-kernel estimation in (7) as an alternating l0-l2-regularized least-
squares problem with respect to u and k. Given the blur-kernel ik , the super-resolved, 
sharp image u is estimated via  

 2 22
1 0 2 2 2 arg min  || || || || || || || || .i ii i ic c

       
u u

   u u
u

u u u DK u o K u u   (4) 

   Turning to estimating the blur-kernel 1ik  given the image 1iu , our empirical expe-
rimentation suggests that this task is better performed when implemented in the image 
derivative domain. Thus, 1ik  is estimated via  

  2 2

2
1 0 2

1 12 2

arg min  || || || ||

                    || ( ) || || ( ) || ,i i

i

i d d i d dc c
d



 

 


 
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k k

k k
k

k k k

D U k o U k u


 (5) 

subject to the constraint set  1{ 0, || || 1}  k kC , since a blur-kernel should be non-
negative as well as normalized. In Equation (13), 1( )i dU  represents the convolution 
matrix corresponding to the image gradient 1 1( )i d id   u u , ,d d  o o  d d  u u  .    
    Both (12) and (13) can be solved in the same manner as in [30, 31] based on the 
splitting augmented Lagrangian (SAL) approach. The augmented Lagrangian penalty 
parameters for (12) and (13) are set as 6100,  1 10   u k , respectively. Note that, 
due to the involved down-sampling operator, we use the CG method to calculate each 
iterative estimate of u or k. In the CG, the error tolerance and the maximum number 
of iterations are set respectively as 1e-5 and 15. 

3.2 Multi-scale Implementation 

In order to make the proposed approach adaptive to large-scale blur-kernels as well as 
to reduce the risk of getting stuck in poor local minima when solving (12) and (13), a 
multi-scale strategy is exploited. For clarity, the pseudo-code of multi-scale imple-
mentation of the proposed approach is summarized as Algorithm 1 
    In each scale, the low-res image o and the super-resolved, but blurred image u  are 
down-sampled two times accordingly as inputs to (12) and (13). In the finest scale the 
inputs are the original o and u  themselves. The initial image for each scale is simply 
set as the down-sampled version of u , and the initial blur-kernel is set as the bicubic 
up-sampled kernel produced in the coarser scale (in the coarsest scale it is simply set 
as a Dirac pulse). 



Algorithm 1. Alternating minimization for nonparametric blind SR 
        1:  Input. Images , ,o u  down-sampled images   and s so u  in coarser scales 4,s         
         

and 4 4,  o o u u  .  
        2:  Initialization. 0 1 01,  0, , Dirac pulse.s i =  u u k  
        3:  While 4,s   do 
                4:  While 10,i   do 
                 5:   1  Solve (12) for  with  10  iterations of  SAL; i u  
                 6: 1  Solve (13) for with  10  iterations of SAL;i k    
             7: End 
             8:  0;i =  
             9: th

0 10 Set  by upsampling  with projection onto  for the ( +1)  scale;s k k C   
                  10: th

0 Set  by  for the ( 1)  scale;s s+ u u  
                  11: End 
    13: ˆ .Output : k  
      14:  Non-blind SR: Super-resolve the final high-res image û  using the TV-based SR 
         method [38] with the estimated kernel k̂ . 

4 Experimental Results 

This section validates the benefit of the proposed approach using both synthetic and 
realistic low-res images6. The non-blind SR method ANR [11] is chosen for conduct-
ing the blur-kernel estimation in all the experiments. We make comparisons between 
our  approach and the recent state-of-the-art nonparametric blind SR method reported 
in [2]. It is noted that the estimated blur-kernels corresponding to [2] were prepared 
by Tomer Michaeli who is the first author of [2]. Due to this comparison, and the fact 
that the work in [2] loses its stability for large kernels7, we restrict the size of the ker-
nel to 19×19. In spite of this limitation, we will try both 19×19 and 31×31 as the input 
kernel sizes to our proposed approach, just to verify its robustness against the kernel 
size.  
   The first group of experiments is conducted using ten test images from the Berkeley 
Segmentation Dataset, as shown in Fig. 3. Each one is blurred respectively by a 7×7, 
11×11, and 19×19 Gaussian kernel with δ  2.5, 3 times down-sampled, and degraded 
by a white Gaussian noise with noise level equal to 1. Both the image PSNR and the 
kernel SSD are used for quantitative comparison between our method and [2]. Table 
1 presents the kernel SSD (scaled by 1/100), and Table 2 provides the PSNR scores 
of correspondingly super-resolved images by the non-blind TV-based SR approach 
[38] with the kernels estimated in Table 1. From the experimental results, our method 
in both kernel sizes, i.e., 19×19, 31×31, achieves better performance than [2] in both 
the kernel SSD and the image PSNR. We also see that, as opposed to the sensitivity of 
the method in [2], our proposed method is robust with respect to the input kernel size. 

                                                        
6  Experiments reported in this paper are performed with MATLAB v7.0 on a computer with an Intel i7-

4600M CPU (2.90 GHz) and 8 GB memory. 
7  In [2] blur-kernels are typically solved with size 9×9, 11×11 or 13×13 for various blind SR problems.  



 

 

 
Fig. 3. Test images from the Berkeley Segmentation Dataset used for quantitative evaluation of 
each nonparametric blind SR method. Left to right, top to bottom: (a)-(j). 

Table 1. SSD of the blur-kernels estimated by [2] and our method. “Ours.1” corresponds to our 
method with an input kernel size of 19×19, and “Ours.2” corresponds to the size 31×31. 

True size ×10-2 a b c d e f g h i j Mean 

 
7×7 

[2] 0.97 0.47 1.06 0.77 1.28 0.83 1.13 1.08 1.46 0.26 0.93 

Ours.1 0.22 0.13 0.22 0.20 0.22 0.19 0.22 0.21 0.17 0.15 0.19 

Ours.2 0.23 0.14 0.25 0.15 0.27 0.17 0.23 0.22 0.18 0.13 0.20 

 
11×11 

[2] 0.29 0.18 0.42 0.32 0.70 0.56 0.87 0.41 0.62 0.10 0.45 

Ours.1 0.13 0.02 0.10 0.07 0.08 0.07 0.11 0.15 0.05 0.04 0.08 

Ours.2 0.11 0.04 0.09 0.08 0.07 0.05 0.07 0.13 0.05 0.03 0.09 

 
19×19 

[2] 0.22 0.15 0.38 0.26 0.63 0.30 0.83 0.35 0.55 0.09 0.38 

Ours.1 0.11 0.03 0.09 0.07 0.08 0.07 0.14 0.16 0.07 0.04 0.09 

Ours.2 0.09 0.05 0.11 0.08 0.07 0.06 0.13 0.14 0.08 0.03 0.08 

 

   Fig. 4 shows SR results for a synthetically blurred image, with a severe motion blur. 
This example demonstrates well the robustness of the proposed approach to the kernel 
type, while either the non-blind ANR [11] or the blind method [2] completely fails in 
achieving acceptable SR performance. Fig. 5 and Fig. 6 present blind SR results on 
two realistic images (downloaded from the Internet). The image in Fig. 5 is somewhat 
a mixture of motion and Gaussian blur. We see that both our method and [2] produce 
reasonable SR results, while ours is of relatively higher quality; the faces in the super-
resolved image with our estimated kernels can be better recognized to a great degree. 
As for Fig. 6, our method also produces a visually more pleasant SR image, while the 
jagged and ringing artifacts can be clearly observed in the SR image corresponding to 



[2], which produces an unreasonable blur-kernel. Please see the SR images on a com-
puter screen for better perception. 

Table 2.  PSNR of correspondingly super-resolved images by the non-blind TV-based SR 
approach [38] with the estimated kernels in Table 1 

True size dB a b c d e f g h i j Mean 

 
7×7 

[2] 21.0 25.8 22.7 23.0 21.1 25.6 21.2 22.9 22.4 27.7 23.3 

Ours.1 24.9 27.9 24.0 30.6 23.4 27.7 22.6 25.0 25.8 29.1 26.1 

Ours.2 24.9 27.8 24.2 30.5 22.7 27.7 22.1 25.1 25.7 28.8 26.0 

 
11×11 

[2] 21.7 25.9 22.7 23.5 20.6 25.5 21.1 23.3 22.5 27.7 23.5 

Ours.1 24.6 27.9 24.3 30.1 23.7 27.5 22.8 25.0 25.6 29.0 26.1 

Ours.2 24.6 27.7 24.3 30.0 23.7 27.5 22.6 25.0 25.6 28.9 26.0 

 
19×19 

[2] 21.7 26.1 22.6 23.8 20.7 25.2 21.1 23.4 22.6 27.8 23.5 

Ours.1 24.6 27.9 24.4 30.2 23.8 27.5 22.8 24.9 25.6 28.9 26.1 

Ours.2 24.6 27.6 24.4 30.2 23.8 27.5 22.7 25.0 25.6 28.9 26.0 

 

 
Fig. 4. SR with synthetic low-res Hollywood (×2). Left to right: Non-blind ANR [11]; [2]+[38] 
(size 19×19); Ours.1+[38] (size 19×19); Ours.2+ [38] (size 31×31).   

5   Conclusions and Discussions 

This paper presents a new method for nonparametric blind SR, formulated as an opti-
mization functional regularized by a bi-l0-l2-norm of both the image and blur-kernel. 
Compared with the state-of-the-art method reported in [2], the proposed approach is 
shown to achieve quite comparative and even better performance, in both terms of the 
blur-kernel estimation accuracy and the super-resolved image quality.  
An elegant benefit of the new method is its relevance for both blind deblurring and 
blind SR reconstruction, treating both problems in a unified way. Indeed, the bi-l0-l2-
norm regularization, primarily deployed in [31] for blind motion deblurring, proves its 
effectiveness here as well, and hence serves as the bridge between the two works and 
the two problems. The work can be also viewed as a complement to that of [1] in pro- 
viding empirical support to the following two claims: (i) blind SR prefers appropriate 
unnatural image priors for accurate blur-kernel estimation; and (ii) a natural prior, no 
matter be it simple (e.g., lα-norm-based sparse prior [32]) or advanced (e.g., Fields of 
Experts [23]), are more appropriate for non-blind SR reconstruction. 

Ours.2 + [38][11] [2] + [38] Ours.1 + [38]



 
Fig. 5. SR with low-res Crowd (×2). Top left: Non-blind ANR [11]; Top right: [2]+[38] (size 
19×19); Bottom left: Ours.1+[38] (size 19×19); Bottom right: Ours.2+[38] (size 31×31).  

 
Fig. 6. SR with low-res Building (×4). Top left: Non-blind ANR [11]; Top right: [2]+[38] (size 
19×19); Bottom left: Ours.1+[38] (size 19×19); Bottom right: Ours.2+[38] (size 31×31). 

Ours.1 + [38] Ours.2 + [38]

[11] [2] + [38]

Ours.1 + [38] Ours.2 + [38]

[11] [2] + [38]
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