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Another underlying idea that will accompany us

Generative modeling of data sources enables
o A systematic algorithm development, &
o A theoretical analysis of their performance
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Our Data is Structured

Stock Market Text Documents

Matrix Data

Bl ealbibnal:
A 'J\f«a.t..f«ijJw-ﬁw%«—n'tw.L

e — )

Seismic Data

o We are surrounded by various diverse
sources of massive information

o Each of these sources have an internal
structure, which can be exploited

o This structure, when identified, is the Voice inals

engine behind our ability to process this data

3D Objects

Medical Imaging I
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Model?

Fact 1:
This signal
contains AWGN
N(0,1)

Fact 2:

The clean signal
is believed to
be PWC

Effective removal of noise (and many other tasks)
relies on an proper modeling of the signal
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Which Model to Choose?

o A model: a mathematical Principal-Component-Analysis

description of the underlying
signal of interest, describing our
beliefs regarding its structure

Gaussian-Mixture
Markov Random Field

Laplacian Smoothness

o The following is a partial list of 'DCT concentration
commonly used models for images ‘Wavelet Sparsity
o Good models should be simple while Piece-Wise-Smoothness
matching the signals
implicit Reliabilit
Simplicity - ¢ y
: Beltrami-F|
o Models are almost always imperfect  —
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An Example: JPEG and DCT

178KB — Raw data

How & why does it works?

Discrete

‘ Cosine ‘

Trans.

The model assumption: EELISPIGIM IR (o] o RIS

coefficients to be dominant and the rest zeros
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Research in Signal/Image Processing

Problem

(Application)

Numerical
Scheme

A New

The fields of signal & image processing are Research

essentially built of an evolution of models Work

and ways to use them for various tasks .(and Paper)
Is Born
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What This Talk is all About?

Data Models and Their Use

o Almost any task in data processing requires a model —
true for denoising, deblurring, super-resolution, inpainting,

compression, anomaly-detection, sampling, recognition,
separation, and more

o Sparse and Redundant Representations offer a new and
highly effective model — we call it

Sparseland

o We shall describe this and descendant versions of it that
lead all the way to ... deep-learning
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Multi-Layered Convolutional
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A New Emerging Model

Signal Machine
Processing Learning Mathematics
Wavelet e Approximation
Theory Theory
Analy5|s Sparse[and' Algebra

Optimization

Signal Theory
Transforms ‘
Semi-Supervised Interpolation Source- >egmentation  “go oo Fusion
Learning : ] —
!nference (solving Separation Classification T ——
Compression inverse problems)

Prediction  Denoising Anomaly Synthesis

Recognition . ;
: ' Clustering *® |dentification ™ J€teClioN

|
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The Sparseland Model

o Task: model image patches of
size 8X8 pixels

o We assume that a dictionary of

such image patches is given, [ gl e
containing 256 atom images s Y] L
IR PN -
BB ] o T
o The Sparse[cmc{ model assumption: N B B
) Wi ¥ EEES .U, &
every image patch can be E-A AT
- : " oEE- M -l
described as a linear " T
combination of few atoms . iR i
"B Pl I MW
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The Sparse[anc[ Model

Properties of this model:

Sparsity and Redundancy

o We start with a 8-by-8 pixels patch and
represent it using 256 numbers

— This is a redundant representation

o However, out of those 256 elements in the
representation, only 3 are non-zeros

— This is a sparse representation

o Bottom line in this case: 64 numbers
representing the patch are replaced by 6
(3 for the indices of the non-zeros, and 3
for their entries)
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Chemistry of Data

We could refer to the Sparse[ana’
model as the chemistry of information:

o Our dictionary stands for the [ZEIglele I[N E]¢] [ o
containing all the elements

o Our model follows a similar rationale:

. . 1" Y d
Every molecule is built of few elements =

P
- e 5~ T
m- e o [l S L
i Wi s G EEEE D ,aP
T 5 O 0 e e e I T
R T S N Msga dii T
E - EENEEREREREEEEL T 0 . x| Uioe
CEE T T T S| e 11 A
llllllllll===== o® L o Bald ;W 3,
f Md [~ \ J )
L . ~N N

30 9 93 28
! Pa
n Fa .
-
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Sparseland : A Formal Description

o Every columninD

(dictionary) is a
p m prototype signal (atom)

4
A

H [ (:1t o The vector ais
[ ]
- .  generated

n - :

8 with few non-

v L ) E X i zeros at arbitrary

A Dictionary SIGEEEES locations and
vector
D values

a o This is a generative model

that describes how (we
believe) signals are created
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Difficulties with Sparseland

o Problem 1: Given a signal, how

can we find its atom decomposition? > K
o Asimple example: 2
= There are 2000 atoms in the dictionary
I " m =
* Thesignal is known to be built of 15 atoms S5 g
N o
LS N - —
2000 e BE P, 3
‘ ( Jz2.4e+37 possibilities = — EEI’HE
15 JHCE™ N B BEEE
Wt §F EEES (DB
E A | FrrabEY 7B
= |f each of these takes 1nano-sec to test, M- < E'I.l-ull [ ..'r-”
- N 5 S LH |
will take ~7.5e20 years to finish 11111 F BV EIEEL -
M i -EAENAY o
- M i+ [IIMME:. ¢ SNA
o So, are we stuck? W Wl T
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Atom Decomposition Made Formal

Al N

min, ||ally s.t. x = Da

! . D

VN p

ming ||afly s.t. [|[Da—yll, < ¢ m ; X‘
(04

AN EEEEEEEEEETE
g

A

Approximation Algorithms

" L,—counting number of
non-zeros in the vector

= This is a projection onto
the Sparseland model

. Ty E

Relaxation methods Greedy methods
= These problems are known

Basis-Pursuit Thresholding/OMP to be NP-Hard problem
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Pursuit Algorithms

ming [[allp s.t. |[Da—yll; <€

Approximation Algorithms

Basis Pursuit Matching Pursuit Thresholding

Change the Ly into L, Find the support greedily, Multiply y by DT

and then the problem one element at a time and apply shrinkage:
becomes convex and g P e ey a=2P ﬁ{DTy}
manageable SEEdHfEEEtE R ,\

T e
) T I O
T e

ming [jolq I
T e
T I O
S.t T e
« L T I O
T e
[) _ < T e

04 )7 2 e \ IEEEEEEEEEEEE NN
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Difficulties with Sparseland

o There are various pursuit algorithms

o Here is an example using the Basis Pursuit (L,):

400 600 800 1000 1200 1400 1600 1800 2000

o Surprising fact: Many of these algorithms are often
accompanied by theoretical guarantees for their
success, if the unknown is sparse enough

*= | Michael Elad
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The Mutual Coherence

o Compute ‘ D ]z
DT Assume '-._
normalized "ul
columns DTD

o The Mutual Coherence u(D) is the largest off-diagonal
entry in absolute value

o We will pose all the theoretical results in this talk using
this property, due to its simplicity

o You may have heard of other ways to characterize the
dictionary (Restricted Isometry Property - RIP, Exact
Recovery Condition - ERC, Babel function, Spark, ...)
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Basis-Pursuit Success

Theorem: Given a noisy signal y = Da + v where ||v]||, < ¢

and «a is sufficiently sparse, i | |
» ladlo < ( 1+
1l
then Basis-Pursuit: min, ||af|; s.t. ||[Da—vy|, <€
4£?
1-p(4llallo—-1)

leads to a stable result: || — a|5 <

Donoho, Elad & Temlyakov (‘06)
Comments:
o Ife=0 >0 =0«
O o Thisisa worst-case

[ D ] 9 i lal -
= o 0 - analysis — better
E bounds exist
9‘/[ IDox — y||2 o Similar theorems
L exist for many other

V][, < ¢ pursuit algorithms
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Difficulties with Sparseland

o Problem 2: Given a family of signals, how do
we find the dictionary to represent it well? I
2

o Solution: Learn! Gather a large set of
signals (many thousands), and find the

dictionary that sparsifies them Lo ey s = ==
=—=m=E
o Such algorithms were developed inthe  Fhe 5 ="I =
past 10 years (e.g., K-SVD), and their =y ZELI | i'm
f [ rprisingly good EEF - Eigiﬂ:gﬁl
performance is surprisingly g BN M-
o We will not discuss this matter further W R R
in this talk due to lack of time :. ol ,1@’.,_‘.',2?%
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Difficulties with Sparseland

o Problem 3: Why is this model suitable to
describe various sources? e.g., Is it good 2
for images? Audio? Stocks? ...

o General answer: Yes, this model is
extremely effective in representing
various sources

-._ | l

e e e

= Theoretical answer: Clear connection Clg s,

to other models - HREE " JgN

AR Ll

. . . BREY " Baf"™

=  Empirical answer: In a large variety of signal TITARSL i i
and image processing (and later machine =".,if.._:“.

learning), this model has been shown to lead i

to state-of-the-art results L N
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Difficulties with Sparseland ?

AEY] -

_~S\ . AR -Fy

CE

al
1
-
-

1 ] i, |
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Hl‘
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This Field has been rapidly GROW!| NG

O Sparseland has a great success in signal & Published tems in Each Yeary
image processing and machine learning tasks E&

1000

o In the past 8-9 years, many books were
published on this and closely related fields

400

Applied Mathematical Sdences

200

Michael Elad

Sparse and -

Re d un d ant e Yonina C. Eldar wavelet
- / : o our
‘. ol signal processin;
Representations bl .- Sampling alcsig
From Theory to Applications A Mathema-ﬁcal e : Sparse and :
in Signal and Image Processing Introduction to . Representations Redundant
Compressivé and Compressive Representations
Saic sensing for e e,
ensing Imaging and
o Vision " T
£ opringer B @ spring Stiphane Nalot
Statistical Learning 7 Compressed
ey e hion T8 Sensing
Sparse Image Generalizations Simon 1 G005l A Theoryand Applications
and Signal Compressed Yonina C. Eldar and Gitta Kutyniok

i 2138 Processing g lSztinsmg & Sparse P : i
H L) m | | i tering ] Sparse Signal Recovery in a

ey || I g

TS|

Computer Vision T

i Robert Tibshirani

S ong Moges g g e S i Martin Wainwright



Coming Up A Massive Open Online Course

=] x Courses ~ Programs - Schools & Partners About ~ ‘ Search: Q Sign In

Sparse Representations in Signal. .« = N\
and Image Processing

Learn the theory, tools and algorithms of sparse
representations and their impact on signal and image
processing.

Start the Professional Certificate Program

Starts on October 25, 2017

Starts on February 28, 2018

o m

Instructors

Yaniv Romano Michael Elad
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Spdi’se[dnc[ for Image Processing

o When handling images, Sparse[anc[ is typically deployed on small

overlapping patches due to the desire to train the model to fit the
data better

znl!y

4, e gk

JV

"u!wum

i'
B
-

-
4 _IY

S w

o The model assumption is: each patch in the image is believed to

have a sparse representation w.r.t. a common local dictionary

v

o What is the corresponding global model? This brings us to ... the
Convolutional Sparse Coding (CSC)

Michael Elad 27
The Computer-Science Department
The Technion




Convolutional
Sparse Modeling

Joint work with

Yaniv Romano Vardan Papyan Jeremias Sulam
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Convolutional Sparse Coding (CSC)

m filters convolved with their i-th feature-map:

sparse representations An image of the
\L same size as X
e i holding the sparse
jiacicses : m representation
s : related to the i-filter
...................... + [X] — z dl k [Fl] T .
An image i,
with N / i=1 S
pixels e

R H:::h]

-t
dSME Thei-th filterof - & & .
—fa Rt i
rAizle smallsizen
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CSC in Matrix Form

o Here is an alternative global sparsity-based model formulation

), €= E Crt = : | = DI
i=1 rm
o C!' € R¥*N is 3 banded and Circulant o e—
. . . . [ FREEEN
matrix containing a single atom | . “EECE
) . i n\|mem CEE
with all of its shifts SemEm .
= [ [ [ [l
|| = [ ] [
- » Cl = | ™=
[ | — B T (e
g T T e
B TR T T
COHENEEN
i N h di Ffici M MEE
oI € R" are the corresponding coefficients jﬁ@égiéi
ordered as column vectors \< o
N
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The CSC Dictionary

| | |

e
EEE

[EEEEE EE

[ /-
| [

.
B HENEEE b
[ [ [ HENENE
[ [ [ N [T
HEN
D ]
[T 1
[ [ T [
N T T [
102 ~371 — | moimem
= CEEEEE
CEEEEE
CEEEEEN
CEEEEEN
N R T
B T [
N T T
[ HETENN
B [ L
T ] e
e T

| [ m
(m [ [

|
0 o
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7
stripe—dictionary/stripe vector J
X=DI -
/ Every patch has a sparse

R;X = Qy; representation w.r.t. to the
same local dictionary (€2) just
as assumed for images

Michael Elad
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Why CSC?

. =T

Ri 1 XA{]|=

7
stripe—dictionary/stripe vector J
X=DI -
/ Every patch has a sparse

R;X = Qy; representation w.r.t. to the
same local dictionary (€2) just
Riy1X = Qvyjq

as assumed for images
g Michael Elad
The Computer-Science Department
The Technion
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Classical Sparse Theory for CSC ?

mrin IT|lg s.t.|]|[Y—=DIJ, <¢

Theorem: BP is guaranteed to “succeed” .... if ||[T||y < %(1 + ﬁ)

o Assuming that m = 2 and n = 64 we have that [welch, '74]
u=0.063

o Success of pursuits is guaranteed as long as

1
”F”O (1 + ﬁ) (1 + m) ~ 4.2

o Only few (4) non-zeros GLOBALLY are
allowed!!! This is a very pessimistic result!

o The classic Sparseland Theory does not cover well the CSC model
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Moving to Local Sparsity: Stripes

m = 2
£0,0 Norm: [|T'|[g o, = max |lyillo :
bmln IT|[3,0 s-t. [[Y—=DT; < '
» IT|]3, 0 is low — all y; are sparse — every ;
. A
patch has a sparse representation over () (=

. . . . Yierd o (Vi
The main question we aim to address is this: g
\I
Can we generalize the vast theory of Sparse[ancfto this :
new notion of local sparsity? For example, could we E

provide guarantees for success for pursuit algorithms? F
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Success of OMP

Local noise
(per patch)

Theorem: If Y = DI' + E where /

1 1\ 1 lEI5,
||r||soo<—(1+—)——- '
. 2 X X |Fmin|

» then OMP run for ||T||, iterations
1. Finds the correct support

|E||
1-(lIT[13,00=1) 1

2. ITomp — TI5 <

Papyan, Sulam & Elad (‘17)

This is a much better result — it allows
few non-zeros locally in each stripe, implying a
permitted O(N) non-zeros globally
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Success of the Basis Pursuit

1
Igp = min = [V = DI + ATy

— 0 0 0000909090909 OOmOmO9Om©m©O©O©©©©©©©O©©O©O©O©©©©©©O©m©m©m©m©©©©©©©©©©O©Om©m©O©©©©©©©©©O©©Om©m©m©©©©O©O©m©O©©©©©©©©©©©©O©m©O©O©m©m©© 009090900
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Success of the Basis Pursuit

1
[pp = min > [[Y = DII3 + Allrl,

Theorem: ForY = DI+ E, if A = 4||E||12),Oo if

IT1[5,00 < 1<1 + L)
3 u(D)
then Basis Pursuit performs very-well:
» 1. The support of [gp is contained in that of I’
2. |Ifgp —Tlleo < 75lIEll3 o

3. Every entry greater than 7.5||E||12) -, is found Papyan, Sulam

_ _ & Elad (17)
4. TIgpisunique
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SKIP ?
Global Pursuit via Local Processing

Could t . 2

O ould we suggest a FBP = min — ”Y — DF”Z + 7\.”11“1
solution of the global r 2
Basis Pursuit using only ' ]

local (e.g. patch-based)
operations ?

o The answer is positive !!

o We define image
slices :

S; = Dy

Michael Elad
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Global Pursuit via Local Processing

1
(Pr):  Tgp =min §||Y—DF||§ + ATl

These two ' ' '
are convex & Redefine this problem using s; and q;

equivalent V
1
Y — Z R?Si + Kz”aﬂh s.t. {si=Dpo;};
i 2 |

@ 2
C N e N
Update the «; Update the slices s;
§ L ) byasimple LS &

J7eleE atch-averagin
N 2N sing

If you apply the above two steps only once, you get a
known patch-based denoising algorithm
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Global Pursuit via Local Processing

1
(Pr):  Tgp =min §||Y—DF||§ + ATl

These two
are convex &
equivalent

Redefine this problem using s; and q;

Y - 2 Rs;
i

|
min -—
ai,Si 2

2
+7v2||0‘i||1 s.t. {s;=Dpa;}
2 i

= | Michael Elad 38
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Two Comments About this Scheme

We work with Slices
and not Patches

Patches extracted from natural
images, and their corresponding

slices. Observe how the slices are

P B e LA = = patches

far simpler, and contained by
their corresponding patches

T iy HT_ Slices

Michael Elad
The Computer-Science Department
The Technion

The Proposed Scheme can be
used for Dictionary (D; ) Learning

Slice-based DL algorithm using
standard patch-based tools, leading
to a faster and simpler method,

compared to existing methods

al ¥ ST IEHY ndh 0™
Il’..*-?" | IS 4dShNERC W
EElEIRaUEa LEFETE
el !

==

"‘

EE

AEEAREE ACHENE
i]!I;‘!ﬂ == -l ﬁ:.ﬂﬂﬂl[
AUEECANNNE ~EESAY NS
METHSPEREE BTN S
EXRINEHZNE RKEN/RZE AN
PURSENRDZE NEAEEUZ¥ED
HUEANERYEE aRVEBEEFEL

[Wohlberg, 2016] Ours
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CSC and CNN

o There is a rough analogy between CSC and CNN:
= Convolutional structure
= Data driven models
= RelU is a sparsifying operator

o We shall now propose a principled way to analyze CNN

o But first, a brief review of CNN...

Michael Elad
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CNN

RelLU RelLU

[LeCun, Bottou, Bengio and Haffner ‘98]
[Krizhevsky, Sutskever & Hinton ‘12]
[Simonyan & Zisserman ‘14]

[He, Zhang, Ren & Sun “15] RELU(Z) = max(Thr, Z)
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CNN

[LeCun, Bottou, Bengio and Haffner ‘98]
[Krizhevsky, Sutskever & Hinton ‘12]
[Simonyan & Zisserman ‘14]

[He, Zhang, Ren & Sun “15] RELU(Z) = max(Thr, Z)
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Mathematically...

f(Y) = ReLU(b, + W ReLU(b; + W/Y))

Z, € R¥N™2 b, e RV™2 W, € RV"2XN™

) nymy b, € RVN™ w! € RVmxN
™ . \
[ 1 Y E_IRN\
= ReLU< =+ : 3 ReLU< == &3 >>
\ % Y,
\ = = y
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From CSC to Multi-Layered CSC

XeRY D; e R¥V™ T € RV™ We propose to impose the
m, same structure on the
representations themselves

[

Fl € ]Rle D2 € ]RleXNmZ FZ = ]RNmZ

_ m ]
Convolutional sparsity My
(CSC) assumes an !
inherent structure is = my {

present in natural
sighals

» Multi-Layer CSC (ML-CSC)
Michael Elad 45
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Intuition: From Atoms to Molecules

XeRY  D; e RVN™ T, e@ERIMNT: T, € RV™

 —
 —

o We can chain the all the dictionaries
into one effective dictionary
Deff = D1DyD3 - D — X = Degr Ik

o This is a special Sparseland (indeed, a CSC) model
N iy

o However: Y'r, € RVN™

= A key property in this model: sparsity of the intermediate representations

= The effective atoms: atoms — molecules — cells — tissue — body-parts ...

Su= | Michael Elad 46
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A Small Taste: Model Training (MNIST

MNIST Dictionary:
D,: 32 fiIter r 2 (dense)
*D,: 128 fj ' :

: 1- 99.09 % sparse
\arse

~ J

' 8

-

wl Tl =
D1D2D3 (28x28)

O AR ¢

., N\
a

Y R

Michael Elad
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A Small Taste: Model Training (CiFAR)

D, (5x5x3)

EmMEESMETR

FEFa3agREE"
EnEENEE.
RHUEEEDEE
FANOEEEE
mETMHOaMEWN

SaERES Lk IOEFLEANSEFENS

D1D2 (13)(13)

ENFaiDeaEFCEGEE™
EEMTLAFCEEFECSL ar
AlFDsNTNAWEOLTFD
SLEFNRLFMEOONENE
R LIS L Bl Lol el ol B
o 0N AC M L E =T

bnnmnlnﬁh

/

D,D,D, (32x32)

EACSOmSNILENSOESSESHN P2 T SONEmR
FhuPI ez ™Sl aaZic s SARRNUETZRAD
NEsTSamUNmRsQESEE <OEMNE LHROmAE LS
!I—I'IH’IE.IE'IHEIIIEHEIISTIR!II
s RN s T L. A AN S SN =S NSENER
.EEEEE.SINIHIOBIIEL'EMS &S]

=il

B NE] ol o T Wl C AR el |
riiwEgw@ialviRhsNaiyNEESSO" NS4
~EElEC YRS TUIEN K ™05 0D 0l K
Al A%l (i gt TPV SO el [ | AT 1~ )
BELEEZN«EN  EadlEelsEEN" I RYa=
AE~ Al A0, - E N Tkl el WA=
Hgﬁ-‘lﬁiﬁ!l!.ﬂ‘ﬂlﬂ.:!lllmﬂﬂ!ﬂ.EE
FERFPLEETEGRSFRSAEs  BONSTZ el
H:glnﬂ!EI!IlFIEIE.H'IH'IIB-H!&ID
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ML-CSC: Pursuit

o Deep—Coding Problem (DCP, ) (dictionaries are known):
([ X=D,I} IT1 5,00 < 24 )
Ih =D, IT2115.00 < A7

k-1 = DxlIk ITkll5.00 < Ak )

o Or, more realistically for noisy signals,
(lY-D,Lill, <€ IT1115,00 < A1)

= S <
Flnd {F]}]K_:l s. t. < F]_ .DZFZ ”FZHO,(.)O — )\2

L FK—l — DKF}( ”FK”?),oo = AKJ
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A Small Taste: Pursuit

I
94.51 % sparse
(213 nnz)

99.51% sparse
(5 nnz)
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The simplest pursuit algorithm (single-layer case) is
the THR algorithm, which operates on a given input signal Y by:

10 T T T T
Y=DI +E 1 5y st i
and I' is sparse 617 % S}(2) - Soft Nonnegative l
4 ¥
2 ¥ ’
e
~ —2
[ =P;(DY) y
—6
—8
—10

-0 -8 -6 -4 -2 0 2 4 6 8 10
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Consider this for Solving the DCP

o Layered thresholding (LT):
Estimate I'; via the THR algorithm

i K
(DCP{): Find {1“]-}]_=1 s.t.

A (MY —DiNill; <€ NTllfe <2y
T — T T = S <
=7, (017, 000) | nonm |
N Y . :
N N S
Estimate I', via the THR algorithm | Tk-1 = Dxlx ITicll0,00 = }\KJ

o Now let’s take a look at how Conv. Neural Network operates:
f(Y) = ReLU(b, + W3 ReLU(b; + W[Y))

The layered (soft nonnegative)
thresholding and the CNN forward pass
algorithm are the very same thing !!!
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Theoretical Path

X 1%4 ' DCP.ﬂ R
1_1)12r12 ' + . Laf/eredAT)HR '{Fi}i=1

Iy, = DTy (Forward Pass)

Maybe other?

I is Ly o Sparse

Armed with this view of a generative source model, we
may ask new and daring questions
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Theoretical Path: Possible Questions

o Having established the importance of the ML-CSC model and its
associated pursuit, the DCP problem, we now turn to its analysis

o The main questions we aim to address:

|. Stability of the solution obtained via the hard layered THR
algorithm (forward pass) ?

ll. Limitations of this (very simple) algorithm and alternative pursuit?

... and here are questions we will not touch today:

Ill. Algorithms for training the dictionaries {D;}ic, vs. CNN ?
IV. New insights on how to operate on signals via CNN ?
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Success of the Layered-THR

»

1

Theorem:IfIII‘iII?)OO<l 1+ — |Fi::{| —— 'srilr;ax
' 2 u(D;) T ;) [rP]

then the Layered Hard THR (with the proper thresholds)
finds the correct supports and ||} — I‘i||}23Oo < ¢!, where

we have defined € = ||E||g’oo and

el = J INIE - (670 + p(D) (T e — 1)ITma%))

Papyan, Romano & Elad (‘17)

Problems:

1. Contrast

2. Error growth

3. Error even if no noise
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Layered Basis Pursuit (BP)

o We chose the Thresholding algorithm
due to its simplicity, but we do know
that there are better pursuit methods
— how about using them? .

o Lets use the Basis Pursuit instead ...

1
% = Hll,in > Y — D3 115 + A4 1Ty |
1

) K
(DCPY): Find {Fi},-=1 s.t.

(IY =Dyl < &
I =D,I

| Tk-1 = Dklk

1

2
;°" = mln ” [ °" — D,I, |2+7\2||F2||1

“I‘lllg,oo =< }\1\
”I‘leg,oo = )\2

~N"

||FK”(S),OO < }\Kj

Deconvolutional networks
[Zeiler, Krishnan, Taylor & Fergus ‘10]
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Success of the Layered BP

Krheorem: Assuming that [|Ti[|g ., < (1 T o, )) B

then the Basis Pursuit performs very well:

1. The support of I‘LBP is contained in that of I

» 2. The error is bounded: |I‘LBP F-||pmS£i,where
el = 75EIE T, I,

3. Every entry in I greater than

_ Problems:
si/\/llFillg,mwill be found 1. Contmst
2. Error growth
Papyan, Romano & Elad (‘17) 3. Errereven-H-re-neise
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Layered lterative Thresholding

Layered BP: I‘]-LBP—mln || LBP Djrj”i"'Ei“Fi'h ]

.

Layered Iterative Soft-Thresholding:

t F]t = SEj/Cj (th_l + D;r(/l;]_l — D]-I'jt_l))

Note that our suggestion
implies that groups of layers Can be seen as a very deep

share the same dictionaries recurrent neural network
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Time to Conclude
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The desire to
model data
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This Talk

Take Home Message 1:
Generative modeling of data
sources enables algorithm
development along with

d

theoretically analyzing
lgorithms’ performance

A novel interpretation

un

and theoretical «

derstanding of CNN

s €

Novel View of
Convolutional
Sparse Coding

Multi-Layer
Convolutional
Sparse Coding

The desire to
model data
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This Talk

A novel interpretation
and theoretical
understanding of CNN

Sparseland )

\ 4

Novel View of
Convolutional
Sparse Coding

\ 4

Multi-Layer
Convolutional
Sparse Coding

The desire to
model data

Take Home Message 2:
The Multi-Layer
Convolutional Sparse
Coding model could be
a new platform for
understanding and
developing deep-
learning solutions
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More on these (including these slides and the relevant papers) can be
found in http://www.cs.technion.ac.il/~elad
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