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Abstract—In this paper we propose two improvements of the
MOD and K-SVD dictionary learning algorithms, by modifying
the two main parts of these algorithms — the dictionary update
and the sparse coding stages. Our first contribution is a different
dictionary-update stage that aims at finding both the dictionary
and the representations while keeping the supports intact. The
second contribution suggests to leverage the known representations
from the previous sparse-coding in the quest for the updated
representations. We demonstrate these two ideas in practice and
show how they lead to faster training and better quality outcome.

I. INTRODUCTION

Sparse and redundant representation modeling of signals is
a very effective way to describe the inner-structure of signal
sources [1]. This model assumes that the signal x € R? can
be described as x = Da, where D € R%¥*™ is a dictionary
(matrix), and o € R™ is the signal’s representation, which is
assumed to be sparse. We typically consider the case n > d,
suggesting that the representation is redundant. The number
of non-zeroes in the representation, denoted as k = ||c|o, is
expected to be very small, i.e., k < d < n, implying that the
signal x is characterized as being a linear combination of few
columns (also referred to as atoms) from the dictionary.

This model has drawn considerable research attention in the
past decade, with contributions spanning theoretical, numerical
and applicative ideas [1]. A fundamental tool for the practice
of this model is dictionary learning — the construction of a
dictionary that is suitable for a family of signals that are of
interest. Dictionary learning algorithms use a set of signal
examples, {x;}Y,, to identify D that will best sparsify them,
thereby leading to more effective modeling. This can be
formulated as the problem

Argmin X -DA||% st. V1<i<N, |eullo<k, (1)

where X € R contains all the training examples as
columns, and similarly, A € R™*N contains all their sparse
representations, «;. Dictionary learning starts with the given
signals and aims to find both the dictionary D and the
representations A. This is a very complex optimization task in
general, and existing methods for its solution can only hope
to bring an approximate solution.

Various numerical algorithms have been proposed for the
task of dictionary learning, and the literature on this topic
is fast growing — see [2], [3], [4], [5], [6], [7], [8] for
representative work, from the early stages of this field to
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very recent contributions. Among these, two very familiar
algorithms are the MOD [9], [10] and the K-SVD [11], [12].
Both these methods (and in fact, many others among the
list mentioned above) divide the numerical treatment of the
optimization problem in Equation (1) into two phases — a
sparse-coding stage that optimizes A assuming the knowledge
of D, and a dictionary update stage that updates D using the
known representations A. These algorithms differ in the details
of the pursuit (finding A) and the update of the dictionary D.

In this paper we embark from the MOD and K-SVD
dictionary learning methods, and propose improvements for
the two phases on these algorithms — the dictionary update
and the sparse coding stages. First, we change the dictionary
update stage so as to find the dictionary and the representations
while keeping the supports intact. In this respect, the updates
proposed by the MOD and the K-SVD are in-fact sub-optimal
processes, and we replace them with a more effective updates.
Second, we notice that the sparse-coding stage is performed
at every iteration while disregarding previous iteration’s repre-
sentation. We propose an alternative pursuit that modifies the
existing representations, thereby getting faster to the desired
solution. We demonstrate the two modifications on image-
patch training, showing that the new emerging algorithm leads
to faster training, and therefore to a better quality outcome
when limited number of iterations is practiced.

II. MODIFIED DICTIONARY-LEARNING ALGORITHM

In this section we present the two modifications we propose
to the MOD and the K-SVD algorithms. In both cases, we
start by describing the existing methods, and then suggest the
improvements, so as to make the discussion self-contained.

A. Improved Dictionary-update Stage

Let’s recall the way the dictionary update is done in MOD
and K-SVD. Our starting point is the availability of the rep-
resentations A, and our goal is now to update D. Considering
the learning problem formulation in Equation (1), MOD does
the most natural thing [9], [10], by minimizing the /s term
X — DA||% with respect to D. This amounts to

f):Arngin X —DA|%Z = XAT(AAT) "' =XAT.  (2)

In cases where the matrix AA” is very large, an iterative solver
for the normal system XAT = DAAT can be considered.
In such a case, a small number of iterations will provide an
approximate solution of this system. K-SVD takes a different
approach altogether [11], [12], by updating one atom at a time
in D. However, far more important is the fact that K-SVD not
only updates the atom, but also all the non-zero coefficients in



A that multiply it. Thus, K-SVD provides an update of both
D and A in the “dictionary-update” stage.

Bearing the above in mind, what is truly the objective of
the dictionary-update stage? What is the information we would
like to carry from the sparse-coding stage as the foundation
for this update? Adopting the K-SVD flavor of answer, our
objective seems to be to find an update of D and A such that
the supports (location of the non-zeros) in A remain intact.
Put formally, this leads to the optimization task

{ﬁ,A}:ArgIII)li[{l X -DA|% st. AoM=0. (3)

The notation A ® M is an entry-wise (Schur) multiplication
between two equally-sized matrices. The mask matrix M is a
patterned matrix of zeros and ones, given by M = {|A| = 0},
implying that M(¢, j) = 1 if A(4,j) = 0, and zeros elsewhere.
Thus, the requirement A ® M = 0 forces all the zero entries
in A to remain intact. While the problem posed in (3) is
much easier than the overall dictionary-learning task, it is
still non-convex and hard to solve. One could propose various
ways to iteratively solve this constrained problem. One such
option is a block-coordinate-descent approach where we fix A
and minimize | X — DA||% w.r.t. D (which is exactly MOD),
followed by an update of A by fixing D and solving

A:ArgmAin [X -DA|% st. AOM=0. (4)

This second optimization w.r.t. A has a closed-form solution,
easily obtained by handling each column in A separately, and
targeting only the non-zeros in these columns, leaving the
zeros intact. The new formulation becomes

Q; = Argmoitn X — D3 = D;rxi, 5)
1

where D; is a sub-matrix of D containing only the atoms in the
support of this representation, and ¢; is the non-zero portion
of the i-th column in A.

Iterating the above algorithm — updating D and then A as
described above — will lead to an approximation of the solution
for the problem we have posed in Equation (3). Again, we have
noticed that the MOD is thus merely half an iteration of this
process, and as such constitutes a weaker approximation of
the overall desired “dictionary-update” stage.

Another option for handling the “dictionary-update” prob-
lem posed in Equation (3) aligns better with the K-SVD
approach. Breaking the term DA to the sum of rank-1 outer-
products, our problem becomes

{D,A} = Argmin [IX -~ djaj||7 ©6)
, =
S.t‘V].SjSTL,mj@aj:O.

In this formulation d; is the 4" dictionary atom (column),
ajT is the j" row in A (as opposed to the representations a;
that are columns of this matrix), and mJT is the j** row in
M that forces the zeros in the proper locations in a;. We can
again use a block-coordinate-descent approach, but this time
optimize sequentially the pairs (d;,a;) for j = 1,2,...,n.
This optimization is done by an SVD operation performed
on the matrices E; = (X — 32, d;a]) © (14 - m]). The

mask matrix, 14 - m? is a rank-1 matrix of size d x IV that

replicates the row mf d times. This mask matrix effectively
removes from X — . £ d;al all the columns corresponding
to examples that do not use the ;" atom.

While the K-SVD dictionary update stage performs exactly
one such round of updates for j = 1,2,..., N, the algorithm
we describe here should repeat these rounds several times for
better approximating the overall solution of (3). Again, and just
like in the MOD case, it appears that the K-SVD performs a
first step towards the desired solution, but does not proceed to
exhaust the potential in the “dictionary-update” stage.

To summarize this part, an effective dictionary-update stage
should refresh both the dictionary and the non-zero coefficients
in the representations, such that the representation error is
minimized and the supports are maintained. We have described
two iterative methods for approximating this goal. In both
cases, MOD or K-SVD are merely the first part of the
computational process, and the algorithms proceed iteratively,
performing what we refer to hereafter as several Dictionary
Update Cycles (DUC), in order to more effectively minimize
the original dictionary learning objective in Equation (1).

As for computational complexity, both methods described
above are roughly equivalent. While they add to the complex-
ity of the dictionary-update stage, this additional complexity
is negligible in the overall dictionary-learning process. This is
because in most cases the learning task is heavily dominated
by the sparse coding stage, thus implying that with the
additional computational effort that we have brought here, the
overall run-time remains almost unchanged.

B. Coefficient Reuse OMP (CoefROMP)

Given an updated dictionary, the MOD and K-SVD algo-
rithms proceed by searching for the sparsest representations
for the training data. The goal is the solution of the opti-
mization problem posed in Equation (1) with respect to A,
while keeping D fixed. If we choose the previously computed
representations’, the objective function remains at the same
height. This suggests that we may use the given representations
as a warm-start for the pursuit stage. Note, however, that this
does not imply a guaranteed improvement.

The idea to initialize the coefficients this way in the pursuit
algorithm can be easily incorporated into various relaxation
or greedy sparse coding methods. In this paper we focus on
a specific variant of a greedy pursuit algorithm that builds on
the work of CoSaMP [13] and Subspace Pursuit (SP) [14].
However, unlike these methods, our algorithm is initialized
with the largest k/3 coefficients> from the previous pursuit
stage, then proceeds with a coefficient augmentation and
pruning process like CoOSAMP and SP. The proposed algorithm
is termed the Coefficient Reuse OMP (CoefROMP), and it is
described in Algorithm 1.

We should note that we tested the warm-start idea with
several relaxation and greedy pursuit methods. A warm-start
for the relaxation methods gave some speed improvement but

IEither from the previous iteration, or from the modified dictionary-update
stage as described in Section II.A
2This choice was found empirically to perform well.



not any improvement in RMSE. Initializing OMP with the
largest k /3 coefficients from the previous iteration and running
standard OMP to find the remaining 2k/3 coefficients led to
modest improvements in RMSE and run-time. It appears that
without the augmentation and pruning steps of CoefROMP, the
warm-start idea does not lead to the significant improvements
that will be described in the Results section.

Two versions of CoefROMP were developed — the first that
targets a desired cardinality k, similar to CoSaMP [13] and
SP [14], and a second that performs the sparse coding with an
error stopping criteria by accepting only coefficients above
a threshold. Also, the CoefROMP algorithm can be made
far more efficient when adopting a Batch-OMP architecture
[15]. Under the assumption that our pursuit algorithm is to
operate on a large group of different signals using a fixed
dictionary, various pre-computations can be done so as to
reduce substantially the amount of operations in the coefficient
computations. This is exactly the scenario we encounter in typ-
ical dictionary learning. Such a Batch-CoefROMP algorithm
has been developed and shown to lead to a factor of 2 — 3
savings in run-time. Due to space limitations, we present in
Algorithm 1 only the core CoefROMP method.

Algorithm 1 COEFROMP

1: Input: D, X, a9 (warm-start), and % (target cardinality)
2: Output: Updated sparse representation o

3: Initialization (n=0): (i) Ty := sort (|a|, k/3) (take the
leading k/3 elements from av); (i) ro := x — Dy an;
and (111) €p = HI‘()H2

4: for n=1:1:max-iter do

5. S, = sort (|DTrn,1|,k/3), take the leading k/3

elements from the projected residual

T, := (T,_1, Sy ), merge the supports

&y, = (D, )Tr,, compute the representation by LS
T, = sort (|&,], k), take the leading k (or less) ele-
ments from &,

9:  «ay, := (Dr,)Tx, update the representation by LS

10: 1, :=x—Dr a, and €, := |r,||?, update the residual
1:  Ife, >ep_1 quit
12: end for

III. RESULTS

This section illustrates the improvements obtained by multi-
ple Dictionary Update Cycles (DUC) and a Coefficient Reuse
OMP (CoefROMP). We present experiments that demonstrate
each of these ideas separately, and then combine them in
an image denoising scheme. As the performance gain is
dependent on the choice of various parameters, we provide
illustrative examples accompanied by a discussion of how the
performance changes with parameters.

A. Multiple Dictionary Update Cycles (DUC)

In the following experiments we use a collection of sev-
enteen well-known standard images, including barbara, cam-
eraman, jetplane, lena, mandril, and peppers. We extract

60,000 patches from these images, 50,000 of which are
used for training and the remaining 10,000 are used to test
the reconstruction accuracy of the trained dictionary and the
generalization performance. We subtract the mean from all
patches, so as to eliminate the need to use a coefficient on
the constant offset of the data vector. The quality of the
representation is dependent on the number of atoms, n, and the
number of non-zero coefficients, k. In our experiments, these
two parameters are chosen as related to the signal dimension
d by n = 3d and k = round(d/10). Also, the dictionary is
initialized with samples from the training data.

Figure 1 shows plots of the RMSE versus iterations® during
the dictionary learning for both the training and the testing
signals. This figure illustrates the improvement in convergence
when two or four cycles of the dictionary updates are per-
formed in each iteration. The comparisons are based on the
original K-SVD code*. In this example, 8 x 8 image patches
are used (thus d = 64). A 64 x 192 dictionary is trained with
a representation cardinality set to & = 6. As can be seen,
both training and testing data benefit from the several update
cycles, with a small computational cost. Much of the gain
occurs in the first several iterations and this continues to carry
forward through the remaining iterations. Note that running
the algorithms with many iterations leads to nearly the same
results — this suggests that using several DUCs does not lead
to a different “steady-state” solution, but rather to a faster
convergence to this solution.

Representation RMSE - Training Data Representation RMSE - Testing Data
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Figure 1. Training (left) and testing (right)representation’s RMSE versus
computations for the K-SVD algorithm with multiple DUCs.

Now we describe briefly how this improvement depends on
the primary parameters: Starting with a 2D-DCT initial dictio-
nary leads to improved convergence and a slightly smaller gain
by multiple DUCs. In addition, there is a slight reduction in the
relative amount of improvement from multiple DUCs as signal
length, cardinality and dictionary size increases. However, the
gain from multiple DUCs increases when there are fewer
training samples, possibly because the effect on the dictionary
training becomes more significant. When applying the multiple
dictionary update cycles via the MOD approach (see Section
2), a similar gain is seen, and thus we chose to present only
the K-SVD form.

3In Figures 1 and 2 the x-axis is “computation-normalized"”, i.e., the
reference method of choice is shown versus iterations, while the modified
algorithm is shown with a scaled x-axis to reflect the relative change in
computations, measured by counting multiplications.
4www.cs.technion.ac.il/ ronrubin/software.html



RMSE

B.

Coefficient Reuse OMP
To illustrate CoefROMP, a 15 x 15 image patch size was

used, which corresponds to vectors of length 225. The signal
dimension was increased from 64 to 225 in order to better
demonstrate the advantages of CoefROMP. A 225 x 675
dictionary was trained, the cardinality was set £k = 23 and
50,000 training patches were used in the dictionary learning.
Figure 2 illustrates the significant improvement in the RMSE
(and run-time) from CoefROMP as compared to OMP for the
training and the testing signals, for the first 30 iterations of the
dictionary learning process. The CoefROMP is started after
the first iteration since it needs previous iteration’s results.
In this experiment, CoefROMP has used an average of 6
iterations when the augmentation is in groups of 8, rather than
23 iterations required by OMP. The figure shows that training
the dictionary with CoefROMP leads to a similar improvement
for both the training and test data.

Representation RMSE - Training Data

Representation RMSE - Testing Data
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- - CoefROM
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1

Figure 2.
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Training (left) and testing (right) representation’s RMSE versus

computations for the K-SVD algorithm with OMP and CoefROMP.

C.

Image denoising

We turn to show the improvement achieved by applying

both multiple DUCs and CoefROMP together, and this is
demonstrated through the application of image denoising. The
experiments here follow the methodology given in [12]. In
this application there is no distinction between training and
testing data, as we train the dictionary on patches extracted
from the noisy image itself. Also, the pursuit is done with an
error stopping criterion (¢ = 1.10), as in [12], implying that
we use the CoefROMP version suited for this mode. We show
the results obtained for the image Barbara contaminated by
an additive Gaussian noise with o = 25. Other tests with other
images lead to similar results, and are thus omitted.

Figure 3 shows the PSNR — the denoising results — of the

standard K-SVD image denoising algorithm as a function of
the iteration. We show the results versus iterations, since the
complexity evaluations are harder to obtain. That said, we
remind the reader that using several DUCs hardly change
the computational load, while using CoefROMP leads to
substantial computational saving. We tested two patch sizes
— 8 x 8 (left) and 16 x 16 (right) pixels. The training was done
on all overlapping patches in the image, using A = 30/0, and
building a 4-times redundant dictionary, initialized with the
redundant DCT. This Figure illustrates that the shift from the
OMP to CoefROMP is worthwhile and leads to a substantial
improvement in convergence speed. Similarly, using more
than one round of updates for the dictionary atoms (in this

test we implemented the K-SVD approach, but the MOD
alternative works comparably well) is leading to a further
improvement. Figure 3 demonstrates that most of the benefit

in

the training/denoising is obtained in fewer iterations for

CoefROMP than with OMP.

Denoising Performance for 8x 8 Patches Denoising Performance for 16x 16 Patches
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Figure 3. Denoising performance with the K-SVD algorithm, demonstrating
OMP versus CoefROMP, and using 1 or 2 dictionary update stages. We
consider patches of size 8 x 8 (left) and 16 X 16 (right) pixels.

I'V. CONCLUSION
Dictionary learning is a central step in employing a sparsity-

based model for various data processing tasks. Therefore, the
speed of such learning algorithms is key in making many
algorithms more efficient and thus more practical. In this paper
we propose two simple yet effective modifications for the K-
SVD and the MOD learning algorithms, both shown to lead

to

speedup in the convergence of the learning process. We

believe that the proposed modifications are of relevance and
importance to many other dictionary learning techniques.
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