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ABSTRACT

Poisson noise appears in various imaging applications, such
as low-light photography, medical imaging and space imag-
ing. In many cases we may have occlusions in the received
image in addition to the noise. Thus, the problem of Pois-
son denoising turns to be a Poisson inpainting one in which
we need both to remove the noise and recover the values in
the occluded locations. In this work we extend a recent novel
Poisson denoising method for the task of image inpainting.
To the best of our knowledge this is the first work that deals
with the problem of Poisson inpainting.

Index Terms— Sparse Approximation, Poisson Denois-
ing, Inpainting, Dictionary Learning, Greedy Methods

1. INTRODUCTION

Poisson noise appears in many applications such as night vi-
sion, computed tomography (CT), fluorescence microscopy,
astrophysics and spectral imaging. In many of these appli-
cations occlusions occur in addition to the noise. Thus, in
addition to the task of noise removal there is a need to recover
the values of the missing entries. The problem we have to
solve is the one of Poisson inpainting, which is a combination
of Poisson denoising and image inpainitng.

Let x be the original clean image (represented as a
column-stacked vector). In the standard Poisson denois-
ing problem (no missing pixels) we are given a Poisson noisy
image y which is a Poisson distributed random vector with
mean and variance equal to x. Many schemes for recovering
x from y exist [1, 2, 3,4, 5,6,7, 8,9, 10, 11]. Some rely on
variance stabilizing transformations such as Anscombe [12]
and Fisz [13], that approximately convert the Poisson denois-
ing problem into a Gaussian one, for which plenty of methods
exist (e.g. [14, 15]). Other methods rely directly on the noise
statistics for recovering the original image. These are more
effective in very strong noise cases, where the stabilizing
transformations become much less effective [1, 2].

In the inpainting problem we have a diagonal masking
matrix M that contains zeros and ones on its diagonal. The
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ones and zeros define valid and invalid entries in the mea-
sured image y. The existing inpainting schemes assume that
the known entries in y contain either the corresponding values
in x or a Gaussian noisy version of them [16, 17, 18, 19].

In this work we treat the task of Poisson inpainting that
combines both the Poisson denoising and inpainting prob-
lems. We treat the case where the measurements have very
low SNR, which corresponds to small peak (maximal inten-
sity) value in the original image. We extend our recently
proposed sparsity poisson denoising algorithm (SPDA) [2],
which achieves state-of-the-art denoising performance in this
setup, for the task of Poisson inpainting. To the best of our
knowledge, this is the first attempt to handle this problem.

This paper is organized as follows. Section 2 presents our
new Poisson inpainting method. Due to space limits we focus
only on the parts that differ from SPDA. Section 3 contains
some experimental results and Section 4 concludes the paper.

2. THE POISSON INPAINTING ALGORITHM

Before presenting our extension to SPDA [2], we start with a
brief description of this method. As it is a patch based strat-
egy, it extracts overlapping patches from the noisy image and
processes each of them using the assumption that each has a
sparse representation under a given dictionary D. The algo-
rithm is iterative and in each iteration it gets a new recovery
for each patch, by decoding its representation under the dic-
tionary, and then updates the dictionary by a dictionary learn-
ing technique from [20]. The recovered image is a result of
returning each reconstructed patch to the place it was taken
from and averaging the pixels that fall in the same place.

Our Poisson inpainting algorithm consists of the follow-
ing four steps: (i) Patch grouping; (ii) Sparse coding; (iii)
Poisson noise estimation; and (iv) Dictionary learning. For
the last step we utilize the same learning technique as in
SPDA. The reader may refer to [2] for more details. We turn
to explain the first three steps.

2.1. Patch Grouping

In SPDA the reconstruction strategy relies on decoding the
representation of each patch. However, decoding each patch
alone is not likely to give a good recovery since the patches
are very noisy as can be seen in Fig. 1(a). For this reason
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Fig. 1. Noisy house image with peak = 2 and masks for 20%, 40% and 60% missing pixels (black denotes the missing pixels).

SPDA uses the assumption that similar patches can be repre-
sented by the same dictionary atoms, i.e., have the same sup-
port in their representation. Noisy patches that correspond to
similar patches in the original image can be recovered by re-
quiring them to have the same support. With this joint sparsity
constraint each of them is likely to be recovered better.

In order to use the above assumption a patch clustering
method is required. SPDA uses a greedy method for this pur-
pose [2]. Though being suboptimal, it is fast and seems to
be sufficient for our needs. It sequentially divides the patches
into groups by selecting each time a random patch and adding
to its group a constant number of patches which are closest to
it. The distance between patches is calculated by applying
a Gaussian blur on the noisy image and then using the eu-
clidean distance. Alternatively, if an estimate for the image is
available then it can be used for the distance calculation.

For adapting the above method to patches with missing
pixels, we replace each missing value with a weighted av-
erage of its surrounding pixels before applying the Gaussian
blur. As neighbors of missing pixels can also be missing, we
initialize their values with zero and repeat the update process
several times till we get convergence. Note that these esti-
mated values serve only for calculating the distances between
patches in the clustering process.

2.2. Sparse Coding

Given a group of noisy patches {q, . .., q; } we would like to
recover their sparse representation under the dictionary D. By
maximizing the log-likelihood of the Poisson distribution and
using the assumption that each patch p; of the original image
has a sparse representation c; under the dictionary D in an
exponential model p; = exp (Dey;), we get the following
minimizing problem in the denoising case [1, 2]:

min1*exp(Da;) — q; Doy st |lagll, < k. (1)
o
Notice that with joint sparsity the minimization should be

done over all the patches in the group with the restriction that
all the representations have the same support.

Algorithm 1 Poisson Inpainting Greedy Algorithm

Require: k,M,D € RY" {qi,...,q;} where q; € R?
is a Poisson distributed vector with mean and variance
exp(Da;) at the locations that the values in q; are valid
(M has one on its diagonal) and with unknown value at the
other locations, and k is the maximal cardinality of a;. All
representations ¢; are assumed to have the same support.
Optional parameter: Estimates of the true image patches
{ﬁh"'af’l}'

Ensure: p; = exp(Dé&;) an estimate for exp(Day;).

Begin Algorithm:
-Initialize the support 79 = () and set ¢ = 0.
-Form {M;,...,M;}: the submatrices of M that corre-
spond to the patches {qu, ..., q;} respectively.
while ¢ < k do
-Update iteration counter: ¢t = ¢ + 1.
-Set initial objective value: v, = inf.
forj =1:ndo
-Check atom j: Tt = T*~1 U {j}.
-Calculate current objective value: v, =
milla, . iy 1* exp(Deer;) — q;M; Dy
if v, > v, then
-Update selection: j* = j and v, = v,..
end if
end for
-Update the support: 7% = Tt~ U {jt}.
-Update representation estimate: [&}, . .
argming, o Ei:l 1*exp(Drtay;) —
if {p1,...,D;} are given then
-Estimate error: e; = Zfl:l Hexp(Ddf) - I31||§
ift > 1ande; > e;_1 then
-Set t = t — 1 and break (exit while and return the
result of the previous iteration).
end if
end if
end while
-Form the final estimate p; = exp(Dél),1 < i < 1.

LG =




In inpainting the decoding can be made only using the
valid information. Notice that for each entry in q; there is a
corresponding row in the dictionary D. Thus, for adapting (1)
to inpainting we should remove the rows related to the miss-
ing entries at least from the second element. We can remove
them also from the first one but we decide not to do so. De-
noting by M, the submatrix of M that corresponds to q; we
get the following minimization problem:

min 1" exp(De;) — q; M;Da; st [y < k. (2)

Note that this minimization problem is likely to be NP-
hard and thus an approximation strategy is needed. In [2]
a greedy algorithm has been proposed for approximating (1)
with the joint sparsity assumption. A modified version of that
algorithm for the inpainting minimization problem in (2) is
presented in Algorithm 1. The output of this algorithm pro-
vides us with an initial estimate for each patch and therefore
(by averaging) for the whole image also.

Fig. 2. Test images used in this paper. From left to right:
Flag, House, Peppers and Ridges.
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Fig. 3. Average PSNR as function of the percentage of miss-
ing pixels for different peak values.

2.3. Poisson Noise Estimation

As we have modified the sparse coding scheme for the pur-
pose of inpainting we can do the same for the dictionary learn-

ing strategy used in [2]. However, We choose another route:
instead of adapting the dictionary learning stage for inpaint-
ing, we modify the measurements to fit as an input for the
dictionary update step. Having the initial image recovery, we
replace each unknown pixel in the noisy image with a noisy
pixel generated using the noise statistics and the given image
recovery. This provides us with a noisy image for which we
can apply any regular Poisson denoising algorithm.

We use this strategy within the dictionary learning pro-
cess of SPDA. For the first dictionary update step we use the
output of the sparse coding (Section 2.2). As each dictio-
nary learning stage provides us with a new image estimate,
we keep generating new approximations for the noisy image
at each iteration.

3. EXPERIMENTS

In this section we test the performance of the proposed in-
painting scheme. It uses the same parameters as SPDA in [2].
We start by getting an initial recovery using the sparse coding
method for inpainting. Then we use five dictionary learning
steps, where in each step we replace the missing values in the
measurements with their noisy estimated values generated us-
ing the most recent recovery result of the algorithm. We re-
cluster all the patches based on the final recovered image and
repeat the whole process again with the new groups.

We apply the new Poisson inpainting algorithm on the
four test images in Fig. 2. We test four peak values (0.5, 1, 2,4)
with 20%, 40% and 60% missing pixels. We select the lo-
cations of the missing pixels randomly. Figure 1 presents
examples for patterns of missing pixels. We compare also to
the case of 0% missing pixels (regular Poisson denoising).

Figure 3 presents the average PSNR achieved for recov-
ering flag, house, peppers and ridges as a function of the per-
centage of missing entries. Four graphs are displayed, each
for a different peak value. The visual recovery result can be
seen in Figs. 4 and 5 for flag with peak 0.5 and house with
peak 2. It can be seen that for every 20% of missing pixels we
lose 1dB on average. However, the decrease in performance
is not linear. For 60% missing pixels we lose 3d B on average
while for 20% we lose much less than 1dB.

4. CONCLUSION

This work proposes a novel Poisson inpainting scheme that
relies on a recent state-of-the-art Poisson denoising method
[2]. To the best of our knowledge this is the first work that
treats the Poisson inpainting problem. In our experiments
we have assumed that the locations of the missing pixels are
drawn randomly. However, in real-world applications it is
more likely that these locations will have a structured pattern.
This is left to a future research. We believe that this paper
opens a large room for research on Poisson inpainting.



(a) Original Image (b) Noisy Image (c) 0% Missing Recovery, PSNR =19.07
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Fig. 4. Poisson Inpainting of flag image with 0, 20, 40 and 60 percent missing pixels and peak = 0.5.

(a) Original Image (b) Noisy Image (c) 0% Missing Recovery, PSNR =24.87
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(d) 20% Missing Recovery, PSNR =23.86 (¢) 40% Missing Recovery, PSNR =22.83 (f) 60% Missing Recovery, PSNR =21.02

Fig. 5. Poisson Inpainting of house image with 0, 20, 40 and 60 percent missing pixels and peak = 2.
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