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ABSTRACT

Denoising and Super-Resolution are two inverse problems
that have been extensively studied. Over the years, these
two tasks were treated as two distinct problems that deserve
a different algorithmic solution. In this paper we wish to
exploit the recently introduced Plug-and-Play Prior (PPP)
approach [1] to connect between the two. Using the PPP,
we turn leading denoisers into super-resolution solvers. As
a case-study we demonstrate this on the NCSR algorithm,
which has two variants: one for denoising and one for super-
resolution. We show that by using the NCSR denoiser, one
can get equal or even better results when compared with the
NCSR super-resolution.

Index Terms— Single image super-resolution, plug-and-
play, NCSR, ADMM, image denoising.

1. INTRODUCTION

Single Image Super-Resolution (SISR) [2-9] is the process
of recovering a High-Resolution (HR) image x € RSM*sN
from its blurred, decimated, and noisy Low-Resolution (LR)
measurement y € RM>*N_ This linear degradation model can
be expressed by

y = SHx + 7, (1)

where the matrix H € RS™MNxs*MN by the original im-
age x, the down-sampling operator S € RMNxs"MN geci_
mates the blurred image in a factor of s along the horizontal
and vertical dimensions, and  ~ N(0,I0?) € RM*N is an
additive zero-mean white Gaussian noise. Note that x, y and
7 are held as column vectors, after lexicographic ordering.

A naive solution to the SISR problem is based on the
Maximum-Likelihood (ML), targeting the minimization of
the log-likelihood expression,

fc:argminHSHx—ynga @

where x € RSMXsN jq an estimation of the unknown under-

lying image x. Clearly, this approach is bound to fail since
this problem has infinitely many possible solutions. In the last
two decades, various regularizers/priors have been proposed

(e.g. [10-15]) to fix this ill-posed inverse problem, aiming at
producing an estimation that "behaves like a natural image”.
These priors are plugged into Equation (2) and form the fol-
lowing penalized ML (or MAP) minimization problem:

1
% = argmin o [SHx — y[, + fR(x), ()

where o is the standard-deviation of the noise and R(-) is an
image prior, obtaining small values for ”well-behaved” im-
ages and large values for unlikely ones. The parameter /3 con-
trols the importance of the prior compared to the data fidelity
term.

A closely related problem to SISR is image denoising [2,
7,9, 14,16-22]. Its degradation model is a simpler version of
Equation (1), given by

y=x+n, (€]

i.e., neither blur nor decimation are applied on the original
image. In the this case, the solution of the ML is trivial (the
minimizer of Equation (2) when SH = Iis X = y), while
regularization-based methods promote non-trivial solutions,
expressed by

. 1
X = argmin T‘QHX—)’”;*‘ﬁR(X). 5)

Notice that the priors in Equations (3) and (5) can be the
same. Furthermore, they are blind to the specific inverse prob-
lem that we are trying to solve. Yet, unfortunately, although
these two inverse problems look very much alike, SISR meth-
ods usually modify the priors that are used for the denois-
ing problem and take into consideration the different (and
more complicated) degradation model (e.g. as done in NCSR
[7]). Furthermore, most of the state-of-the-art denoising al-
gorithms (e.g. [7,16,17]) are very complex and sophisticated,
thus adapting their core denoising concepts to solve the SISR
problem is far from trivial.

Luckily, as will be shown hereafter, using the Plug-and-
Play scheme [1], one may recast the SISR problem (i.e. Equa-
tion (3)) as a series of denoising problems, using the very
same prior without any modifications. Put differently, PPP
enables to choose any denoiser that solves Equation (5) and
use it as a ’black box” in order to solve Equation (3), leading
to similar and even better estimation of the HR image.



This paper is organized as follows: In Section 2 we derive
and describe the proposed SISR scheme, along with the de-
scription of the PPP scheme. Experiments are brought in Sec-
tion 3, demonstrating the effectiveness of our method. Con-
clusions are given in Section 4.

2. THE PROPOSED ALGORITHM

Inspired by the PPP scheme [1], in this section we describe
how to translate Equation (3) to a sequence of denoising prob-
lems, which minimize a much simpler function — Equation
(5). We follow very closely the developments of the PPP [1]
and ADMM [23] algorithms, while emphasizing the relation
to the SISR, both for noisy and noiseless scenarios.

2.1. Plug and Play Denoisers for Super-Resolution

Using the variable splitting concept, we can separate the [,
data fidelity term in Equation (3) from the prior by splitting
the variable x in Equation (3) into two variables x and v, and
adding a new constraint x = v, leading to

1
X = arginin Tt?”SHX ~ vl + BR(v) ©

s.t. X=wv.

Solving the above constrained optimization problem can be
done by formulating it as an Augmented Lagrangian function,
minimized in an unconstrained manner. The Lagrangian is
given by

1
Lpa(6,v) = 55 [SHX = y[[5 + BR(V) + gpr(x = ),
W

where g, \ is a penalty function that becomes the ideal
penalty function for p — oo and obeys g, \(0) = X €

R*"MN_ We choose the commonly used penalty
_ Pz T
o (8) = L3+ ATt ®

implying that the larger the distance between x and v, the
higher the penalty.

As a consequence, Equation (7) can be iteratively mini-
mized by repeating the following steps:

xFHL VA — argmin Lk \k(x,v) 9)
X,V
ML Z gl (0) (10)

First, for fixed p and A\ we minimize L, »(x, v) by alternating
between the minimization of x and v, leading to the updated
images x**! and v¥*!. Then, in order to comply with the
constraint x = v, we tighten the penalty function g, by

updating its parameters p and X\ according to Equations (10)
and (11), respectively.

More specifically, following the ADMM approach [23],
we introduce the scaled dual variable u = %)\ and obtain the
following steps to repeat:

1
u= -\ (12)
p
1 k
k+1 . 2 P & k2
X1 = argmin o [SHx — [} + Z-x = v* +u*;
(13)
k
vFl = arg min %kaﬂ - v+ ukHz + BR(v) (14)
uk+1 — uk 4 xk+1 o Vk?+1 (15)
)\k+1 _ pkuk+1 (16)

Notice that Equation (13) is Quadratic in x and thereby can
be solved analytically, and Equation (14) can be re-written as

1 -
s ———Iv=¥l3+BR(v), (18

v = argmin
v 2 1
()
where v = x*+1 4+ uF. As such, Equation (18) is noth-

ing but a denoising problem, aiming at cleaning the noisy
image v, contaminated with noise-level o = 1/,/p. Since
most of the denoisers expect only ¢ as an input parameter,
we suggest normalizing Equation (18), results in o = /3/p.
Algorithm 1 summarizes the proposed SR scheme.

2.2. The (Nearly-) Noiseless Case

As the above scheme deals with the noisy case, handling the
noiseless case can be done by setting ¢ — 0. However, in this
setting, Equation (13) may suffer from numerical errors and
instabilities. Instead, it is more natural to formulate the data
fidelity term as a constraint by

k+1

x :argmion—vk—&—ukHi
X

(19)
s.t. SHx =y,

which can be solved using Lagrange multipliers:
1
Lix,d) =[x —v* +u; +d"(SHx —y),  (20)

where d € RM*N_ Taking the derivative of this Lagrangian
w.r.t. x and demanding it to be zero leads to the following
system:

(x —vF+u") + (SH)Td=0

21
SHx =y, @D



Algorithm 1: The proposed SISR solver
Input: y — LR image;
D(z,0,) — A denoiser, receiving an image z
and its noise-level o ,;
o — The s.t.d. of the noise in y;
S — A decimation matrix;
H — A blur matrix;
K — Number of iterations.
Init: A = 0;
x% = v0 a bicubic interpolation of the image y;
L= %(SH)TSH
for k=0: Kdo
xkh = L7 (L (SH) Ty + p*(vF — u))
vkl =D (ch+1 +uF, \/pzk)
o S e R o
>\k+1 — pku
pr1 = ap”

end
Output: v, the super-resolved version of y.

where the second equation is the constraint. Separating x
from the first equation results in

x =vF —u* — (SH) 4, (22)
and assigning it back into the constraint leads to
SH(SH)Td = SH(vF —u) —y. (23)

The variable d can be obtained by solving Equation (23), e.g.,
using conjugate-gradient. Then, the image x**! is computed
by assigning d in Equation (22).

2.3. Penalty Parameter Update

In general, by incrementing the penalty parameter p through
the iterations we force the variables/images x and v to be
identical. The parameter p also affects the noise-level since
o =+/B/p, i.e., it controls the strength of the denoiser — the
larger the p the more conservative the denoiser. In our im-
plementation, we update p in an adaptive manner, according
to the value of ||p(vF — vF~1) ; which can be considered as
an estimation to the dual feasibility [23]. Since the dual fea-
sibility should decrease during the iterations, our strategy is
to increase p by a factor of « (in our tests &« = 1.2) as long
as this measure decreases. If the dual feasibility increases for
several iterations, we decrease p and update the dual variable
accordingly.

3. EXPERIMENTAL RESULTS

In this section, detailed results of the proposed algorithm are
presented for various images, scaling factors and noise levels.

3.1. Testing Setup

We tested our algorithm with the state-of-the-art NCSR
method [7], which has variants both for SISR and for denois-
ing. NCSR combines the sparse-coding and dictionary learn-
ing [24] with the nonlocal self-similarity assumption [14].
These two priors are very powerful, leading to efficient re-
construction of the underlying image. We find it interesting
to evaluate the effectiveness of our approach by plugging the
NCSR denoiser in Algorithm 1 and compare the results with
the original NCSR-SISR solver.

In order to have a fair comparison, we tested these two
algorithms on the same dataset, supplied by the authors
of NCSR. The LR images are generated by blurring the
HR database images with Gaussian kernel with standard-
deviation of 1.6, followed by decimation in a factor of s in
each axis. In the noisy cases, we contaminated the LR images
by an additive Gaussian noise with standard-deviation o.

The restoration performance is evaluated based on the
Peak Signal to Noise Ratio (PSNR) between the luminance
channel of the original and the restored images. Note that
a LR color image is upscaled by (i) converting it to YCbCr
color space, (ii) upscaling the luminance channel using our
method, while the chromatic channels are upscaled using
the bicubic interpolator, and (iii) converting the restored HR
channels back to the RGB color space.

3.2. Choice of Parameters

We conducted several tests in order to tune the parameters of
the proposed algorithm, leading to the following setting:

B = 211/007

Also, for 0 < 0.5 we use the noiseless modification depicted
in Section 2.2. As for the denoiser itself, we treat it as a
”black-box” and use the very same parameters as in the orig-
inal NCSR software. In order to reduce computations, since
the NCSR denoiser is an iterative algorithm, we apply it only
for 1/3 of the number of iterations that are set by the authors.
Generally speaking, the proposed approach is about 10 times
slower than the SISR-NCSR method. Note that we did not
put emphasis on runtime when choosing the parameters.

po = 0.0001, a=12 K =35

3.3. Results

In Table 1 we provide a comparison (in terms of PSNR) be-
tween the bicubic, NCSR-SISR, and the proposed algorithm.
As can be seen, in most cases we achieve superior results than
the NCSR-SISR, and in all cases we outperform the bicubic.
Quantitatively, compared to NCSR-SISR, for the noiseless
(o = 0) and small noise-levels of 0.5, 1, and 2, we gain an av-
erage improvement of 0.12dB, 1.05dB, 0.72dB, and 0.23dB,
respectively. For higher noise-levels (¢ = 5 and 0 = 10),
the proposed approach and NCSR-SISR performs quite the
same. A visual comparison is given in Fig.1 for Butterfly



Table 1: Comparison between the denoising results [PSNR] of the bicubic, original NCSR-SISR algorithm [7] and the proposed
approach. The best results per each image, noise-level and scaling factor are highlighted.

H Images H Parrots [ Raccoon [ Flower [ Hat [ [ Parthen. [ Butterfly [ Plants [ Girl H Average H

s=4,0=0

Bicubic 24.36 25.34 23.48 26.05 23.00 19.27 26.27 28.49 23.99

NCSR 27.66 27.74 26.99 29.58 22.71 25.72 25.16 31.02 32.28 27.66

Ours 27.88 27.86 26.85 29.64 22.86 25.84 25.55 31.17 32.32 27.78
s=80=0.5

Bicubic 2143 22.35 20.72 23.14 17.09 19.93 15.64 22.90 24.87 20.90

NCSR 22.64 23.73 21.71 24.25 21.01 16.63 24.05 26.49 22.05

Ours 23.33 25.17 22.56 24.99 18.83 21.38 17.71 2547 28.48 23.10
s=6,0=1

Bicubic 22.45 23.66 21.65 24.36 18.02 21.35 16.99 24.24 26.32 22.11

NCSR 24.67 25.88 23.62 26.70 19.62 23.38 19.17 26.80 29.49 24.37

Ours 25.12 25.97 24.08 27.60 20.32 23.58 20.84 27.96 30.35 25.09
s=8,0=2

Bicubic 25.53 26.38 24.78 27.15 20.78 24.09 20.76 27.79 29.87 25.24

NCSR 29.97 28.82 28.89 30.75 24.22 26.87 27.12 32.94 33.02 29.18

Ours 30.37 28.93 29.04 30.85 24.44 27.03 27.77 33.19 33.01 29.40
s=4,0=5

Bicubic 24.27 2522 23.37 25.89 19.66 22.92 19.23 26.12 28.27 23.88

NCSR 27.47 27.22 26.49 28.89 22.60 25.45 24.85 30.07 31.22 27.14

Ours 27.52 27.29 26.45 28.93 22.57 25.50 2491 30.07 31.21 27.16
s=3,0=10

Bicubic 25.05 25.81 24.38 26.54 20.62 23.75 20.59 27.03 28.75 24.72

NCSR 28.06 27.20 26.85 28.73 23.02 25.67 25.63 29.98 30.67 27.31

Ours 28.08 27.23 26.79 28.68 22.83 25.71 25.32 29.94 30.72 27.25

(a) Original

(c) NCSR-SISR

(d) Ours

Fig. 1: Visual comparison for Butterfly image, when s = 3 and 0 = 0.5.

image, showing that our approach results in less aliasing and
ringing artifacts than the NCSR-SISR method, supporting the
gain in PSNR.

4. CONCLUSIONS

In this paper, using the brilliant Plug-and-Play Priors frame-
work [1], we presented an algebraic method which turns any
”black-box” denoiser into a SISR solver. The proposed algo-

rithm is tested on various images, scaling factors, and noise
levels. The effectiveness of the proposed algorithm is demon-
strated on NCSR [7], which has two variants — one for de-
noising and the other for SISR. More specifically, we have
shown that plugging the NCSR denoiser in our SR scheme
outperforms its own variant for SISR, leading to state-of-the-
art results.
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