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ABSTRACT

Over the last decade, a number of algorithms have shown
promising results in removing additive white Gaussian noise
from natural images, and though different, they all share in
common a patch based strategy by locally denoising overlap-
ping patches. While this lowers the complexity of the prob-
lem, it also causes noticeable artifacts when dealing with large
smooth areas. In this paper we present a patch-based denois-
ing algorithm relying on a sparsity-inspired model (K-SVD),
which uses a multi-scale analysis framework. This allows us
to overcome some of the disadvantages of the popular algo-
rithms. We look for a sparse representation under an already
sparsifying wavelet transform by adaptively training a dictio-
nary on the different decomposition bands of the noisy image
itself, leading to a multi-scale version of the K-SVD algo-
rithm. We then combine the single scale and multi-scale ap-
proaches by merging both outputs by weighted joint sparse
coding of the images. Our experiments on natural images in-
dicate that our method is competitive with state of the art al-
gorithms in terms of PSNR while giving superior results with
respect to visual quality.

Index Terms— K-SVD, sparse, dictionary, multiscale,
denoising.

1. INTRODUCTION
The problem of recovering an underlying image, or any other
data, from measurements contaminated with noise is one of
the most studied problems in signal processing. In the tra-
ditional set-up, a signal z ∈ Rn is contaminated by additive
noise η such that y = z+ η. The objective is then to recover
the original signal by removing the noise from the corrupted
data y. In this work, and as it is mostly assumed, we will
consider the noise to be white and iid, i.e. η ∼ N (0, σ2).

Sparsity-based models have had a growing importance in
signal processing in general, and have led to efficient algo-
rithms in image denoising, in particular [1]. This class of
methods assume that a natural signal can be expressed as a
linear combination of only a few atoms from a redundant dic-
tionary D ∈ Rn×m, n < m. Looking for such a sparse repre-
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sentation accounts for solving the following problem:

min
x
||x||0 subject to ||y −Dx||22 ≤ ε2, (1)

where x ∈ Rm is the sparse representation vector for y within
an accuracy of ε, and ||x||0 counts the number of non-zeros
in x. Obtaining such a sparse representation is NP-hard in
general, but several greedy algorithms and other relaxations
methods are at our disposal to tackle this problem under cer-
tain conditions [1]. Methods such as the OMP [2], MP [3],
FOCUSS [4] and others enable us to approximate the solu-
tion to the sparse coding problem.

A central issue in this approach is the choice of the dictio-
nary. Transforms that are analytically defined might serve the
purpose, providing also an important advantage in terms of
their implementation by avoiding an explicit matrix represen-
tation. On the other side, learning the dictionary itself from
the real data has proven to be more effective, at the expense
of managing explicit matrices and more complex algorithms.
This task can be written as:

min
D,X
||Y −DX||2F subject to ||xi||0 ≤ T, ∀i, (2)

where Y ∈ Rn×N is a matrix containing N signal examples,
and X ∈ Rm×N are the corresponding sparse vectors, both
ordered column wise. Several authors have proposed itera-
tive methods to undertake this problem [5, 6]. Among them,
the K-SVD algorithm [7] has been widely used for different
applications in image processing. In denoising in particular,
one could seek for a sparse representation over a dictionary
trained to perform optimally for some group or kind of im-
ages. Interestingly, the same denoising task can be dealt with
while training a dictionary on the noisy image itself achieving
better performance [8].

Adopting a broader view, a common feature in most state
of the art denoising methods is a patch-based concept: when
dealing with high dimensional data, the motif is to work on
overlapping patches of size

√
n×
√
n, and then tile and average

the results. Some of these include the NLM [9], BM3D [10],
LSSC [11], and the K-SVD is no exception to this common
approach. While this strategy provides a practical solution un-
der this framework, several problems arise from working in a
single and small scale scheme. As we will show later, no mat-
ter what the core algorithm is, this affects the visual quality of
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the denoised image. The resulting artefacts are more notice-
able in large smooth areas, typical of commonplace images
such as scenery and landscapes. What is there to gain by these
algorithms from a more global approach? Could a multi-scale
framework provide an improvement to these methods?

We propose to merge the K-SVD denoising algorithm [8]
with a wavelet analysis, in a similar way to the approach taken
in [12]. This will lead to an effective sparse decomposition of
the image content using different scale atoms in a natural way.
As a result, the potential of the K-SVD denoising algorithm
is exploited beyond the single scale limitations, reaching state
of the art results. In this paper we describe this idea in details,
tie it and contrast it to existing work, and demonstrate the
effectiveness of the proposed scheme.

2. RELATED WORK

The idea of combining dictionary learning with a multi-scale
analysis framework is not new. In [13], the authors proposed
to train wavelet coefficients with a sparsity inducing prior
on a wavelet pyramidal decomposition structure, achieving
slightly better results for compression. Later, the authors in
[14] used different size patches taken from a quadtree struc-
ture to train a multi-scale dictionary, in a first extension of the
K-SVD algorithm to a multi-scale scheme.

The work presented in [12] introduced the construction of
true multi-scale dictionaries by learning patch based atoms in
the analysis domain of the wavelet transform. In this case, the
resulting dictionary appears as the multiplication of a wavelet
synthesis matrix with a learnt dictionary in the wavelet do-
main, i.e., D̃ = WSD, where WS is the synthesis matrix of
a wavelet (inverse) transform. However, choosing an orthog-
onal wavelet with periodic extension enables the authors to
work in the analysis domain instead, by solving the following
optimization problem:

min
D,X
||WAY −DX||2F subject to ||xi||0 ≤ T, ∀i, (3)

where WA is the analysis operator (wavelet transform) ma-
trix. This expression suggests to adapt the atoms to sparsely
represent the wavelet coefficients of the different training ex-
amples. Moreover, the authors proposed to train different
sub-dictionaries Db per band by employing K-SVD on 8× 8
patches of the wavelet sub images. This simple scheme al-
lows to work with different sized atoms, since a patch in a first
decomposition level implies an effective patch of four times
its area in the image domain. Once the collection of sub-
dictionaries is trained, the authors in [12] use a global frame-
work for the sparse coding stage, where the patches from dif-
ferent scales compete for additional coefficients selecting the
one that gives the most profit in terms of the residual energy,
with a global variant of the OMP algorithm.

All these approaches have looked for a better representa-
tion of some class of data or images in terms of some dictio-
nary. As such, they fail to treat the denoising task competi-
tively, as indeed demonstrated in [12]. In [8], the K-SVD de-

noising algorithm was formally derived by proposing a global
image prior that forces patch-based local sparsity over patches
in every location of the image. The problem is solved itera-
tively using an error threshold for the sparse coding which de-
pends on σ, treating each patch independently. We will make
use of this concept and extend it to a multi-scale framework.

3. OUR CONTRIBUTION
In this paper we propose to continue and extend the work
in [12], and tackle specifically the denoising problem. In
[12] the authors have shown an example of a naive denois-
ing through M-term approximation, using a global pursuit.
The results reported in this method were not competitive with
the single-scale K-SVD. In this paper we propose to adapt
the multi-scale sub-dictionaries to the noisy image itself and
treat the pursuit locally. This resembles the work in [8], but
in a multi-scale scenario. Each band of the decomposition
is treated separately, training a subdictionary for each band,
which is then used to denoise the corresponding wavelet co-
efficients. In a final stage, the multi-scale K-SVD and the
traditional (single-scale) K-SVD denoised images are com-
bined though a weighted joint sparse coding in order to benefit
from the advantages that each bring. This last step allows us
to maximize the information shared between the two images,
and obtain a better estimate for the original signal.

3.1. Multi-scale K-SVD denoising
Consider a noisy image Y, its wavelet transform as a col-
lection of band images YW

b = (WAY)b, and its estimated
denoised version ẐWb , b = 1, ..., L = 3S + 1, with S decom-
position levels. Generalizing the work in [8], we propose a
global maximum a posteriori (MAP) estimator for denoising
the image in the wavelet domain as

∀b, {xij,b,Db, Ẑ
W
b } = argmin

xij,b,Db,ZW
b

λ||YW
b − ZWb ||22

+
∑
ij

µij,b||xij,b||0 +
∑
ij

||Dbxij,b −Rij,bZ
W
b ||22, (4)

where xij,b is the sparse vector for the (i, j)−patch in the de-
composition band b, Rij,b is a matrix that extracts that patch
from the sub-image ZWb , and λ is a Lagrange multiplier. This
optimization problem can be solved iteratively by first consid-
ering a fixed set of dictionaries Db and obtaining the vectors
xij,b by any pursuit method. Then the sub dictionaries are
updated using a K-SVD step. These steps are repeated for a
fixed number of iterations. Finally, we update ZWb by

ẐW
b =

(
λI+

∑
ij

RT
ij,bRij,b

)−1(
λYW

b +
∑
ij

Rij,bDbxij,b

)
.

(5)
After the different sub band images have been denoised in
the wavelet domain, the multi-scale denoised image is ob-
tained by applying the inverse wavelet transform. Note that
by working on patches of the same size in all decomposition
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Fig. 1. One image from the dataset in [15], and its denoising results (noise level ση = 35). Top left: original image. Top right:
K-SVD (PSNR = 31.01, SSIM = 0.857). Bottom left: BM3D (PSNR = 33.16, SSIM = 0.923). Bottom right: Fused K-SVD
algorithm (PSNR = 33.16, SSIM = 0.940). Note the artefacts in the single scale patch based methods.

levels, we consider different-scale effective patches in the im-
age domain. This gives our algorithm a more global outlook
than that of the regular K-SVD denoising algorithm, and in-
volves essentially the same computational complexity, plus
the forward and backward wavelet transform. The complex-
ity analysis detailed in [12] is still valid here.

3.2. Fusing Single and Multi-Scale Results
After this multi-scale K-SVD denoising stage, we go one
step further. While working on the wavelet coefficients on
the different scales 1, 2, . . . , S, we miss considering the scale
0. Following this motivation, we propose to merge the out-
come of the original (single-scale) K-SVD denoised image
Ẑss with the output of the multi-scale K-SVD algorithm pro-
posed here, Ẑms. Both of these have some remaining noise
and different artefacts, but correspond to the same underly-
ing image. We aim to recover the information common to
both of them by a weighted joint sparse coding, as motivated
by [16] and shown in Fig. 2. We concatenate correspond-
ing patches of both images with a weighting factor β as
ỹ = [ yTms

√
1 + β , yTss

√
1− β ]T ∈ R2n. We may then use

the dictionary given by A = [DT
√
1 + β , DT

√
1− β ]T ∈

R2n×m to obtain the sparse vector α ∈ Rm by the OMP
algorithm. Finally, the denoised patch will be given by
ẑ = Dα/

√
2.

As we will see later, the multi scale K-SVD algorithm
outperforms the single scale K-SVD specially in the presence
of high noise due to the increasing patch-like artefacts, which
the multi scale approach is more robust to. This indicates that

 
 

x

Fig. 2. Joint sparse coding stage of the Fused K-SVD denois-
ing algorithm. β1 =

√
1 + β, β2 =

√
1− β.

β should be close to 1 in such cases, and close to 0 when
the noise level is lower. One could just propose a function
β = f(ση) accordingly, or choose an adaptive method that
optimizes this parameter for each patch. For the sake of sim-
plicity we consider here a linear function of the initial noise
level, from β = 0 for σ = 0 to β = 0.9 for σ = 50. Certainly
other choices are possible, and the implications of this choice
will be commented later on.

4. EXPERIMENTS

In this section we present the results of a denoising exper-
iment on landscape images from the online NOAA library
[15]. We chose these images as they contain large scenery
areas that are poorly treated by typical patch-based denoising
methods. One of this images is depicted in the top left corner
of Fig.1. Fifteen images from this dataset, size 870×1360,
were contaminated by white Gaussian noise with zero mean
and variable standard deviation σ. For the multi-scale decom-
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Fig. 3. Denoising results by the K-SVD [8], BM3D [10],
multi-scale K-SVD and Fused K-SVD algorithms, averaged
over 15 testing images from the NOAA database [15]. Left:
PSNR gain with respect to K-SVD. Right: SSIM gain with
respect to K-SVD.

position we used a discrete Meyer wavelet, with 2 decompo-
sition levels. By choosing a unitary transform, the stoping
criteria for the sparse coding stage in the denoising algorithm
is simply ε = c · σ, where c = 1.15 following [8].

We evaluate our denoising results with two image qual-
ity measures: the popular Peak Signal to Noise Ratio (PSNR)
and the Structural Similarity Index (SSIM) [17]. While sim-
ple and practical, the PSNR relies only on the absolute dif-
ference pixel by pixel, and does not provide a good signal
fidelity measure [18]. As such, its ability to compare images
from a human perception point of view is poor. The SSIM
is somehow a more complete image quality measure, which
builds upon the idea that human perception is highly adaptive
to structural information from images and visual scenes [17].
We include in the results those obtained by the BM3D algo-
rithm [10], computed with the code made available by the
authors, and with their recommended parameters. We also
compare our performance against the regular single-scale K-
SVD. Note that all three methods use 8× 8 patches.

We may also benefit from choosing an appropriate initial
dictionary [8]. To this end, we trained a single-scale and a
multi-scale dictionary on 20 natural images (outside the above
set of test images), for the single-scale and multi-scale ver-
sions of the K-SVD algorithm, respectively. The same single
scale initial dictionary was later used to merge the final out-
come of the Fused K-SVD algorithm, as described in the pre-
vious section. In this case we use OMP with an error thresh-
old of ε = 0.1 · ση , where this factor has been chosen empiri-
cally, accounting not only for the remaining noise but also for
the difference in the artefacts of the two images.

In Fig. 3 we present the averages over all testing images
for the different algorithms, relative to that of K-SVD. The
multi-scale K-SVD outperforms the single-scale K-SVD in
almost the whole range of noise variance, and the Fused K-
SVD and BM3D present the best results, with the latest being
slightly higher in terms of PSNR. Note that the last weighted
joint sparse coding stage enables an extra boost, and the full
fused algorithm improves the results by 0.2 - 0.3 dB compared
to the plain multi-scale K-SVD. Turning to the SSIM results,

the artefacts on the smooth areas in the regular K-SVD de-
noised images are strongly penalized by this measure. Multi-
scale K-SVD and Fused K-SVD seem to be the best, with our
methods slightly outperforming BM3D. Fusion gives no gain
with respect to this measure. In Fig. 1 we depict the results of
the K-SVD, BM3D and Fused K-SVD on the example image.

The reason for this difference in both measures should not
be surprising. While BM3D makes little mistakes in terms of
absolute value, these errors are more noticeable when there
are large smooth areas, which causes the annoying texture
artefacts that can be seen in the images in Fig. 1. It is in these
areas where our method shows its greatest benefits. The cod-
ing of the deeper decomposition levels implies choosing big
atoms yielding nicely codded smooth patches. These atoms
are treated considering a more global approach than just look-
ing at a 8 × 8 patch in the image domain. This makes the
method more robust to higher noise levels, where the texture
artefacts become stronger. However, this advantage comes at
the cost of losing some details in the sharp edges of the im-
age. The absolute error at these points are slightly higher that
those made by BM3D, as noted by the PSNR results.

To finish this section, we have a word about the standard
images such us Lena, Barbara, etc. In these cases -that we do
not reproduce here due to the lack of space- the performance
of the Fused K-SVD algorithm is between 0.3-0.4 dB (PSNR)
and 0.002-0.01 (SSIM) lower than BM3D. Note that these
images are small (512× 512) and hardly present any smooth
areas of considerable size. Even in these images, however,
there is a notable improvement over the regular K-SVD in
both measures (up to 0.55 dB in PSNR and 0.035 in SSIM).

5. CONCLUSION
We have presented a multi-scale extension of the K-SVD de-
noising algorithm by proposing a global MAP estimator for
the denoised image in the wavelet domain. We solve this
minimization problem iteratively in terms of the K-SVD al-
gorithm per band, applying a multi-scale patch denoising of
the image. We then boost the results by fusing the single scale
and multi-scale K-SVD outcome images by a weighted sparse
coding step. The results obtained by this method show the
potential benefits of working within a multi-scale framework.
We are able to combine bigger effective atoms that give rise
to clear smooth areas, in which most current methods fail.

The combination of the regular and multi-scale K-SVD
denoised images could be improved by proposing a patch-
based adaptive weight instead of a global one, and the joint
sparse coding alternative is effective, but not necessarily the
only one. An orthogonal wavelet transform enables a simple
multi-scale analysis, but other multi-scale transforms might
yield improvements on this framework and are worth explor-
ing. Moreover, this multi-scale approach is not restricted to
the K-SVD algorithm, and the question posed in the introduc-
tion still holds for other methods. We have shown that there
is still a lot to gain from patch-based methods, and similar
extensions for these could be proposed.
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