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Spatially-Adaptive Reconstruction in Computed
Tomography using Neural Networks

David Boublil, Michael Elad, Joseph Shtok and Michael Zibulevsky

Abstract—We propose a supervised machine learning approach
for boosting existing signal and image recovery methods and
demonstrate its efficacy on example of image reconstruction
in computed tomography. Our technique is based on a local
nonlinear fusion of several image estimates, all obtained by
applying a chosen reconstruction algorithm with different values
of its control parameters. Usually such output images have
different bias/variance trade-off. The fusion of the images is
performed by feed-forward neural network trained on a set of
known examples. Numerical experiments show an improvement
in reconstruction quality relatively to existing direct and iterative
reconstruction methods.

Index Terms—Computed Tomography, Low-Dose Reconstruc-
tion, Neural Networks, Supervised Learning, Filtered-Back-
Projection (FBP).

I. INTRODUCTION

Computed tomography (CT) imaging produces an attenua-
tion map of the scanned object, by sequentially irradiating it
with X-rays from several directions. The integral attenuation
of the X-rays, measured by comparing the radiation intensity
entering and leaving the body, forms the raw data for the CT
imaging. In practice, these photon count measurements are
degraded by stochastic noise, typically modeled as instances
of Poisson random variables. There are also other degradation
effects due to a number of physical phenomena – see e.g. [1]
for a detailed account.

Given the projection data, known as the sinogram, a re-
construction process can be performed in order to recover
the attenuation map. Various such algorithms exist, ranging
from the simple and still very popular Filtered-Back-Projection
(FBP) [2], and all the way to the more advanced Bayesian-
inspired iterative algorithms (see e.g., [3], [4]) that take
the statistical nature of the measurements and the unknown
image into account. Since CT relies on X-ray, which is an
ionizing radiation known to be dangerous to living tissues,
there is a dire and constant need to improve the reconstruction
algorithms in an attempt to enable reduction of radiation dose.

In this work we are concerned with the question of image
post-processing, following the CT reconstruction, for the pur-
pose of getting better quality CT image, thereby permitting
an eventual radiation-dose reduction. The proposed method
does not focus on a specific CT reconstruction algorithm, nor
the properties of the images it produces. Instead, we take a
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generic approach which adapts, in an off-line learning process,
to any such given algorithm. The only requirement is the
access to design parameters of the reconstruction procedure
which influence the nature of the output image, such as the
resolution-variance trade-off.

We aim to exploit the fact that any reconstruction algorithm
can provide more image information if instead of one fixed
value of a parameter (or a vector of them) controlling the re-
construction, few different values are used (leading to different
versions of the image). In order to extract this information
from a collection of image versions, we use an Artificial
Neural Network (ANN) [5]. The proposed method can also
use other techniques for computing a non-linear multivariate
regression function.

Neural networks have been used extensively in medical
imaging, particularly for the purpose of CT reconstruction
(see Section III for an overview). Here we propose a new
constellation, which consists in a local fusion of the different
image versions, aimed at an improved reconstruction quality.
We use a set of intensity values from a neighborhood of a
pixel q, taken from the different versions, as inputs to the
network, and train it to compute a (smaller) neighborhood of
q which values are as close as possible (in Mean-Squared-
Error or other sense) to those found in the reference image.
As we show in this paper, the proposed approach enables an
improvement of the variance-resolution trade-off of a given
reconstruction algorithm, i.e. producing images with a reduced
amount of noise without compromising the spatial resolution
and without introducing artifacts.

This paper is organized as follows: Sections II and
III are devoted to a brief and general discussion on CT
scan/reconstruction and artificial neural networks. Readers
familiar with these topics may skip and start reading at
Section IV, where the core concept of this work is detailed.
In the sequel, the proposed method is implemented on two
tomographic reconstruction methods: boosting the Filtered
Back-Projection (FBP) is presented in Section V and the
same for Penalized Weighted Least-Squares (PWLS) method is
described in Section VII. We conclude this work by discussing
the computational complexity of the proposed algorithms in
Section VIII, and a summary of this work and its potential
implications in Section IX.

II. BACKGROUND ON COMPUTED TOMOGRAPHY

In this section we briefly describe the CT imaging and
reconstruction processes, assuming two dimensional tomog-
raphy, and set notations for the rest of the paper.
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From the mathematical point of view, in CT imaging the
object is a function f(x) in the plane, which values are
the attenuation coefficients of composing materials. When
the measured photon counts are ideal, the measurements are
directly related to the X-ray transform of f(x) as a collection
of all the straight lines passing through the object, and the
value associated with each such line is the integral of f(x)
along it. Under the assumption of a full rotated and parallel
beam scan, this coincides with the Radon transform Rf .

Let ` be a straight line from an X-ray source to a detector.
The ideal photon count λ`, measured by the detector is related
to Rf via the function

λ` = λ0e
−[Rf ]` , (II.1)

where λ0 is the blank scan count. The scanned data is stored in
a matrix which columns (referred to as projections) correspond
to the sampled angle θ; and are acquired, by a parallel array
of X-rays passing through the object at the corresponding
angle. According to (II.1), for reconstruction purposes the
measurements data undergoes the log transform

g` = −log
(
λ`
λ0

)
. (II.2)

Since g, referred to as the sinogram matrix, is the sampled
Radon transform of the original image, a discrete version of it
can be reconstructed by applying the inverse Radon transform.

Each measured photon count y` is typically interpreted as
an instance of the random variable Y` following a Poisson
distribution Y` ∼ Poisson(λ`) [1], [6], [7].This reflects the
photon count statistics at the detectors [8].

There are various reconstruction algorithms that aim at
computing the attenuation map of the scanned object from
its projections. In this paper we shall refer and work with
two such algorithms: (i) the Filtered Back-Projection (FBP)
[2], which is a direct Radon inversion approach; and (ii)
an iterative Bayesian reconstruction algorithm that takes the
statistical nature of the unknown and the noise into account
(e.g. [3]). Bayesian methods achieve better image quality than
the direct Radon inversion, at the expense of longer processing
time.
Filtered-Back-Projection: This is a linear operator of the
form

TFBP = R∗FlowFRL. (II.3)

R∗ is the adjoint of the Radon transform (back-projection).
FRL is a 1-D convolution filter, applied to each individual
projection, using the Ram-Lak kernel [9], defined in the
Fourier domain by k̂(ω) = |ω|. Flow is a low-pass filter which
prevents noise amplification at high frequencies, typical for
the Ram-Lak action. Without low-pass filter, the FBP is an
exact inverse of the Radon transform in the continuous domain
[10] for the noiseless case. Moving from theory to practice,
the FBP algorithm does not perform very well. The low-pass
filter in the sinogram domain is not an effective remedy for the
projections noise. The problem of photon starvation manifests
through outlier values in the sinogram, which propagate to the
output image in the form of streak artifacts. They corrupt the
image contents and jeopardize its diagnostic value.

Statistically-Based Approach: the relation between f , the
desired CT image, and the vector of measured counts y can
be described as

log

(
y

y0

)
= Af + e, (II.4)

where A approximates the Radon transform and models
the scan process in reality, and y0 is the measured photon
counts without any attenuation. The additive error e (which
depends on f ) stems from the statistical noise. In the Bayesian
framework, the reconstruction is performed by computing the
Maximum a-Posteriory (MAP) estimate of the image

f̃ = arg max
f

P(f |y) = arg max
f

P(y|f)P(f)

P(y)
. (II.5)

For CT, an accurate statistical model of the data is complicated
and is often replaced by a Gaussian approximation with a suit-
able diagonal weighting term whose components are inversely
proportional to the measurement variances. This leads to a
penalized weighted least-squares (PWLS) formulation [11]:

f̃ = arg min
f

∥∥∥∥log

(
y

y0

)
−Af

∥∥∥∥
D

+ βR(f), (II.6)

where ‖u‖D = uTDu, D is a diagonal matrix of weights,
which in simplistic model are proportional to photon counts y.
The penalty term R(f) also referred to as the prior, expresses
assumptions on the behavior of the clean CT image. In [12]
this expression is chosen as

R(f) =
∑
q

∑
k∈N (q)

ψδ(fq − fk), (II.7)

where for each location q, a scalar function ψδ(x) is the convex
edge-preserving Huber penalty

ψδ(x) =


x2

2
, |x| < δ

δ|x| − δ2

2
, |x| ≥ δ

 ,

L-BFGS optimization method [13] is used to minimize (II.6).1

III. ARTIFICIAL NEURAL NETWORKS (ANN)

For completeness of this paper, we provide here a brief
background on ANN, and in particular their role in CT
and medical imaging. ANN, mimicking after the biological
networks of neurons which comprise the nervous system, are
intensively used in many domains of Computer Science. In this
work we focus on the multi-layer feed-forward ANN with no
cycles. This is best represented by a directed, weighted graph
which has an array of input nodes (data inputs), inner nodes
(neurons) implementing specific (linear or non-linear) scalar
functions, and another array of output nodes. Input argument
of each neuron is the weighted sum of all its inputs, where
the weights are associated with the edges. Those weights are
learned during the network training and, effectively, define the
regression function produced by the ANN.

1A Matlab/C code implementation of this algorithm is found in ...., courtesy
of Mark Schmidt.
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More specifically, the first layer consists of m inputs,
coming from the outside world; then Nl neurons are situated
in the l-th layer (l > 1), and the last one contains n output
nodes. Each input xi is connected to each neuron j in the
second (hidden) layer by a weighted edge with weight w1

i,j .
The output of each neuron is connected to the input of every
k-th neuron in the second layer by the weight w2

j,k, and so
on. Finally, each neuron of the last layer is connected to the
output ys with a weight vs,j . We denote by σ the function
implemented in each neuron. There is a number of popular
choices for this function, for instance σ(x) = tanh(x).

For example, here is the explicit definition of a network
with one hidden layer:

y(x;w, v, b) =
∑
j

vjσ

(∑
i

wi,jxj + bj

)
. (III.1)

The weights {w, v, b} define the multi-variable regression
function y = y(x) which approximates any continuous func-
tion implied by the set of training examples2. A training
set for the network comprises of a collection of examples
(Xk, Y k), where Xk is the vector of inputs and Y k is the true
output related to this vector. Training the network consists of
optimizing the weights {w, v, b} for a minimal error,

(w, v, b) = arg min
w,v,b

∑
k=1...K

E
(
y(Xk;w, v, b), Y k

)
, (III.2)

where the sum is over the training set, and E(a,b) is an
error measure of some sort (e.g. E(a, b) = (a − b)2). The
popular method for solution of this problem is the iterative
backpropagation method [15]. A scheme of such network is
depicted in Figure 1.

Figure 1: A scheme of a multi-layer feed-forward ANN.

Since the development of the back-propagation algorithm
for ANN in mid-eighties, the image processing community
(among others) has attained a powerful tool to attack virtually

2The Universal Approximation Theorem states that a network with just one
hidden layer, where each neuron is realized as a monotonically-increasing
continuous function, can uniformly approximate any given multivariate con-
tinuous function up to an arbitrary small error bound [14]. In practice, adding
hidden layers shows an improvement in the ANN performance.

any regression or discrimination task. Among the wealth of
applications neural networks found in this area (see [16] for
a broad and comprehensive overview), some were designed
for medical imaging. As such, Hopfield ANN were used
for computer-aided screening for cervical cancer [17], breast
tumors [18] and segmentation [19]. ANN are also used for
compression and classification in cardiac studies [20] and ECG
beat recognition [21]. Tasks of filtering, segmentation and
edge detection in medical images are addressed with cellular
ANN in [22]. Our group has used neural networks for optimal
photon detection in scintillation crystals in PET [23].

As for reconstruction problems, a series of works has
appeared in which the ANN replaces the overall reconstruction
chain by learning the net contribution of all detector readings
to each pixel in the image. For Electron Magnetic Resonance
(EMR), such an algorithm is proposed in [24]. Floyd et.
al. have used this approach for SPECT reconstruction [25]
with feed-forward networks and also for lesion detection in
this modality [26]. We remark that such naive application
of the ANN for reconstruction is limited to low-resolution
n×n images, since the network must have O(n2) inputs and
outputs. For instance, in [24], a 64×64 image is reconstructed.
Application of ANN for SPECT reconstruction was also
studied by J. P. Kerr and E. B. Bartlett [27], [28].

Imaging modalities like PET and SPECT, where low-
resolution images are produced, are a natural domain for ANN
application. However, some works tackle also the problem of
CT reconstruction where the image size is larger. Ref. [29]
proposes using a neural network structure with training based
on a minimization of a maximum entropy energy function. Re-
construction in Electrical Impedance Tomography was treated
with ANN in [30]. Another variety, an Electrical Capacitance
Tomography and an ANN-based reconstruction method for it,
are described in [31].

Despite the abundance of applications, there is still place
for innovation in the domain of ANN application for medical
imaging. First, the CT reconstruction problem is rarely ap-
proached with this tool due to the high dimensions of raw data
and the resulting images, which render the naive application
of ANN as the black box converting measurements to image
unfeasible. Indeed, in our work we do not propose such a
scheme per se – rather, our ANN is employed to perform
a locally-adaptive fusion of a number of image versions,
produced by a given reconstruction algorithm upon using
different configurations. This brings us naturally to the next
section where we describe our algorithm.

IV. THE PROPOSED SCHEME

A. Local Fusion with a Regression Function

We consider the general setup of the non-linear inverse
problem. Assume we are given the measurements vector y
of the form

y = Hx+ ξ, (IV.1)

where H is some transformation, ξ represents the noise, and x
is the signal to be recovered. Assume further that Tp is some
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restoration algorithm designed to recover x from this type of
measurements, i.e.,

x̄p = Tp(y) (IV.2)

The scalar parameter p controls the behavior of T and
therefore influences certain characteristics of the estimate x̄.
For example, when p is responsible for variance-resolution
tradeoff of the algorithm, the estimate x̄p may be obtained
with different noise levels and corresponding spatial resolution
characteristics.

The described situation is common in many signal/image
processing scenarios. As a basic example, we consider a
simple image denoising algorithm, which recovers the signal
x from noisy measurements y = x + ξ by a shift-invariant
low-pass filter, realized as a 2-D convolution with prescribed
kernel. For some fixed shape of this kernel (say, a simple
boxcar function or a 2-D Gaussian rotation-invariant kernel),
its width (spread) can be parameterized by a scalar variable
p. A wider such kernel will perform a more aggressive noise
reduction, by averaging the noisy signal over a larger area, at
the cost of reducing the spatial resolution.

A second, and more relevant example to this work, is from
the domain of CT reconstruction. Recovery of the attenuation
map is classically performed by the Filtered Back-Projection
algorithm. The latter involves a 1-D low-pass filter, applied
to the individual projections. As in the above example, the
cut-off frequency of this filter controls the variance-resolution
properties of the reconstructed image. In these examples,
and also in a general such situation, no single value for the
parameter p makes the best of the processing algorithm. For
different signals, different values may be optimal in the sense
of MSE or other quality measure. Indeed, in the same image,
computed with two different values of p, different regions
will get the best treatment by different values of p. For
each specific case, ad-hoc considerations for tuning this scalar
parameter are applied.

In the domain of non-parametric statistics, there is a noise
reduction algorithm with proven near-optimality that devises
a switch rule for selecting at each location of the signal an
appropriate local filter [32]. In effect, the signal is processed
by a low-pass filter adaptive to the local signal smoothness. In
the context of our discussion, one can say that this algorithm
performs a fusion of a number of filtered versions of a signal
with varying filter parameter. The switch rule, developed for
this adaptive signal smoothing, is based on the balance of the
stochastic and structural noise components and model assump-
tions, and as such, it is very difficult to devise. Moreover, better
output may be obtained if we allow to use some combination
of the given image versions in each pixel, rather than selecting
one of them alone. To our knowledge, no mathematical theory
offering a descriptive rule for such local fusion is available for
signal estimators, used for denoising or CT reconstruction.

Borrowing from the above switch-rule idea between filters,
the solution we propose for the problem described above is
a local fusion of a sequence of estimates x̄p1 , ..., x̄pN

with
a specific regression function, learned on a training dataset
consisting of similar cases. Among known regression methods,
we choose to work with ANN, due to their strong adaptivity

and generalization properties [5]. The supervised learning is
done with a training set of examples: For each location in the
processed signals, the features (input vector) are sample values
extracted from the corresponding location in the sequence of
reconstructed versions for this signal. The output is a small re-
gion of sample in the desired destination signal. Contemporary
training algorithms employ error back-propagation to optimize
the objective function, measuring the discrepancy between the
correct output values and those predicted by the ANN [15]. In
our work we employ the Caffe Software [33]; the training is
performed using the Stochastic Gradient Algorithm. We have
tested several sizes and depths of ANN and report here only
some of our experiments. We use the function σ(x) = tan(x))
as the activation function.

In this work, the outlined general concept is specialized
to reconstruction algorithms for CT. Specifically, we consider
representatives of the two types of those algorithms: the direct
FBP and the iterative PWLS (Section II) methods. For FBP, we
propose making a sweep over the cut-off frequency of its low-
pass filter in the sinogram domain. This parameter controls
the noise-resolution tradeoff and has a major influence on the
visual impression of the resulting images. For the iterative
PWLS algorithm, a sequence of images is extracted along
its execution by saving a version of the CT result every few
iterations. Along the way, we discuss the choice of training
set and design of features extracted for the ANN.

B. Error Measures

Just before we conclude this section and move to present
the specific details of boosting CT reconstruction algorithms,
we should discuss the choice of the error function to use in the
learning process, and the error measure to use when evaluating
the quality of the reconstruction.

Training Error
In the supervised learning procedure, we design the ANN

weights so as to minimize the regression error between the
ANN output and the desired outputs (training output data).
In many cases, the natural choice for this function would be
the Mean-Squared-Error (MSE). However, in CT, we should
contemplate whether MSE is the proper choice to use. Con-
sider a homogeneous region in a CT image (corresponding
to some tissue) with a small detail of a different yet similar
intensity (a cavity or a lesion). The MSE penalty paid by
an over-smoothing reconstruction filter that blurs this lesion
is small, and therefore such faint details may be lost while
leading to better MSE. The remedy for this problem could
be to penalize not only for the difference in intensity values
between the reference image f0 and the reconstruction f̃ ,
but also for the difference in the derivatives of these two
images. Alternatively, we can weight the training examples
so as to boost the importance of such faint edge regions, at
the expense of more pronounced parts of the image, where the
edges are sufficiently strong. This is a simple weighted MSE.
In our work we chose to work directly with the MSE objective
despite the above delicate matter, leaving the treatment of
faint edges as future work direction. We should note that we
do take into account the existence of many ”empty” patches
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that are uninformative and may divert the training process.
We handle this by randomly choosing a certain amount of
examples among a very large set, with probability proportional
to the accumulated gradient value. This way, the training is
made on the most informative patches.

Quality Assessment
The quality measures of CT images used in this study, are

the following:
• Signal-to-Noise Ratio (SNR), defined for the ideal sig-

nal f and a deteriorated version f̂ by SNR(f, f̂) =
−20log10(‖f − f̂‖2/‖f‖2). In practice, we consider the
signal f̂ up to a multiplicative constant and compute

SNR(f, f̂) = max
α
−20log10(‖f−αf̂‖2/‖f‖2). (IV.3)

To make the error measurement more meaningful, the
SNR is only computed in the image region where the
screened object resides, ignoring the background area.
We have used an active contour technique to find the
object region in the image; specifically we have used the
Chan-Vese method [34].

• Windowed Signal-to Noise Ratio. The dynamic range of
the HU values in a CT image is very large, from −1000
for air to 1500 − 2000 for bones. Often, the diagnostic
interest lies in the soft tissues, the HU values of which
are near zero (HU of water). For axial sections of thighs,
we chose (by a criterion of best visibility ) the window of
[b1 = −220, b2 = 350] HU; our algorithms are tuned for
best reconstruction in this HU range. Therefore, an ap-
propriate SNR measurement considers only the regions in
the image that fall in this range. Technically, the reference
image f and the noisy image f̂ are pre-processed before
the standard SNR is computed by projecting values lower
or higher than b1 and b2 respectively to these values.

• Structured Similarity (SSIM) measure [35]. This mea-
sure of similarity between two images comes to replace
the standard Mean Squared Error (the expression ‖f−f̂‖2
appearing in the SNR formula), which is known for its
problamatic correlation with the human visual perception
system (see [35] and the references 1-9 therein). SSIM
compares small corresponding patches in the two images,
after a normalization of the intensity and contrast. The
explicit formula involves first and second moments of
the local image statistics and the correlation between the
two compared images. In our numerical experiments, we
use the Matlab code provided by the authors of [35],
which is available at https://ece.uwaterloo.ca/∼z70wang
/research/ssim.

V. FBP BOOST – ALGORITHM DESIGN

A. The Scanning Process Model

The ANN needs to be trained on examples which will define
the regression inputs and targets. These examples should
be composed of several pairs of high-quality images and
corresponding corrupted sinograms. In order to build these
pairs, original clean CT images are taken (corresponding to the
attenuation map of scanned bodies), and the scanning process

model is simulated on them to produce corrupted sinograms.
The reconstruction algorithms described above are used to
get the corresponding ”corrupted images”. The sinogram is
obtained by applying a discrete Radon transform on the
original image, the resulting matrix is used to compute the
expected photon count according to Equation II.1, this way we
obtain the ideal photon count λ`. Then each photon count y`
is generated using the Poisson distribution Y` ∼ Poisson(λ`)
and finally a white Gaussian noise is added. By controlling
the levels of the noise, we tune the level of corruption in our
raw data.

B. The Low-Pass FBP Filter Parameters

The method of local fusion, advocated in the previous sec-
tion, is now applied to the standard Filtered Back-Projection
(FBP) algorithm for CT reconstruction. The fusion is per-
formed over the parameters of the low-pass sinogram filter,
applied before the Back-Projection. This one-dimensional low-
pass filter is realized as a multiplication with the Butterworth
window H in the Fourier domain, defined by

|Ĥ(ω)| =

(
1 +

(
ω

φ0

)2p
)−1/2

. (V.1)

We sweep through the range of the parameter φ0 (express-
ing the cut-off frequency of the filter), thus changing the
resolution-variance tradeoff of the FBP. We also change the
parameter p, which controls the steepness of the window roll-
off. While φ0 controls the amount of blur introduced during
the reconstruction, the parameter p influences the texture of
reconstructed image.

In Figure 2 we show the reconstruction for a fixed value
of p = 3 and an increasing cut-off frequency φ0. Visually,
the strong low-pass filter produces a cleaner image (which
also have a higher SNR), but looses in the spatial resolu-
tion. The displayed sequence corresponds to values φ0 =
[0.4, 0.8, 1.15, 2.0, 120,∞] (the last corresponds to no filter).

Figure 2: FBP reconstruction with different cut-off fre-
quency value. Top to bottom, Left to right: φ0 =
[0.4, 0.8, 1.15, 2.0, 120,∞] (the last image is compute without
the low-pass filter).

In order to perform an effective fusion we have to choose
several FBP images with different characteristics, some blurier
and some noisier but sharper, this way the ANN will smartly
merge these and benefit from the best properties of all of
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them. In this context, the ANN can be regarded as a pow-
erful non-linear/adaptive filter applied to all the FBP images,
such that the local fusion is dependent on the specific patch
being processed. In order to define coarsely the filters cut-
off frequencies, the projections frequency content is analysed
on several images, however the fine-tuning is performed
empirically: visually and quantitatively. After testing various
combinations, we chose to use only three FBP images with
cut-off frequencies φ0 = [0.4, 2,∞] and p = 3. The first one
will be the blurier image as the filter is more agressive; the
last is not using any filter and thus it is expected to be noisier
but sharper. The middle option gives a good compromise (and
will generally get better performances) between the two. Those
were selected from eight images – three with the frequencies
φ0 = [0.4, 0.8, 1.15] and p = 1, other three images with the
same frequencies and p = 3, and the last two are obtained
with φ0 = [2.0, 120] and p = 3. The reason for the restriction
to three images arises from the ANN size restriction.

C. Design of The ANN Fusion and Training Setup

Let f̃1, ..., f̃K be a given set of versions of a CT image,
reconstructed by FBP with different low-pass filters in the
sinogram domain.3 We describe the fusion procedure used to
compute the output image f̂ of the algorithm:
• For each location q in the image matrix, extract its patch 4

neighborhood from each of the K images f̃i, i = 1, ...,K.
For our experiments the patch size is set to 7× 7.

• Compose a set of inputs for the ANN by stacking the
pixel intensities from the K neighborhoods into one vec-
tor. Normalize this vector in the training stage (discussed
below).

• Apply the ANN to produce a set of output values, which
are the intensity values in the patch neighborhood of q
in the image f̂ . The output patch size is set to 3× 3.

• By this design, each pixel in the output image is covered
by 9 patches; its final value is computed by averaging all
those contributions.

We detail now on the several of the steps in the list above.
In the training stage, the neural network is tuned to minimize
the discrepancy between true values in each output vector and
those produced by the network from the set of noisy inputs.
A vector of inputs is built, as described above, for a location
q in a reference image f from a training set, using data from
noisy reconstructions. The corresponding vector of outputs is
the patch neighborhood of q in the reference image. Thus, for
each image f we produce the set f̃1, ..., f̃K (as said above,
k=3 in our case) using pre-defined FBP filters and sample
them to build the training dataset. The image is sampled on a
cartesian grid, choosing every second pixel q both in horizontal
and vertical directions. The pair of input and output vectors for
the neural networks is an example used in the training process.
Examples from all the training images f are put in one pool.
Among all these examples 30, 000 are randomly chosen, a

3Note that all these images are produced from the very same raw sinogram,
which means that the patient is exposed to radiation only once.

4Note that we use square patches, but disk-shaped patches may be used as
well.

higher probability of selection is given to patches containing
higher gradients on average. This way the too smooth (and
non useful) patches are discarded with high probability, as
these generally correspond to regions of air (since no constant
patch in any kind of tissue can be observed in the noisy FBP
images), and the training is mainly performed on high variance
patches. This step leads to an empirical improvement in the
performance of the ANN.

It is generally acknowledged, that data normalization im-
proves performance of neural networks [36]. Our data matrix
A, which columns are the individual example vectors, is
normalized by

A⇐ A−min
i

(A(i)) and then A⇐ A/max
i

(A(i)). (V.2)

The two constants α1 = mini(A(i)) (the minimum value
of the matrix A) and α2 = 1/maxi(A(i)) are stored along
with the weights of the neural network, and the new data
matrix in the test stage is transformed with those pre-computed
constants.

Given intensity values in the neighborhood of a pixel q
in several noisy images, the network should predict a single
value in this pixel for the fusion image. However, as a step of
regularization, we design the ANN to produce a vector output
which is interpreted as a small neighborhood of q. the fusion
image is then built from such overlapping patches, which are
averaged to produce the final result. This is done to avoid
possible artifacts, which can be produced by the network:
in the training stage, if the ANN produces a single outlier
intensity value, its penalty will be smaller than of a vector
of such incorrect intensities. Such regularization reduces the
performance the ANN can achieve on the training set, since
more equations are imposed, but its performance on test
images is expected to be more stable.

A summary of the whole process: training data preparation,
ANN training and application is given in Algorithm 1.

VI. FBP BOOST – EMPIRICAL STUDY

In this section we show emperical results of the FBP
boosting. In the first part we present some results obtained
when the fusion is applied on several images, then we show
that even when applying the ANN on a single FBP version
(single image fusion), a significant improvement is obtained.

A. Evaluating the Algorithm Performance

In the experiments we have used sets of clinical CT images,
axial body slices extracted from a 3D CT scan of a male and
female head, thorax and abdomen. The images are courtesy
of the Visible Human Project [37]. The intensity levels of
those grayscale images correspond to Hounsfield Units. The
training set comprises of twelve 461 × 461 male abdomen
sections. The test is performed on four different images taken
from the male abdomen (about 10 cm away from the region
from which the training data was taken), thorax and head and
from the female abdomen. We have performed experiments
using different sizes and depths of ANN, and we shall focus
our report on two specific examples: a 3 hidden layers ANN
and a 7 hidden layers ANN, each comprises of 20 neurons.
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Algorithm 1 ANN boost of FBP.
1) Create training data based on M clean CT images:

For every training image:
a) Simulate low count CT sinogram with combined

Poisson and Gaussian noise.
b) Reconstruct the image from the simulated sino-

gram using FBP with K low-pass filters.
c) From the set of all overlapped patches randomly

extract a subset of patches for training, with prob-
ability proportional to the average gradient norm
in the patch (in order to better treat edges).

d) Central regions of the corresponding clean patches
are extracted to form output training data.

e) Normalize the data according to equation V.2.
2) Train ANN with e.g. stochastic gradient descent using

the above training data.
3) Image fusion with ANN:

a) Perform K reconstructions with the same low-pass
filters as in the training.

b) ANN application: for each pixel do
• Normalize the data according to equation V.2.
• Apply trained ANN.
• De-normalize using stored α1 and α2 (V.2).
• Position each patch in its place: each estimated

pixel is computed by averaging over all the
contributions.

For the shallower ANN, 30, 000 patches are extracted to be
used as training set, while for the deeper one 100, 000 patches
are used. These quantities suffice to avoid over-fitting for the
chosen sizes of neural networks. The vector of features for
each example is built from the pixel neighborhood of size 7×7,
coming from the three corresponding FBP reconstructions. We
have used this input patch size as it is leading to the best
results while using a reasonable amount of training examples
and iterations. As said before, these input images are a subset
of the 8 FBP reconstruction results, seeking for the subgroup
that would perform the best. The size of the input vector is
thus 3× 49 = 147 entries. The output vector is built from the
pixel neighborhood of size 3× 3 of the clean version.

In Figures 3 and 4 we present a reconstruction of 2 different
test images: female abdomen and male head. The top middle
and right images are the result of a fusion of the number of
FBP versions, performed with the trained ANN’s. By visual
impression, the noise-resolution balance in the fused images f̂
is better than in any of the FBP versions feeding the process.
The texture of the tissues is closer to the original (observed in
the reference image, top left). The level of streaks and general
noise are lower than in the central and right FBP images, and
the image sharpness is higher than in the left and the central
images. Thus, the fusion images enjoy the good properties
offered by each of the FBP versions and are superior to all of
them. The deeper ANN (top right) leads to better performance
in SNR and SSIM (reported in Table I) but the differences are
difficult to see by the naked eye.

The quantitative error measures we compute for this com-

Figure 3: Female abdomen section. Top left: reference image.
Top middle: the shallow ANN fusion result (SNR=25.36dB).
Top right: the deep ANN fusion result (SNR=25.68dB). Bot-
tom : FBP images participating in the fusion, produced with
different low-pass filters (SNR=18.52, 20.1 and 23.11dB).

Figure 4: Male head section. Top left: reference image. Top
middle: the shallow ANN fusion result (SNR=27.23dB). Top
right: the deep ANN fusion result (SNR=27.35dB). Bottom:
FBP images participating in the fusion, produced with different
low-pass filters (SNR=22.89, 26.44 and 19.26dB).

parison include plain SNR, SNR windowed (SNRW) and the
SSIM measures. These values are given in Table I. As can
be seen, the fusion results’ SNR is significantly higher, when
compared with the best attainable FBP outcome. Specially,
for the abdomen (male and female) and thorax sections, the
improvement is above 1.75dB. The deeper ANN brings a
further improvement of up to 1dB. Finally, the SSIM measure
supports the above conclusions regarding the superiority of the
fusion results.

We also compare two cases of output vectors produced by
the ANN. In the bottom row of Figure 5, the image on the
right is produced by a fusion process where a single pixel is
recovered by the ANN for each input vector. The image on the
left is produced by computing 3 × 3 pixel neighborhoods of
each pixel and averaging the overlapping regions. The visual
difference between the two is negligible, and the difference in
SNR is 0.09dB in favor of the averaging approach. Judging
from this (and other similar) tests, we conclude that forcing
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Image FBP FBP FBP Fusion Fusion result
φ0 = 0.4 φ0 = 2 φ0 = ∞ result (Deep ANN)

Abdomen
(male)
SNR 21.73 24.51 18.60 26.27 27.27
SNRW 21.91 23.90 19.28 26.81 27.64
SSIM 0.8060 0.7649 0.5308 0.8727 0.9039
Abdomen
(female)
SNR 20.10 23.11 18.52 25.36 25.68
SNRW 21.30 24.09 19.26 26.36 26.50
SSIM 0.8009 0.7952 0.5944 0.8727 0.8803
Thorax
(male)
SNR 21.66 23.97 19.05 25.74 26.65
SNRW 21.84 24.57 19.74 26.20 27.01
SSIM 0.8272 0.8141 0.6137 0.8831 0.9068
Head
(male)
SNR 19.26 26.44 22.89 27.23 27.35
SNRW 19.31 27.69 25.29 27.84 28.24
SSIM 0.9198 0.9307 0.8094 0.9419 0.9522

Table I: Quantitative measures for the FBP reconstructions and
the fusion result. Best results are shown in bold.

Figure 5: Thighs section. Top left: reference image. Top
right: best-SNR FBP reconstruction (SNR=23.65dB). Bot-
tom left: fusion result where ANN output size is 9 pixel
(SNR=27.95dB). Bottom right: a fusion result where the ANN
produces a single pixel value (SNR=27.86dB).

the neural networks to evaluate a number of pixels in the
neighborhood of the one being recovered does not reduce its
performance. Our extensive tests suggests that ANN with a
single pixel output is sufficient, and does not lead to excessive
artifacts.

B. Single-Image “Fusion”

A special case of the proposed method is to perform local
processing with the ANN using only one FBP image. This,
in fact, is a post-processing algorithm based on a regression
function, which implements some non-linear local filter. In
the following experiment we compare the performance of two

Figure 6: Thighs section. Top Left: reference image. Top
Right: Best FBP version (SNR=25.25dB).Bottom Left: ANN
fusion of a single FBP image with no sinogram filter,
(SNR=28.35dB). Bottom Right: ANN fusion of three FBP
versions, corresponding to filter cut-off frequency of φ0 =
[0.4, 2,∞] (SNR=28.60dB).

fusion methods, one using three FBP images (sharp, normal
and blurred) and another using only one FBP image produced
with no low-pass filter. The results are displayed in Figure
6. Visually, in the single-image fusion some strong artificial
streaks are observed, which do not appear in the multi-image
fusion. Quantitatively, the SNR and the SSIM are also higher
using the multi-image fusion. However, it is clear that in
comparison to the best FBP version, even using the single
image fusion leads to an improvement of more than 3dB in
this example.

Since the single image processing done here may be inter-
preted as a post-processing stage on the FBP output, one may
wonder if ”classical” image denoising algorithms could be of
competition to the approach taken in this work. In Figure 7 we
compare a single-image fusion result with a denoising on an
FBP image using the well known BM3D. We have used the
matlab code provided by the authors of [38], which is available
at http://www.cs.tut.fi/ foi/GCF-BM3D/. BM3D algorithm was
applied on several reconstructed FBP images corresponding to
different filter cut-off frequency, only the best result is shown
here. As the noise variance is one of the input to the BM3D
algorithm, several values were tested and the optimal one was
chosen. We can see that the single-image fusion outperforms
the BM3D result both visually and in term of SNR. In the
BM3D image, strong artifacts are observed and the image is
oversmoothed. This conclusion was expectable as the BM3D
algorithm is efficient in removing white and additive Gaussian
noise while here the corruption process in much more complex
and leads to colored noise as well as structured artifacts. On
the other hand, the ANN is trained to remove precisely these
kind of corruptions and indeed leads to significantly better
results.
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Figure 7: Thighs section. Top Left: reference image. Top
Right: FBP image after BM3D denoising (SNR=27.56dB).
Bottom Left: ANN fusion of a single FBP image with no sino-
gram filter (SNR=28.71dB).Bottom Right: Deep ANN fusion
of a single FBP image with no sinogram filter (SNR=29.03dB).

VII. PWLS BOOST - ALGORITHM DESIGN AND
EMPIRICAL STUDY

A. Algorithm Description

The iterative PWLS algorithm (see Section II) can be
boosted by gathering intermediate versions of the image at
different numbers of iterations and fusing them using a trained
ANN. We should emphasise that the proposed approach is one
of post processing nature, implying that there is no feedback
loop returning the neural network output back to the iterative
reconstruction process. Introducing such feedback is indeed
interesting, but outside the scope of this article. The idea is
to capture the gradual transformation of the image from the
initial to the final state. If the initial image is a blurred one,
it gradually changes along the iterations towards a sharper
version; the intermediate stages contain important information
that can contribute to further improve the algorithm output.
The fusion can also be performed over the parameter β – the
weight of the penalty term (see Equation II.6), but this requires
to run the iterative algorithm several times, which can be time
consuming.

The method is very similar to the one proposed in the
previous section. At the training stage, a CT reconstruction is
performed with a high-quality reference at hand. The examples
for ANN training are produced in the following manner: the
vector of inputs, corresponding to a location q in the image, is
assembled using neighborhoods of q in the different versions
of the image, gathered along the PWLS iterations, or obtained
using different penalty term weights. Specifically, we take a
small neighborhood of pixels from each image in this sequence
(see details below). The “correct answer”, corresponding to
this vector of ANN inputs, is the value of the pixel q in the
reference image. In the PWLS reconstruction the initial image
could be a zero image or an image already reconstructed using
the FBP algorithm, and both options are explored in the next
section. The evolution of the SNR (measured on a male ab-
domen section) along the PWLS iterations is shown in Figure
8, the different graphs correspond to different penalty term

Figure 8: SNR evolution along PWLS iterations (measured
on a male abdomen section). Top: Zero image initialization.
Bottom: FBP image initialization.

weights β and the two possible initializations. Obviously, the
initialization with zeros is simpler and less time consuming,
and although both lead to very similar reconstruction results
as can be seen in the graphs, the fusion results are better using
the FBP initialization. Actually, the reconstruction process is
quite different, in the first case it starts from all zeros and the
image becomes sharper and sharper along the iterations while
in the second case it starts from a noisy version and becomes
smoother and smoother.

B. PWLS Boost - Empirical Study

We conducted numerical experiments to demonstrate the
proposed method using the same setup as in the FBP ex-
periment. Training data for the ANN was obtained using a
data-set of 12 axial male abdomen section images, and the
model is tested on images from the male abdomen (10 cm
away from the training region), thorax and head and the
female abdomen. We will show results using zero image and
FBP initializations. In the second case, an initial image f̃ is
computed with the FBP algorithm using a sinogram filter with
cut-off frequency value of 2.0 (see Figure 2). The PWLS
algorithm is implemented as described in Section II, with
δ = 0.02. We have tested different values of the penalty term
weights β = [8e − 5, 1e − 4, 2e − 4, 5e − 4], and for each
we have performed 400 PWLS iterations, saving an image
version every 20 iterations – overall we have a sequence
of 80 images. In practice, as done earlier in the context of
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the FBP fusion, we use three images out of this sequence,
and the way to choose them is empirical – the goal is to
collect image versions with different characteristics (smoother,
noisier but sharper). We have tested several configurations
and we report here on several interesting combinations. As
mentioned previously, fusing images obtained using different
penalty weights generally lead to better performance but this
approach is more complex. Patches of size 7×7 are extracted
from the three images and are used for the estimation of the
output pixel neighborhood of size 3 × 3. Overall, the ANN
has 3× 49 = 143 inputs, and as for the FBP fusion, we have
used different sizes and depths of ANN. We report the results
obtained with two configurations - 3 and 7 hidden layers, each
containing 20 neurons. These settings were obtained with a
manual tuning of the design parameters.

In Figure 9 we display the fusion result obtained collecting
versions along one PWLS reconstruction (using β = 8e − 5)
when the initial image was the FBP version. The fusion results
have a higher visual quality than the three input images.
Comparing to those images, the noise level in the fusion
image is the lowest, and the tissue texture is closer to the
original. The SNR values (stated in the Figure) also point to
the improvement in quality. The SSIM of the fusion images
are 0.9121 and 0.92 for shallow and Deep ANN respectively,
while the sequence of PWLS results have the SSIM values of
0.7419, 0.8166, 0.8598 (corresponding to the bottom row of
Figure 9, left to right).

Figure 9: Images of abdomen section. Top row, left to
right: reference image, ANN-fused PWLS with shallow
ANN (SNR=28.20dB), ANN-fused PWLS with deep ANN
(SNR=28.15dB). Bottom row: three PWLS versions (20 it-
erations, SNR=22.92, 100 iterations, SNR=25.07dB, 400 iter-
ations, SNR=26.36dB).

A reconstruction of an additional test with zero initializa-
tion is displayed in Figure 10, the bottom part presents the
absolute-value error images. The effect of the fusion observed
here is similar to the one in the previous reconstruction, and
in particular the noise effect and the texture are much closer
to the original.

Table II reports the quantitative error measures for several
different images. The first column shows the best PWLS
results (after 400 iterations), the second column reports the

Figure 10: Male head section. Top Row: Left to right: refer-
ence image, the best PWLS version (SNR=26.72dB), ANN-
fused PWLS with deep ANN (SNR=28.91dB). Bottom Row:
absolute-value error images for the best SNR PWLS (left) and
for the fusion image (right).

fusion result when the PWLS algorithm was initialized with a
zero image (images were collected after 160, 260 and 400
iterations), and the third column reports the fusion results
when PWLS was initialized with an FBP version (images were
collected after 20, 100 and 400 iterations). Both shallow and
deep ANN results are reported. As can be seen, the fusion
results always outperform the best PWLS reconstruction, with
at least 0.8dB of improvement in SNR. The SSIM also
support this conclusion. As mentioned previously, using an
FBP initialization generally leads to better performance (true
for all the images except from the head section). Obviously
this approach is slightly more complex as the FBP construction
needs to be computed before running the iterative process. If
the PWLS algorithm can be ran several times with different
penalty weights, fusing the different images (obtained after
convergence) can lead to slightly better performance, but these
improvements are of the order of few hundredth of dBs and
are hard to see with the naked eye.

The ANN-based fusion can also contribute to the iterative
reconstruction, without requiring to run it until convergence.
Indeed, collecting images along the first iterations and fusing
them with the presented model can shorten the reconstruction
process significantly while preserving (or even improving) the
results quality, as the fusion computional cost is lower by
an order of magnitude than that of the iterative process. In
Figure 11 the test is performed on another male thorax section,
three versions are collected after 20, 40 and 60 iterations (Top
images) and fused (Bottom right). The result is compared to
the outcome of the whole iterative process after convergence
(Bottom middle). In this example fusing images obtained
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Image PWLS Fusion Result Fusion Result
400 iters. (init. with zeros) (init. with FBP)

Shallow/Deep Shallow/Deep
Abdomen section
(male)
SNR 26.36 27.69 / 28.40 28.15 / 28.60
SNRW 27.17 28.22 / 28.83 28.63 / 28.95
SSIM 0.8600 0.8999 / 0.9192 0.9121 / 0.923
Abdomen section
(female)
SNR 25.19 26.07 / 26.52 26.35 / 26.63
SNRW 26.19 26.76 / 27.11 27.03 / 27.25
SSIM 0.8565 0.8870 / 0.8982 0.8939 / 0.8995
Thorax section
(male)
SNR 25.64 26.98 / 27.55 27.71 / 27.88
SNRW 26.41 27.48 / 27.96 28.10 / 28.23
SSIM 0.8686 0.9047 / 0.9196 0.9210 / 0.9254
Head section
(male)
SNR 26.72 28.5 / 28.91 28.15 / 29.02
SNRW 28.94 29.75 / 29.81 28.99 / 30.12
SSIM 0.919 0.9575 / 0.9692 0.9653 / 0.9723

Table II: Quantitative measures for the PWLS reconstructions
and the fusion results. Best results are shown in bold.

after only 60 iterations outperforms the result of the whole
iterative process. Visually the fusion result is less noisy, the
sharpness is quite similar, and obviousy the run time is reduced
significantly. For this test the PWLS algorithm was initialized
with an FBP version; initializating it with a zero image will
naturally require more iterations to get a satisfying result.

Figure 11: Top part: three PWLS versions (20, 40 and 60
iterations). Bottom part: original, PWLS after convergence
(400 iterations) SNR = 26.40dB and fusion result SNR =
28.09dB.

C. Single-Image “Fusion”

As a last experiment, we consider the special case where the
ANN only performs a local filtering of a single image. The
fusion (in fact, post-processing) result is visually compared
in Figure 12 versus the image produced by fusing 3 PWLS
versions, as before. It can be observed that working with a
single input reduces the noise appearing in the PWLS image,

but it is slightly inferior to the fusion image produced from
several PWLS versions. In table III, the results of fusion over
3 images obtained at early iterations (20, 40 and 60 iterations)
is compared with single-image fusion for several images and
with the result obtained after PWLS convergence (after 400
iterations). For all these images the fusion results outperform
(both in terms of SNR and SSIM) the result obtained by the
plain PWLS.

Figure 12: Left to right: PWLS image (60 iterations,
SNR=26.02dB), single-image fusion (SNR=27.25dB), multi-
image fusion (SNR=27.44dB).

Image PWLS PWLS Fusion result
20 / 40 / 60 iters. 400 iters. Single / Full

Abdomen
(male)
SNR 22.92 / 23.26 / 23.77 26.36 27.61 / 28.03
SSIM 0.7419 / 0.7539 / 0.7721 0.8599 0.9158 / 0.9193
Abdomen
(female)
SNR 22.51 / 22.79 / 23.22 25.19 25.83 / 26.16
SSIM 0.7752 / 0.7838 / 0.7967 0.8565 0.8915 / 0.8958
Thorax
(male)
SNR 23.41 / 23.84 / 24.27 25.64 27.72 / 28.16
SSIM 0.7971 / 0.8084 / 0.8206 0.8686 0.9358 / 0.9393
Head
(male)
SNR 26.27 / 26.46 / 26.62 26.72 27.67 / 27.92
SSIM 0.9176 / 0.9178 / 0.9180 0.919 0.9716 / 0.9721

Table III: Quantitative measures for the PWLS reconstruction
and fusion on early iterations. Best results are shown in bold.

VIII. COMPUTATIONAL COMPLEXITY OF THE METHOD

In our experiments neural network with four hidden layers
and 20 neurons in each layer, had about k = 5600 weights, i.e.
we perform this number of summations and multiplications per
reconstructed pixel. This is comparable to the computational
cost of FBP or to a single iteration of PWLS reconstruction,
when image size is 512× 512.

In terms of actual run-time, we have measured that a
single PWLS iteration takes 0.42sec on average, the FBP
reconstruction requires 0.14sec and the application of the
trained four hidden layers Neural Network is taking 0.21sec.
All these were obtained using Matlab code on a 8-core @3.4
GHz PC with 16 GB RAM.

When our method is used with the FBP reconstruction, a
number of FBP versions must be produced; in our experiments
three reconstructions suffice. Therefore producing the fusion
image will require roughly four times the extent of a single
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reconstruction (three FBP processes and the fusion step).
Of course, the regular FBP image will be available for the
radiologist after the usual time of a single FBP reconstruction.

As for the iterative PWLS algorithm, no changes in the re-
construction process are needed, since we only sample images
along the standard iterations. The neural network fusion adds a
cost comparable to one iteration, however, as we observe in the
experiments, the high quality reconstruction is obtained after
60 iterations instead of 400, which saves the time significantly.

IX. SUMMARY

We have introduced a method for quality improvement for
a general parametrized signal estimator. The concept is to
use a regression function for a local fusion of a number
of estimator’s outputs, corresponding to different parameter
settings. The regression proposed is realized with feed-forward
artificial neural networks. The fusion process consists of two
components: first, the behavior of the signal in its different
versions is gathered; second, the ANN performs its own non-
linear filtering of the signal versions in small neighborhoods
of the estimated pixel.

The proposed method is very general and CT reconstruction
is only one possible application for it. The local fusion can
be used to solve any linear on non-linear inverse problem
where an algorithm, producing a solution estimate, exists.
The proposed method will enable to incorporate the algorithm
outputs, produced with different values of a core parameter,
to a single improved result, thus removing the need for tuning
this parameter.

In this work this concept was illustrated for the case of
CT reconstruction, done with two basic algorithms – the FBP
and the PWLS. Empirical results suggest that the local fusion
can improve on the resolution variance trade-off of the given
reconstruction algorithm, thus adding to the visual quality of
the CT images. The post-processing method is not very time-
consuming, and the cost of the local fusion can be well below
the extent of one FBP reconstruction.
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[36] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller,
“Efficient backprop,” in Neural networks: Tricks of the trade, pp. 9–50.
Springer, 1998.

[37] Ackerman M J, “The visible human project,” Proc. IEEE 86 504-11,
1998.

[38] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen
Egiazarian, “Bm3d image denoising with shape-adaptive principal
component analysis,” in PROC. WORKSHOP ON SIGNAL PROCESS-
ING WITH ADAPTIVE SPARSE STRUCTURED REPRESENTATIONS
(SPARS09, 2009.


