
1

Multi-Scale Patch-Based Image Restoration
Vardan Papyan, and Michael Elad, Fellow, IEEE

Abstract—Many image restoration algorithms in recent years
are based on patch-processing. The core idea is to decompose the
target image into fully overlapping patches, restore each of them
separately, and then merge the results by a plain averaging. This
concept has been demonstrated to be highly effective, leading
often times to state-of-the-art results in denoising, inpainting,
deblurring, segmentation, and other applications. While the
above is indeed effective, this approach has one major flaw: the
prior is imposed on intermediate (patch) results, rather than
on the final outcome, and this is typically manifested by visual
artifacts. The EPLL (Expected Patch Log Likelihood) method
by Zoran and Weiss was conceived for addressing this very
problem. Their algorithm imposes the prior on patches of the
final image, which in turn leads to an iterative restoration of
diminishing effect. In this work we propose to further extend
and improve the EPLL by considering a multi-scale prior. Our
algorithm imposes the very same prior on different scale patches
extracted from the target image. While all the treated patches
are of the same size, their footprint in the destination image
varies due to subsampling. Our scheme comes to alleviate another
shortcoming existing in patch-based restoration algorithms – the
fact that a local (patch-based) prior is serving as a model for
a global stochastic phenomenon. We motivate the use of the
multi-scale EPLL by restricting ourselves to the simple Gaussian
case, comparing the aforementioned algorithms and showing a
clear advantage to the proposed method. We then demonstrate
our algorithm in the context of image denoising, deblurring and
super-resolution, showing an improvement in performance both
visually and quantitatively.

Index Terms—Image restoration, Expected patch log likelihood
(EPLL), Gaussian mixture model, Multi-scale, Denoising, Deblur-
ring, Super-resolution.

I. INTRODUCTION

ASSUME a clean image X is degraded by a linear operator
A and an additive white Gaussian noise N of standard

deviation σ. Given the measurement Y = AX+N , we would
like to restore the underlaying image X . To this end, some
prior knowledge about the unknown image to be recovered
is needed. Due to the curse of dimensionality, proposing a
global model for the whole image is often found to be too
hard, and especially so if we are dealing with learned models.
Thus, many image restoration algorithms in recent years have
chosen to address the matter of modeling by adopting patch
(or local) priors, e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9].

Since patches are low dimensional and therefore easier
to model, patch priors are readily available. Popular choices
include the sparity inspired model, GMM (Gaussian Mixture
Model), ICA, an analysis model such as FoE, etc. [2], [10],
[11], [12], [13]. In the context of denoising, for example, once
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such a prior is set, the image can be denoised by decomposing
it into overlapping patches, denoising every patch separately
and finally aggregating the results by simple averaging. This
straightforward yet effective paradigm has been shown to give
excellent results in various inverse problems.

Despite the effectiveness of the above scheme, it has some
major known flaws. For example, although every denoised
patch is treated well under the chosen patch prior, the av-
eraging of the patches ruins this behavior, as the resulting
patches extracted from the aggregated image are no longer
likely with respect to the local prior. Put differently, the above
problem implies that solving the denoising problem by some
local operations that do not share information between them
(as indeed patch-based methods often do), is likely to be sub-
optimal.

This rationale has led Zoran and Weiss to propose the
EPLL (Expected Patch Log Likelihood) algorithm [11]. Their
scheme employs a global prior which seeks an image such
that every selected patch from it is likely given the local
prior. Due to this delicate change from a local to a global
prior, the complete denoised image is the unknown in the
restoration task, rather than small and independent patches.
To practically solve the MAP (maximum a posteriori) problem
under this prior, the authors of [11] have used the method of
Half Quadratic Splitting [14]. Their algorithm boils down to
iteratively applying patch-based denoising with a decreasing
noise level after each iteration. As the iterations proceed, the
overlapping patches are pushed closer and closer to the local
model. The EPLL was originally used with the GMM prior,
and more recently extended to a sparsity-based patch model
[15], leading to a comparable performance.

We should stress that, despite the success of the EPLL
in improving denoising (and other applications) performance,
this approach is only one way of globalizing an image
prior, which is defined for local patches. Interestingly, the
formation of a global prior from local interactions is also
practiced by the line of work of Fields of Experts and papers
that employ the analysis sparsity model [12], [10], [13].
Another attempt to bring a global flavor to patch-modeling
is found in methods that exploit self-similarity of patches
[1], [16], [17], [5], [18], [19], [20], [21]. These methods tie
together the treatment of different patches if they are found to
have similar content. This way, far apart patches collaborate in
their restoration process, thus leading to non-local processing.
Interestingly, even these sophisticated methods fail in fully
”globalizing” the processing, resulting often times with local
artifacts, as can be seen in Figure 1.

Another and perhaps a more profound flaw in patch-based
modeling is the enforced locality of the overall model. By
working with small sized patches we are oblivious to a larger
scale interactions present in the image. Broadly speaking, one
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(a) Original Image (b) K-SVD - PSNR: 32.52

(c) BM3D - PSNR: 33.21 (d) EPLL - PSNR: 33.31

Fig. 1: Denoising of a landscape image. All denoised images exhibit local artifacts (see for example the skies). BM3D, a
self-similarity based method, fails as well despite making use of non-local processing.

can not hope to model a sophisticated stochastic phenomenon
such as a whole image by simply looking at its local interac-
tions. This flaw is true regardless of the method employed on
the patches - be it plain averaging, a sophisticated fusion of
information between patches, or a global expression that ties
together local forces. In this work we come to alleviate some
of this problem, by considering multi-scale processing.

The above discussion suggests that, on one hand, modeling
whole images is prohibitively hard, and on the other hand,
considering only local patch modeling might be too restrictive.
In this work we propose a multi-scale image treatment, which
also leads to a global image prior composed of local pieces.
The key idea is that, by using a local model on various scales,
we manage to keep the simplicity of a low dimensional model
while enjoying the non-locality of bigger regions in the image.

Our algorithm imposes a local low dimensional prior on
patches of different scales, extracted from the target image.
These, so called, scale-patches are all equal sized patches
extracted from filtered-and-decimated versions of the target
image. If scale invariance is assumed, the model of the scale
patches remains unchanged and a single model can be used
for all scales. Although all the treated scale patches are of
equal size, their footprint in the destination image varies due
to sub-sampling. For example, if we consider decimation by

factor of two, scale patches extracted from the coarser image
are in fact twice as big in the original image grid. Therefore,
by constraining those patches to follow the local model, we
constrain the lower frequencies of twice as big patches in the
original image. This idea could be readily generalized to many
filters or non decimation filters, with the exception that if this
is the case, the model should be fitted to each filter differently,
as one can no longer rely on scale-invariance.

When applicable, the scale invariance property can boost the
performance of the methods we are developing in this paper, as
we force a unified model to all resolution layers, thus getting
a better estimate of the model. This assumption is central in
visual data and has drawn a considerable attention along the
years [22], [23].

The multi-scale treatment we propose here bares some
similarity to denoising through the use of multi-scale dic-
tionary learning. In [24], [25] an image was denoised by
decomposing it into different wavelet bands, denoising every
band independently via patch-based K-SVD, and applying
inverse wavelet transform to obtain the final reconstructed
image. An unavoidable difficulty with this approach is the
fact that the high frequency bands of the image are to be
denoised, a task which is known to be problematic due to the
low signal to noise ratio in such frequencies. In our work we
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avoid this problem altogether by considering low frequency
bands which are known to have a high signal to noise ratio, and
even more so, as we decrease the resolution, the SNR actually
improves. Moreover, the approach we propose fuses all bands
simultaneously by forming one unified penalty function that
all patches from all scales must obey.

To motivate the extension of the multi-scale EPLL, we
consider a ”toy problem” where the signal is one dimensional
and sampled from a Gaussian multivariate distribution. In this
case, all aforementioned methods are reduced to closed-form
solutions. Once an expression is obtained for each method,
we compare the mean-squared-error (MSE) of the different
algorithms and demonstrate how the multi-scale EPLL narrows
the local-to-global gap created by working with patches. We
further show that the proposed multi-scale treatment has an
interesting interpretation in terms of approximation of the
global Covariance matrix.

Returning to the realm of image processing and aiming
at boosting leading methods, we demonstrate the proposed
multi-scale EPLL for the task of solving three different inverse
problems: denoising, deblurring and super-resolution. Compar-
isons to EPLL show clear advantage to the proposed paradigm
across all tasks, and especially so when the problem is severely
ill-posed. In this context we present two key ingredients that
help achieve the above results: (i) As mentioned earlier, we
assume that the patch-model remains intact after the scale-
down and decimation. This scale-invariance property is true
only for a carefully chosen filter, which we derive. (ii) The use
of the multi-scale EPLL requires several parameters to be set
up. One possible way to tune those is using the generalization
of Stein’s Unbiased Estimator (SURE) for non-linear denoisers
[26]. Another approach is to optimize those parameters on a
set of images. We demonstrate both methods in our work.

This paper is organized as follows: Section 2 briefly reviews
the EPLL framework, Section 3 analyzes the various global
and local algorithms in the Gaussian case, Section 4 introduces
the proposed multi-scale EPLL for image processing, along
with a discussion on automatic parameter setup and scale-
invariance. In Section 5 we present experimental results and
Section 6 concludes this paper.

II. EXPECTED PATCH LOG LIKELIHOOD

In this section we briefly review the EPLL, as we will be
relying on this method and extending it hereafter. Given a
corrupted image Y = AX + N , we would like to restore X
by solving the maximum a posteriori (MAP) problem

max
X

P (X|Y ) = max
X

P (Y |X)P (X)

= min
X
− logP (Y |X)− logP (X).

(1)

To this end, a global prior P (X) for the ideal image is
needed. One such prior is the expected patch log likelihood
(EPLL), which forms the prior by accumulating local (patch)
ingredients,

EPLL(X) = logP (X) =
∑
i

logP (RiX), (2)

where we have defined Ri to be an operator which extracts
the i’th patch from the image. By placing the corruption model
and the EPLL into (1) we obtain

min
X

λ

2
‖AX − Y ‖22 −

∑
i

logP (RiX), (3)

where λ = p
σ2 and p is the patch-size. This problem can be

solved using Half Quadratic Splitting [14] by introducing a set
of auxiliary variables zi that ideally should be equal to RiX .
This eases the optimization and changes it into

min
X,{zi}i

λ

2
‖AX − Y ‖22 +

∑
i

(
β

2
‖RiX − zi‖22 − logP (zi)

)
.

(4)
When β → ∞ we obtain RiX = zi and as a result we
converge to the solution of (3). This is the approach practiced
by Zoran and Weiss in [11]. Interestingly, one could also adopt
an ADMM path [27] for the numerical solution of (3), which
bares some similarity to the above half-splitting method, but is
free from the need to grow β to infinity. We shall not dwell on
this option here, as our tests suggest that it is of comparable
quality.

In practice, the problem is solved by iterating through a
finite set of increasing β and for each fixed β reducing the
objective using block coordinate descent. Assuming X is fixed,
we minimize Equation (4) with respect to zi. As a result, the
zi are updated by solving a local MAP problem

min
zi

β

2
‖RiX − zi‖22 − logP (zi). (5)

Assuming zi are fixed, we minimize Equation (4) with respect
to X . As a result, X is updated by minimizing a pure quadratic
problem, resulting with the closed-form expression1

X =

(
λATA + β

∑
i

RT
i Ri

)−1(
λATY + β

∑
i

RT
i zi

)
.

(6)
The special case of applying the above for one iteration

only and initializing with X = Y (i.e., fixing X = Y , finding
all zi and then updating X once) is a simpler algorithm that
essentially boils down to denoising of the degraded patches in
Y , followed by a patch-averaging combined with an inversion
of the degradation operator A. In the context of a sparsity-
inspired model, the K-SVD denoising algorithm is such an
approach [2], and the follow-up work reported in [15] suggests
a way to proceed the iterations in order to get to a better
denoising performance. The key problem in EPLL (with any
prior) is the choice of β and how to grow it during the
iterations in order to guarantee an improved outcome. The
work in [11] chose to simply set β to a fixed set of values,
while [15] estimated it from the temporal image X .

For completeness of our discussion here, and due to the
later use of the expression shown here in the next section, we

1Hereinafter, plain patch averaging is used; however, an alternative ap-
proach could be suggested. Assume the EPLL prior had a different weight
for the log-likelihood of each patch (for example, using a robust measure
of proximity instead of L2 for each patch). As a result, in the aggregation
process we would obtain a weighted patch averaging.
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briefly mention that the local prior used in conjunction with
the EPLL in [11] is a GMM model defined as

P (z) =

K∑
k=1

πk · N (z|0,Σk). (7)

The Covariance and the weight for the k-th Gaussian are
denoted by Σk and πk, respectively, and the means of all
Gaussians are set to zero. Since no closed-form solution exists
for the MAP problem in (5) under this prior, an approximation
is needed to update zi given X . First, the most likely Gaussian
is chosen,

max
k

P (k|RiX) =

max
k

P (RiX|k)P (k) =

min
k
− logP (RiX|k)− logP (k) =

min
k

1

2
log

(∣∣∣∣Σk +
1

β
I

∣∣∣∣)
+

1

2
(RiX)T

(
Σk +

1

β
I

)−1
(RiX)− log(πk).

(8)

Once the best component denoted by k̂ is selected, the restored
patch is obtained by a classic Wiener filter

zi = Σk̂

(
Σk̂ +

1

β
I

)−1
RiX. (9)

III. CASE STUDY - A GAUSSIAN SIGNAL

Before venturing into multi-scale priors for general content
images, let us review currently used methods by considering
a ”toy problem”, so as to gain an insight to the various
restoration approaches that can be taken. The order in which
these methods are presented shows their evolution. Assume a
signal X sampled from a multivariate Gaussian distribution
N (µ,Σ) is contaminated by white additive Gaussian noise
sampled from N (0, σ2I), and our task is to denoise it. Below
we present several possible approaches to clean up the noise.

A. MMSE - Minimum Mean Squared Error

The MMSE estimator minimizes the mean squared error and
is therefore the best estimator one could hope for, if PSNR is
our measure of quality. In the Gaussian case, this has a simple
closed-form solution in the form of the Wiener filter, which
we have seen above in Equation (9):

X̂ = Σ
(
Σ + σ2I

)−1
(Y − µ) + µ. (10)

On the down side, this estimator must have access to the
distribution model of the whole signal, implying knowledge
of the global mean and Covariance, an assumption which
in our terminology is considered as unreasonable. All the
next methods will aim to achieve the denoising performance
of this method while adopting patch-based and thus simpler
modeling. Another shortcoming of this method refers to the
computational part, there is a need to invert a very big matrix.
As we shall see next, the patch-based methods enjoy the ability
of avoiding such ”global inversion”.

B. Non Overlapping or Averaging Overlapping Patches

Assume that we have at our disposal the distribution of
the small patches extracted from the complete signal. In our
case, this distribution is obtained as marginals of the global
one, and therefore the patches are Gaussian distributed as well
with distribution N (Riµ,RiΣRT

i ). A special case would be
when the distributions of all the patches are identical. This case
is of interest since in image processing this is a widely used
assumption (with obviously much more complex and rich local
priors). In the Gaussian case, such a situation is encountered
when the global Covariance is circulant, and the mean vector
is constant.

The simplest idea would be to divide the whole signal
into a set of patches, and denoise every patch independently
according to its distribution using a local Wiener filter

RiΣRT
i

(
RiΣRT

i + σ2I
)−1

(RiY −Riµ) + Riµ. (11)

This set of patches can be either non-overlapping or overlap-
ping. Once computed, the final signal can be constructed from
the denoised patches by simply aggregating the results

X̂ = µ+
1

p

∑
i

RT
i

(
RiΣRT

i

(
RiΣRT

i + σ2I
)−1)

Ri

× (Y − µ) ,
(12)

where we have defined p as the number of contributions to
each index, which is one in the case of non overlapping patches
and it is the patch-size in the case of overlapping patches. The
non-overlapping case creates artifacts on the boarders of the
denoised patches and therefore is inferior to the overlapping
option. Note that the above formula suggests a plain averaging
of denoised patches, in the spirit of the discussion in the
previous section.

This approach seems to be very promising and indeed was
used by several algorithms [1], [2], [3]. However, a major
flaw in this approach is the fact that while each denoised
patch is treated well under the given local distribution, the
averaging destroys this behavior, resulting with patches that
are less likely under the very same local distribution.

C. Expected Log Likelihood (EPLL)

In the previous approach all patches are denoised indepen-
dently and only once. As we have seen, the EPLL method
defines the complete denoised signal as the unknown, while
operating locally on patches. The key is to enforce the local
(patch-based) model on the final outcome, rather than the
intermediate patches that compose it. In general, the objective
of the EPLL is

min
X

λ

2
‖X − Y ‖22 −

∑
i

logP (RiX). (13)

In the Gaussian case we have a specific probability function
for all the patches, and the objective becomes

min
X

λ

2
‖X − Y ‖22

+
∑
i

1

2
(RiX −Riµ)T (RiΣRT

i )−1(RiX −Riµ).
(14)
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This function is quadratic and therefore a closed-form solution
exists

X̂ =

(
λI +

∑
i

RT
i (RiΣRT

i )−1Ri

)−1
λ(Y −µ)+µ. (15)

We should note that we present (15) only for the purpose of
analyzing the EPLL algorithm. In practice, constructing the
matrix in (15) and inverting it would be as demanding as
the global (MMSE) approach. As the whole purpose of the
above discussion is patch-based processing, the proper way
to solve (14) is by an iterative process which is composed of
two steps, as described in Section 2, relying on half-splitting
or ADMM: First, we denoise each patch separately, just as
done in Equation (11) and then we aggregate these results to
get the full signal using the relation (12).

D. Multi-Scale EPLL

The global MMSE method has the upper hand over any
other local-processing method, as it has access to the whole
distribution information. In contrast, the local methods, as wise
as they may be, get only a partial picture of this distribution.
This is evident, for example, when considering the content of
the Covariance matrix, far away from the main diagonal. These
entries are not seen by the patch-based methods, and thus one
cannot expect a global MMSE result from these approximation
algorithms. In order to bridge the gap between the sub-optimal
estimators and the MMSE one, it is essential to use non-local
statistics.

The EPLL prior seeks a denoised signal such that every
patch extracted from it is likely given the patch-model. We
propose to generalize this by demanding the same property on
scaled-down portions of the denoised signal. The multi-scale
EPLL prior2 is defined as 3

MSEPLL(X) =w1

∑
i

logP1(RiX)

+w2

∑
i

logP2

(
R̂iSX

)
,

(16)

where the operator S = DH applies a low-pass filter H
followed by down-sampling D, the operator R̂i extracts the
i’th patch from the decimated signal SX , and the weights w1

and w2 represent the importance of the different scales. Note
that in general the patches obtained after blur and decimation
may have a different local model, which explains why we
denote the two priors as P1 and P2. The MAP objective for
our denoising task changes accordingly to

min
X

λ

2
‖X − Y ‖22−w1

∑
i

logP1(RiX)

−w2

∑
i

logP2

(
R̂iSX

)
.

(17)

2For simplicity, we refer here to the case of having two scales only, but
the same concept can be applied to a complete pyramid of scales.

3The multi-scale EPLL prior degenerates to the original EPLL when a
single scale is used with a weight equal to one.

In the Gaussian case this objective becomes

min
X

λ

2
‖X − Y ‖22

+w1

∑
i

1

2
(RiX −Riµ)T (RiΣRT

i )−1(RiX −Riµ)

+w2

∑
i

1

2

(
R̂iSX − R̂iSµ

)T (
R̂iSΣST R̂i

T
)−1

×
(
R̂iSX − R̂iSµ

)
.

(18)

Once again, the function is quadratic and therefore a closed-
form solution exists

X̂ =

(
λI + w1

∑
i

RT
i (RiΣRT

i )−1Ri

+w2

∑
i

ST R̂i
T
(
R̂iSΣST R̂i

T
)−1

R̂iS

)−1
× λ(Y − µ) + µ.

(19)

Again, this expression represents the closed-form solution for
our problem, but in practice, it can be obtained by an iterative
solver that does not invert the global-sized matrix.

The expression
∑
iR

T
i (RiΣRT

i )−1Ri found in Equation
(15) is an approximation of the global inverse Covariance. In
fact, if it were equal to it, we would obtain the MMSE result
presented in Equation (10). In Equation (19) we obtain a more
sophisticated sum which attempts to better approximate the
global inverse Covariance.

For example, if we are dealing with twice longer patches
extracted from the signal, those will be filtered and decimated
by factor of two, thus having the same core patch-size.
Our modified model imposes the local patch model on all
these patches, regardless of their original scale. This way, the
processing remains local but the footprint on the signal is
of wider and wider extent, as we move up with the scale.
Intuitively, while the EPLL is allowed to look at the global
distribution through a pin-hole which is the size of a patch, the
multi-scale EPLL looks through the same sized pin-hole but
from different distances, thus seeing a wider, but less detailed,
picture. This idea can be easily generalized to the application
of several filters and down-sampling factors.

In Figure 2 we illustrate the difference between the orig-
inal EPLL and the multi-scale one. We generate a banded
Covariance matrix and present the different local pieces both
algorithms use in their operations. The original EPLL utilizes
Covariances of local patches that are RiΣRT

i . These are
obtained by extracting the rows and columns corresponding
to the patch indices from the Covariance Σ. The multi-
scale EPLL, on the other hand, utilizes also Covariances of
patches extracted from decimated signals. Those are equal
to R̂iSΣST R̂i

T
and are obtained by extracting from the

decimated Covariance SΣST the proper rows and columns.
In Equation (16) several down-sampling grids can be used

after filtering the signal. For example, when down-sampling
by a factor of two, one can choose all even or all odd indices.
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Fig. 2: Left - the full Covariance Σ and a local Covariance
RiΣRT

i extracted from it. Right - the whole decimated
Covariance SΣST and a local Covariance R̂iSΣST R̂i

T

extracted from it. Both local Covariances are of equal size.
The first scale is capable of only seeing part of the band while
the second scale manages to see the whole band at a lower
resolution due to sub-sampling.

To avoid artifacts created by restricting ourselves to a single
grid, we use of all of them. Thus, the prior changes into

MSEPLL(X) =w1

∑
i

logP1(RiX)

+w2

∑
i

∑
j

logP2

(
R̂iDjHX

)
,

(20)

where Dj corresponds to the j-th down-sampling grid. For
simplicity of formulas, we omit the sum over all patterns in
later expressions, but in practice it is essential to use them all.

E. Performace Evaluation

All the methods presented above are of the form

X̂ = W (Y − µ) + µ, (21)

where W is some denoising operator. Given the operator W ,
the MSE has a simple expression:

tr
(
(W − I)Σ(W − I)T + σ2WW T

)
. (22)

We now turn to present a synthetic example that is used
to compare all methods presented in this section. A random
circulant and banded Covariance matrix and a random constant
mean vector were generated to simulate a global model. The
length of the signal was 1000, the width of the band of the
Covariance was 75 (i.e., there are 75 non-zero main diagonals)
and the patch size was set to 25. Since the marginal Covariance
of every patch is equal, it is possible to learn the patch-
model from a single signal, which explains the appeal of
local methods. In Figure 3 we compare the root mean squared
error (RMSE) of the different methods. The MSE for each
method was calculated using Equation (22). In Figure 4 we
exhibit the various denoising operators W obtained from the
different methods. For the proposed multi-scale EPLL method,
plain sub-sampling was used, as we need not use the scale-
invariance assumption.

Noisy
Signal

Non-
overlapping

Overlapping EPLL Mutli-scale
EPLL

MMSE
0.15

0.2

0.25

0.3

Fig. 3: RMSE for the different methods.

(a) Zoom-in on the MMSE
filter of formula (10).

(b) Zoom-in on the filters of the formulas (12),(15) and (19).

(c) Zoom-in on the absolute error with respect to the MMSE estimator.

Fig. 4: The filters from left to right: non overlapping patches,
overlapping patches, EPLL, multi-scale EPLL. As can be seen,
as the methods evolve and improve, the denoising operator
becomes wider and more similar to the ultimate MMSE.

IV. MULTI-SCALE EPLL

A. The General Scheme

Motivated by the success of the multi-scale EPLL in the
Gaussian case, we proceed by moving to inverse problems
handling natural images. The objective of the multi-scale
EPLL for a general degradation operator A is

min
X

λ

2
‖AX − Y ‖22−w1

∑
i

logP (RiX)

−w2

∑
i

logP
(
R̂iSX

)
.

(23)

To optimize this function, we adopt a similar approach to
that of [11], namely, we use Half Quadratic Splitting. We
add auxiliary variables zi and ẑi which correspond to patches
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extracted from the original scale and from the added scale. As
a result, we obtain the following objective

min
X

λ

2
‖AX − Y ‖22

+w1

∑
i

min
zi

{
β

2
‖RiX − zi‖22 − logP (zi)

}

+w2

∑
i

min
ẑi

{
β̂

2
‖R̂iSX − ẑi‖22 − logP (ẑi)

}
.

(24)

The parameter β is proportional to the disagreement between
the local model and the reconstructed image X , while the
parameter β̂ does the same for the decimated version of
the reconstructed image SX . As β → ∞ and β̂ → ∞
we converge to the solution of (23). Thus, we obtain a
reconstruction in which every patch extracted from it is likely
given the local model, and similarly, every patch extracted
from a decimated version of it is likely as well.

Although we have added an extra parameter β̂, the following
analysis suggests that it can be set as being equal to β
up to a constant, and therefore only one parameter needs
to be tuned. Denote the reconstructed image after several
iterations of the proposed algorithm as X̂ and recall that we
denote X as the clean image. We assume that the expectation

of
(
X̂ −X

)(
X̂ −X

)T
is equal to 1

β I , where I is the
identity matrix. This assumption, which has been used in the
original EPLL work, is reasonable since the parameter 1

β is an
estimation of the current noise level in the solution. Similarly,
1
β̂

is an approximation for the noise level of the added scale,
thus

1

β̂
=

1

p
‖R̂iSX̂ − R̂iSX‖22. (25)

Where we have normalized the expression by dividing by p,
the number of pixels in the patch, so as to get a pixel-wise
measure. This expression can be further simplified to

1

β̂
=

1

p

(
R̂iSX̂ − R̂iSX

)T (
R̂iSX̂ − R̂iSX

)
=

1

p
tr

((
R̂iSX̂ − R̂iSX

)T (
R̂iSX̂ − R̂iSX

))
=

1

p
tr

((
X̂ −X

)T (
R̂iS

)T (
R̂iS

)(
X̂ −X

))
=

1

p
tr

((
X̂ −X

)(
X̂ −X

)T (
R̂iS

)T (
R̂iS

))
.

(26)

Using the assumption
(
X̂ −X

)(
X̂ −X

)T
= 1

β I , presented
above, we obtain

1

β̂
=

1

β

1

p
tr

((
R̂iS

)T (
R̂iS

))
=

1

β

1

p
tr
(
R̂iSS

T R̂i
T
)

=
1

β

1

p
tr
(
R̂iDHHTDT R̂i

T
)
.

(27)

The matrix RiDHHTDTRT
i is a p by p matrix with diag-

onal entries equal to the filter’s squared norm. We conclude
that β̂ is equal to β divided by the squared-norm of the filter4.

For a given β, the objective can be optimized using block-
coordinate descent. First, we assume the reconstructed image
X is fixed and we update the auxiliary variables zi and ẑi.
Afterwards we assume the auxiliary patches are fixed and use
those to update the reconstructed image. To compute zi we
solve a MAP problem on patches from the original scale

min
zi

β

2
‖RiX − zi‖22 − logP (zi), (28)

and to update ẑi we solve another MAP problem, this time on
patches from the added scale,

min
ẑi

β̂

2
‖R̂iSX − ẑi‖22 − logP (ẑi). (29)

The local prior used for both scales is the GMM model, as
defined in (7). When solving the local MAP problem under
this prior we use Equations (8) and (9). Given zi and ẑi, X
is updated by solving a simple quadratic problem

X =

(
λATA + w1β

∑
i

RT
i Ri + w2β̂

∑
i

ST R̂i
T
R̂iS

)−1
(
λATY + w1β

∑
i

RT
i zi + w2β̂

∑
i

ST R̂i
T
ẑi

)
.

(30)

This can be easily computed using Conjugate Gradient without
explicitly computing the matrix inverse. Clearly, this algorithm
can be easily generalized to more than one scale.

The observant reader might wonder about the split of
the minimization operations in this expression. The overall
expression is minimized w.r.t. X , but when it comes to the
optimization w.r.t. zi and ẑi, these are pushed inside the overall
objective function. This choice of splitting is deliberate and
important, as it comes to allow for negative values in the
parameters w1 and/or w2, as indeed happens in practice. One
holistic minimization w.r.t to all the variables would have
turned the local MAP stage into a maximization if the weights
are negative, which is clearly working against the very idea of
half-quadratic splitting. By this split, regardless of the sign of
w1 and w2, the above optimization scheme remains correct, as
long as the optimization over X , when the auxiliary patches
are fixed, remains convex. In all our experiments we verify
this is indeed the case.

B. Stein’s Unbiased Risk Estimate (SURE)

As evident from Equation (30), and in the context of A = I
(denoising), at each iteration of the proposed algorithm several
denoised images which originate from the different scales are
combined by a weighted sum in order to create a new estimate.
As a result, a set of weights that will dictate the contribution of
each scale must be set. It is possible to use the Stein Unbiased
Risk Estimator (SURE) to find the optimal weights per image

4Notice that we have omitted the index i from β̂ throughout our derivation
due to the fact that the final expression does not depend on i.
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rather than per dataset. SURE offers a way to estimate the
expected error without using the true original image [28]. It
is given by

MSE = ‖h(Y, θ)‖22 − 2h(Y, θ)TY + 2σ2∇ · h(Y, θ), (31)

where h(Y, θ) represents the denoising of the noisy image
Y and θ is a parameter-vector the algorithm depends on.
Computing the divergence ∇ · h(Y, θ) is challenging due to
the non-linearity incorporated in the multi-scale EPLL by
the choice of the Gaussians from the GMM. In [26], it was
suggested to circumvent the calculation of the divergence by
using a numerical approximation. By drawing a single zero-
mean unit variance i.i.d. random vector B, the divergence can
be estimated by

∇ · h(Y, θ) =
1

ε
BT (h (Y + εB, θ)− h (Y, θ)) , (32)

where ε is a small constant. While the above can be averaged
over several randomly generated vectors B, we find that one
is enough. In the results section we shall demonstrate this
approach.

Notice that the SURE estimator can set some of the weights
of the added scales to be zero. This, in turn, means that these
layers are not needed in the final reconstruction. In other
words, we can use SURE to find the optimal number of layers
to be used by the multi-scale EPLL.

C. Scale Invariance

A desired property when working with different scales of an
image is scale-invariance. Under such an assumption, all local
models of all scales are equal and we need not train a model
per each scale separately. In the proposed multi-scale EPLL,
a filter is applied before the down-sampling operation, and it
can be learned/tuned as to obtain such a property. Similar to
the original EPLL, we assume that the local model for the
original scale is a GMM

P (z) =

K∑
k=1

πk · N (z|0,Σk). (33)

We would like to tune the filters such that the additional scales
can be modeled by the very same prior.

Given the filter H and the down-sampling pattern D, we
extract from the image X the scaled-down patches R̂iDHX .
Our task is to estimate the similarity between the empirical
distribution defined by these patches and the local distribution
P (z). We begin by calculating the probability for each of the
patches to be in every one of the K Gaussians, thus giving
a soft assignment of the i-th patch to belong to the k-th
Gaussian. This membership probability, which is denoted as
Ti,k, is given by

Ti,k =
πkN

(
R̂iDHX|0,Σk

)
∑
j πjN

(
R̂iDHX|0,Σj

) . (34)

We then compute an empirical GMM distribution

P̂ (z) =

K∑
k=1

π̂k · N (z|0, Σ̂k), (35)

where the empirical Covariances and weights for the different
Gaussians are defined as

Σ̂k =

∑
i Ti,k

(
R̂iDHX

)(
R̂iDHX

)T
∑
i Ti,k

π̂k =

∑
i Ti,k∑
i,k Ti,k

.

(36)

Given the empirical distribution, we aim to calculate its simi-
larity to the local distribution using the Kullback-Leibler (KL)
divergence. Unfortunately, the KL divergence between GMMs
is not analytically traceable and we therefore approximate it
as suggested in [29]. Instead of calculating the exact KL, we
calculate an upper bound of the form

DKL

(
P̂ ||P

)
≤

DKL(π̂||π)+
∑
k

π̂kDKL

(
N (0, Σ̂k),N (0,Σk)

)
.

(37)

The KL divergence for a pair of Gaussians has a closed form
solution, and thus the above bound is simplified into

DKL

(
P̂ ||P

)
≤∑

k

π̂k

(
log

(
π̂k
πk

)
+

1

2

(
tr
(

Σ−1k Σ̂k

)
− log

∣∣∣Σ−1k Σ̂k

∣∣∣)) .
(38)

We shall use the above upper-bound in our experiments to
tune the filter H as to obtain scale-invariance. Rather than
optimizing H in full, we shall sweep over a parametric form of
it, seeking the parameter that minimizes the approximated KL-
distance. More specifically, we will assume H to be a centered
and isotropic Gaussian and search for its optimal width.

V. EXPERIMENTAL RESULTS

A. Scale Invariance

Throughout our experiments we use the GMM model which
was used in [11] for the prior of the original scale. As for
the others scales, we tune their filters such that the model is
unchanged. Assume we restrict our filter H to be a Gaussian
and we are interested in finding its optimal standard deviation,
the one which would lead, as close as possible, to scale-
invariance. We can sweep through a set of standard deviation
values and use Equation (38) as an objective to minimize.
In Figure 5 we present such an experiment and identify the
best standard deviation for down-sampling by a factor of
two and four. We will use these very filters in the denoising
experiments that follow.

Prior to finding the optimal widths using the minimization
of the KL divergence bound, we have searched for these
values by directly optimizing the PSNR performance. The
parameters found by both methods strongly agree, suggesting
that the approximated method of minimizing the bound is
indeed effective.
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Fig. 5: The upper-bound on the KL divergence between the
local model and the empirical distribution as appears in (38)
for varying standard deviations of the blur operator. Left:
down-sampling by factor of two. Right: down-sampling by
factor of four.

B. Image Denoising

We return now to the landscape image presented in Figure
1 in the introduction. One of the motivations for constructing
a multi-scale prior was to remedy the artifacts obtained from
local processing of the image. We present the denoised images
obtained by the EPLL [11] and the proposed algorithm in
Figure 6, showing that indeed artifacts are better treated.
Furthermore, we compute the PSNR of both results in a
sliding window and present the difference between them in
Figure 7. One might expect the multi-scale EPLL to over-
smooth the image content, thus leading to an improvement
in smooth regions and degradation in highly textured areas.
The result shown in Figure 7 shows that this is not the case.
While indeed improving smooth areas, the multi-scale EPLL
is also keeping the good quality of the regular EPLL and even
slightly improves over it. For the multi-scale EPLL we added a
single scale to the standard non-decimated one, which applied
a Gaussian filter of standard deviation 1.5 followed by down-
sampling by a factor of four.

We continue the denoising experiments by testing our
method on a set of 12 standard images5 and comparing the
results to those obtained by the original EPLL. A summary of
the experiments and their results is presented in Table I. For ev-
ery noise level we specify the filters used, the down-sampling
(DS) factors and the weights for the different components.
For most noise levels we use a structure that is similar to a
Gaussian pyramid (i.e. down-scaling the image itself) and only
for the lowest noise level we use a structure which reminds of
a Laplacian pyramid (i.e. operating on the difference between
the image and its down-scaled and up-scaled back). Since the

5The images are: Barbara, Boat, Cameraman, Couple, Fingerprint,
Hill, House, Lena, Man, Montage, Pentagon and Peppers. These are
commonly used in papers dealing with image denoising.

(a) EPLL - PSNR: 33.31

(b) MSEPLL - PSNR: 33.61

Fig. 6: Denoising of a landscape image using the proposed
method and the EPLL for comparison.
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Fig. 7: The difference in PSNR between the EPLL and the
multi-scale EPLL in a sliding window in the image. Notice
how the difference in the PSNR in texture areas such as the
mountains is small. Thus, texture areas are not smoothed.

Laplacian pyramid uses an added high frequency scale, we
train a local high frequency model in a similar fashion to
that of [11]. We extract patches from images which had their
blurred version subtracted from them and afterwards learn a
GMM high frequency model using the EM algorithm6.

6The code used was downloaded from http://www.mathworks.com/
matlabcentral/fileexchange/26184-em-algorithm-for-gaussian-mixture-model.
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σ EPLL MS-EPLL Filter DS Weight

15 32.17 32.30
Identity 1 1
Identity minus Gaus-
sian with σ = 0.6

1 0.2

Gaussian with σ = 0.8 2 0.2

25 29.74 29.89 Identity 1 1
Gaussian with σ = 0.8 2 0.15

50 26.60 26.77
Identity 1 1
Gaussian with σ = 0.8 2 0.05
Gaussian with σ = 1.5 4 0.05

100 23.56 23.80
Identity 1 1
Gaussian with σ = 1.1 2 0.04
Gaussian with σ = 1.7 4 0.05

TABLE I: Average PSNR for the task of denoising of 12
images. The standard deviations of the filters were chosen
based on the previous subsections analysis7. The weights were
tuned by seeking the combination that leads to the best average
PSNR over the data-set.

In Figures 8, 9 and 10 we present examples of denoised
images obtained by the EPLL and multi-scale EPLL. In
addition, in Figure 10 we show the decimated versions of
the denoised images to demonstrate the improvement in the
denoising across all scales which is due to the additional
terms of the multi-scale EPLL. We should note that in terms
of the gain achieved in PSNR over the 12 test images, the
average improvement might not be impressive (0.1-0.2dB).
However, these test images are all relatively small and with
emphasized texture parts, which are not typical of natural
photos. Moreover, the visual improvement, as evident from
Figures 8, 9 and 10 is substantial, something that does not
reflect well in the PSNR results.

Fig. 8: Denoising results for the image Montage corrupted
with a noise standard deviation σ = 15. From left to right:
EPLL (PSNR=34.18), MSEPLL (PSNR=34.42) and original
image.

Fig. 9: Denoising results for the image House corrupted with
a noise standard deviation σ = 25. From left to right: EPLL
(PSNR=32.04), MSEPLL (PSNR=32.34) and original image.

7The filters’ width for the highest noise level are slightly higher than the
ones for the other noise levels. This is because more aggressive filters have
a smoothing effect on the final image, which is needed when we are dealing
with high noise levels.

(a) EPLL - PSNR: 28.61

(b) Multi-Scale EPLL - PSNR: 28.99

Fig. 10: Denoising results for Lena corrupted with a noise
standard deviation σ = 50. Left: denoised image. Top right:
the denoised image filtered and down-sampled by factor of
two. Bottom right: the denoised image filtered and down-
sampled by factor of four.

C. SURE Estimator

In this subsection we demonstrate the nonlinear SURE
estimator presented in the previous section. We denoise an
image, obtained from the Berkeley Segmentation Database
[30], contaminated with noise of standard deviation σ = 25
using multi-scale EPLL and a single added Gaussian scale. We
explore the different weights for the added scale and present
the results in Figures 11 and 12. We compare the results to
the original EPLL and the multi-scale EPLL using the weight
0.15 which was found in the previous subsection.

0 0.2 0.4 0.6 0.8 1

3.4

3.6

3.8

4
·10−4

True MSE
Estimated MSE

Fig. 11: True MSE and estimated MSE using SURE for
different weight values. The estimated MSE was shifted by
a constant such that the graphs overlap. The star marker
highlights the location of the minimum in the graphs.
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Fig. 12: Top: original image. Middle left: noisy image
(PSNR=20.17). Middle right: EPLL (PSNR=34.09). Bottom
left: multi-scale EPLL with the weight optimized over the
dataset (PSNR=34.55). Bottom right: multi-scale EPLL with
the weight optimized using SURE (PSNR=34.72). A linear
contrast stretch was applied on all the magnified areas. The
image obtained using the optimal weight is not presented since
it was found to be almost the same as the one obtained with
SURE.

D. Deblurring

We continue our experiments with image deblurring. We
test our method on a set of 10 standard images8 and compare
the results to those obtained by the original EPLL. The
summary of the experiments is presented in table II. For every
degradation method we specify the down-sampling factors and
the weights for the different components. We should note
that in this part of our experiments we do not use a filter
before down-sampling as we found its omission to lead to best
results9. Notice that the weight w2 is found to be negative for
getting best performance. Discussion on this follows towards
the end of this section. In Figures 13, 14 and 15 we present
examples of deblurred images obtained by the EPLL and
multi-scale EPLL.

8The images are: Barbara, Boats, Butterfly, Cameraman, House,
Leaves, Lena, Parrots, Peppers and Starfish. These are commonly used
in papers dealing with image deblurring.

9At each iteration of the multi-scale EPLL, we reconstruct the decimated
image by patch-averaging. This alone has the effect of a low-pass filter, and
thus, even if no filtering is done explicitly, we still obtain a smoothing effect.

σ Blur EPLL MS-EPLL DS Weight

√
2 Uniform 9× 9 28.74 29.01

1 1
2 -0.25
4 0.02

2 Uniform 9× 9 27.90 28.23
1 1
2 -0.25
4 0.02

√
2

Gaussian with standard
deviation σ = 1.6

29.89 30.16
1 1
2 -0.25
4 0.02

2 Gaussian with standard
deviation σ = 1.6

29.34 29.61
1 1
2 -0.25
4 0.02

TABLE II: Average PSNR for the task of deblurring on 10
images.

Fig. 13: Deblurring results for the image Cameraman blurred
with uniform 9 × 9 filter and corrupted by noise of standard
deviation σ = 2. From left to right: EPLL (PSNR=26.90),
MSEPLL (PSNR=27.38) and original image.

Fig. 14: Deblurring results for the image Barbara blurred with
Gaussian filter with standard deviation σ = 1.6 and corrupted
by noise of standard deviation σ =

√
2. From left to right:

EPLL (PSNR=25.84), MSEPLL (PSNR=26.51) and original
image.

Fig. 15: Deblurring results for the image Parrot blurred with
uniform 9 × 9 filter and corrupted by noise of standard
deviation σ = 2. From left to right: EPLL (PSNR=28.42),
MSEPLL (PSNR=28.89) and original image.
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E. Super-resolution

We conclude our experiments by tackling the super-
resolution problem. To degrade an image, we filter and down-
sample it, and then add noise of standard deviation σ. We test
our method on a set of 9 standard color images10. To treat
the color, we convert the image to the YCbCr color space.
Then, we use bicubic interpolation on the luminance channel
and use the output as an initialization for the super-resolution
algorithm. As for the chroma channels, we use bicubic inter-
polation on the low resolution image. The summary of the
experiments for different up-scale factors and noise levels is
presented in table III. We specify the down-sampling factors
and the weights for the different components used by the
multi-scale EPLL. Similarly to deblurring, in the mutli-scale
EPLL we do not use a filter before down-sampling as we
found this to lead to best results. Here as well, some of the
weights are found to be negative. In Figures 16, 17 and 18 we
present examples of resulting images obtained by the EPLL
and multi-scale EPLL.

Fig. 16: Super-resolution performance comparison on the
image Plant. Scaling factor is 2 and noise standard deviation
is σ = 5. From left to right: EPLL (PSNR=33.90), MSEPLL
(PSNR=35.28) and original image.

Fig. 17: Super-resolution performance comparison on the im-
age Butterfly. Scaling factor is 3 and noise standard deviation
is σ = 5. From left to right: EPLL (PSNR=25.81), MSEPLL
(PSNR=26.88) and original image.

Fig. 18: Super-resolution performance comparison on the
image Bike. Scaling factor is 3 and noise standard deviation
is σ = 5. From left to right: EPLL (PSNR=23.21), MSEPLL
(PSNR=23.80) and original image.

10The images are: Bike, Butterfly, Flower, Girl, Hat, Parrot, Parthenon,
Plants and Raccoon. These are commonly used in papers dealing with image
super-resolution.

Factor σ EPLL MS-EPLL DS Weight

2 5 30.78 31.52 1 1
2 -0.45

3 5 27.80 28.24 1 1
2 -0.4

2 1 32.15 32.68 1 1
2 -0.35

3 1 29.17 29.46 1 1
2 -0.35

TABLE III: Average PSNR for the task of super resolution on
9 images.

F. Negative Weights

Throughout the coarse of searching for the optimal weights
for the different scales in the multi-scale EPLL prior, we have
found in some cases that some weights should be set negative.
A similar phenomenon has been reported in [31], where it
was suggested that denoising filters could benefit from having
negative entries. In this subsection we discuss this intriguing
phenomenon.

Intuitively, when solving the half-splitting optimization we
iterate two steps. In the first, we update the auxiliary patches
zi and ẑi, and in the second, the image is updated by solving
a quadratic problem

X =

(
λATA + w1β

∑
i

RT
i Ri + w2β̂

∑
i

ST R̂i
T
R̂iS

)−1
(
λATY + w1β

∑
i

RT
i zi + w2β̂

∑
i

ST R̂i
T
ẑi

)
.

(39)

The images
∑
iR

T
i zi and

∑
i S

T R̂i
T
ẑi are approximations

of the original image and its blurred version, respectively. By
setting the weight w2 to be negative, we subtract from the
original image its blurred version, thus obtaining a sharpening
effect which aids us in the tasks of deblurring and super-
resolution.

A related explanation originates from the realm of partial
differential equations in image processing. The EPLL method
is an iterative restoration algorithm, and as such, it can
be viewed as a diffusion process. When dealing with the
deblurring and super-resolution problems, plain diffusion is
insufficient since it does not add new details to the already
existing ones in the initial image. To alleviate the problem,
it is possible to use a reaction-diffusion process, also known
as forward-and-backward diffusion [32], [33], [34], [35]. The
forward process denoises smooth regions while the backward
procedure enhances edges and features. Intuitively, the back-
ward diffusion is an attempt to move back in time and reverse
the diffusion process, as to reconstruct the lost features. The
negative weight in our multi-scale EPLL prior can be viewed
as a similar attempt to add a backward diffusion process to the
already existing forward diffusion done by the original EPLL.
By changing the sign of the added scale we attempt to invert
the diffusion and as such enhance the details.

Another interpretation of the negative weights is the fol-
lowing: By assigning the second weight to be negative, our



13

global prior becomes a function of the ratio between the
probabilities of the different scales. This, in turn, means we
do not care about how likely a single scale is, we only care
about how likely the scales are compared to each other. This
observation might lead to a new family of priors which aim to
minimize the ratio, or perhaps even the distance, between the
probabilities of the different scales. Such a global prior might
seek a reconstructed image which obeys the scale invariance
property.

VI. CONCLUSION

Image priors are of utmost importance in image processing
restoration tasks. An example of such a prior is the GMM,
as practiced by the EPLL algorithm. EPLL models a whole
image by characterizing its overlapped patches, forcing every
patch extracted from the image to be likely given a local
GMM model. In this paper we propose a multi-scale EPLL
which imposes the very same patch-based model on different
scale patches extracted from the image. We motivate its use by
looking at the simplified Gaussian case, showing that such an
approach manages to narrow the gap to the global modeling
while preserving the local treatment. We then compare the
proposed method to the original EPLL on the tasks of image
denoising, deblurring and super-resolution, and show a clear
improvement across all tasks.
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