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Abstract— Single image interpolation is a central and exten-
sively studied problem in image processing. A common approach
towards the treatment of this problem in recent years is to
divide the given image into overlapping patches and process
each of them based on a model for natural image patches.
Adaptive sparse representation modeling is one such promising
image prior, which has been shown to be powerful in filling-in
missing pixels in an image. Another force that such algorithms
may use is the self-similarity that exists within natural images.
Processing groups of related patches together exploits their
correspondence, leading often times to improved results. In this
paper we propose a novel image interpolation method which
combines these two forces – non-local self-similarities and sparse
representation modeling. The proposed method is contrasted with
competitive and related algorithms, and demonstrated to achieve
state-of-the-art results.

Index Terms—Image restoration, super resolution, interpola-
tion, nonlocal similarity, sparse representation, K-SVD.

I. INTRODUCTION

S INGLE1 image super resolution is the process of recon-
structing a High-Resolution (HR) image from an observed

Low-Resolution (LR) one. Typical applications include zoom-
in of still images in digital cameras, scaling-up an image
before printing, interpolating images to adapt their size to high
resolution screens and conversion from low-definition to high-
definition video. The image interpolation problem, which is
the focus of this paper, is a special case of single image super
resolution, where the LR image is assumed to be a decimated
version (without blurring) of the HR image. This is an inverse
problem associated with the linear degradation model

y = ULx, (1)

where y ∈ Rr×c is the observed LR input image, x ∈ RrL×cL

is the unknown HR image, and UL is a linear down-sampling
operator of size rc × L2rc, decimating the image by a factor
of L along the horizontal and vertical dimensions. Note that
x and y are held in the above equation as column vectors
after lexicographic ordering. A solution to this interpolation
problem is an approximation x̂ of the unknown HR image x,
that coincides with the values of y on the coarse grid.
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1This paper concentrates on the single image interpolation problem, which
is substantially different from the classical super-resolution task, where a
group of images are fused to form a higher resolution result [1]–[3].

The extensive work of single image super resolution divides
by the assumptions made on the data creation model — which
blur, if at all, is assumed as part of data creation, and whether
these measurements are contaminated by noise, and if so,
which noise is it. Often times, an algorithm developed for
super-resolving an image with one set of assumptions is found
less effective or even non-relevant when turning to a different
data model assumption. This is especially so when dealing
with the image interpolation problem – the case of no blur
and no noise. Algorithms tailored for this problem are typically
very different from general-purpose super-resolution methods.
As said above, our focus is the interpolation problem, and
thus this paper will concentrate on the existing and relevant
literature in this domain.

Why should one work on the interpolation problem? After
all, it seems to be an extremely easy version of the single
image super-resolution problem. There are several possible
reasons to study this problem, which may explain its popularity
in the literature:

1) It comes up in reality: There are situations where the given
image is deeply aliased (i.e., no blur) as a measure of
preserving its sharpness. If this is the case and the image
quality is high (i.e., no noise), dealing with super-resolving
such an image calls for an interpolation scheme.

2) Relation to Single-Image-Super-Resolution: Even if the
image to be scaled-up is blurred, one can always cast the
super-resolution task as a two stage process: interpolate the
missing pixels, and then deblur. In such a case, interpola-
tion algorithms address the first stage.

3) Performance bounds: From a theoretical standpoint, the
interpolation problem poses a guiding bound on the achiev-
able recovery of missing pixels in an image.

4) Relation to classical interpolators: The foundations (the-
oretical and practical) of interpolation are well known in
the numerical analysis literature. Extending bi-linear, bi-
cubic, bi-splines, and other methods to be content adaptive
is a fascinating subject, as it sheds light on non-linear
extensions of known methods.

The simplest techniques to reconstruct x are linear inter-
polators, e.g. bi-linear, bi-cubic, and cubic-spline interpolators
[4], [5]. These methods utilize a polynomial approximation to
compute each missing pixel from a small local neighborhood
of known pixels around it, often generating blurry results
and stair-case shaped edges due to their inability to adapt
to varying pixel structures in the image. These techniques
can be attributed to l2-based regularization schemes that force
some sort of spatial smoothness in an attempt to regularize the
inherently ill-posed problem defined in Equation (1).
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More complex algorithms use more advanced and more
effective priors on the image in order to gain a stabilization of
the solution. Two such powerful priors that have widespread
use in recent years are (i) non-local proximity and (ii) Sparse-
Land modeling. The first assumes that a given patch may
find similar patches within its spatial surroundings, and these
could be used to help the recovery process. Several works
leverage this assumption to solve various image restoration
problems, e.g. denoising [6]–[8], deblurring [9], [10] and
super-resolution [1], [3], [11], [12]. On the other hand, the
Sparse-Land model, as introduced in [13], [14] assumes that
each patch from the image can be well represented using a
linear combination of a few elements (called ”atoms”) from a
basis set (called ”dictionary”). Put differently, each patch xi in
the original image is considered to be generated by xi = Dαi,
where D ∈ Rn×m is a dictionary composed of (possibly
m ≥ n) atoms, where αi ∈ Rm is a sparse (mostly zero)
vector of coefficients. Therefore, sparsity-based restoration
algorithms seek a dictionary and sparse representations that
bring the corrupted\degraded patch to be as close as possible
to the original one. In other words, the first force seeks to
exploit relations between different patches while the second
concentrates on the redundancy that exists within the treated
patch.

Recent papers, e.g. NARM [15] and LSSC [16], combine
a sparsity-based model with the non-local similarity of natu-
ral image patches and achieve impressive restoration results.
NARM is an image interpolation method that embeds a non-
local autoregressive model (i.e. connecting a missing pixel
with its nonlocal neighbors) into the data fidelity term, com-
bined with a conventional sparse representation minimization
term. Their method also exploits the nonlocal redundancy
in order to further regularize the overall problem. NARM
divides the image to clusters of patches and uses a local PCA
dictionary learning per each cluster, in order to adaptively
and sparsely represent the patches. LSSC achieves state-of-
the-art results in image denoising and demosaicing by jointly
decomposing groups of similar patches with a learned dictio-
nary. Their method uses a simultaneous sparse coding [17]
to impose the use of the same dictionary atoms in the sparse
decomposition of similar patches.

Inspired by the promising results of the above-mentioned
contributions ( [15] and [16]), we propose a two-stage image
interpolation scheme based on an adaptive non-local sparsity
prior. The proposed method starts with an initial cubic-spline
interpolation of the HR image. In the first stage we aim at
recovering regions that fit with the non-local self-similarity
assumption. We iteratively produce a rough approximation of
the HR image, accompanied by a learned dictionary. In the
second stage we obtain the final interpolated result by refining
the previous HR approximation using the first-stage’s adapted
dictionary and a non-local sparsity model. In order to ensure
that the influence of known pixels will be more pronounced
compared to the approximated (actually unknown) ones, in
both stages of the algorithm we use an element-wise weighted
variant of the Simultaneous Orthogonal Matching Pursuit [17]
and the K-SVD [18] algorithms. Note that the algorithm we
introduce in this paper can be easily extended to cope with

the case of interpolation under noise, i.e. when Equation (1) is
replaced by y = ULx+v, where v is white additive Gaussian
noise. However, in order to remain consistent with the work
in [15], [19]–[21], we will discuss the noiseless case only.

The current state-of-the-art is the recently published NARM
method [15], showing impressive results. However, based on
18 test images, our proposed method outperforms NARM by
0.11dB and 0.23dB on average for interpolation by factors
of 2 and 3, respectively. Similarly to NARM, we rely on the
sparsity model and the self-similarity assumption, but unlike
NARM:

1) We do not assume that each patch can be represented as a
linear combination of its similar patches. NARM requires
that the representation of each patch shall be close (in
terms of l2 norm) to a linear combination of its similar
patches representations. When this assumption holds – the
recovery is indeed impressive, but there are patches that do
not align with this assumption and forcing them to fit this
requirement becomes harmful.

2) We suggest training a redundant dictionary, exploiting the
benefit of the large number of examples, while NARM
divides the image patches into 60 clusters and trains a
PCA dictionary per each of these clusters. Besides the fact
that the clustering is computationally ”expensive” and very
difficult to parallelize, NARM assumes that each cluster
would contain enough examples (which are crucial for
obtaining a good sub-dictionary), with the risks that (i)
patches may accidentally be assigned to an inappropriate
cluster (e.g. due to aliasing), and (ii) there is no suitable
cluster per each patch.

To conclude, the proposed method achieves competitive and
even better results than NARM without limiting the algorithm
to strictly fit the non-local proximity assumption. This is at-
tributed to the proposed stable sparse-coding and the effective
K-SVD dictionary learning.

This paper is organized as follows: In Section II we
provide brief background material on sparse representation
and dictionary learning, for the sake of completeness of
the discussion. In Section III we introduce our novel image
interpolation algorithm and discuss its relation to previous
works. Experiments are brought in Section IV, showing that the
proposed method outperforms the state-of-the-art algorithms
for the single-image interpolation task. Conclusions and future
research directions are drawn in Section V.

II. BACKGROUND: SPARSE REPRESENTATIONS AND
DICTIONARY LEARNING

The idea behind sparse and redundant representation model-
ing is the introduction of a new transform of a signal xi ∈ Rn

to a representation αi ∈ Rm where m > n (thus leading
to redundancy), such that the obtained representation is the
sparsest possible. This semi-linear transform assumes that a
signal xi can be described as xi = Dαi, thus implying that
the inverse transform from the representation to the signal
is indeed linear. On the other hand, the forward transform,
i.e., the recovery of αi from xi (called ”sparse-coding”), is



3

obtained by

α̂i = min
αi

‖αi‖0 s.t. ‖Dαi − xi‖22 ≤ ε2, (2)

where the notation ‖α‖0 stands for the count of the nonzero
entries in α, and ε is an a-priori error threshold. For pure
transformation, ε should be zero, implying that Dαi = xi.
When xi is believed to be noisy, the very same expression
above serves as a denoising process, since Dα̂i could be
interpreted as the cleaned version of xi, and in such a case,
ε is set as the noise level. Since Equation (2) is an NP-
hard problem, the representation is approximated by a pursuit
algorithm, e.g. MP [22], OMP [23], SOMP [17], basis pursuit
[24], and others [14].

Naturally, adapting the dictionary D to a set of signals
{xi}Ni=1 results in a sparser representation than the one which
would be based on a pre-chosen dictionary. For example,
given the representations of these signals, {αi}Ni=1, obtained
using a dictionary D0, the MOD and K-SVD dictionary
learning algorithms [18], [25], [26] adapt D to the signals
by approximating the solution of the minimization problem

min
D,{αi}Ni=1

∑
i

‖Dαi − xi‖22 (3)

s.t. ∀i Supp{αi} = Supp{α̂i},

where Supp{α̂i} are the supports (the indices of the non-zero
rows in α̂i). This process is typically iterated several times,
performing pursuit to update the representations, followed
by updating the dictionary (and the non-zero values in the
representations). Once D and α̂i are computed, each signal is
approximated by x̂i = Dα̂i.

Since dictionary learning is limited in handling low-
dimensional signals, a treatment of an image is typically
done by breaking it into small overlapping patches, forcing
each to comply with the sparse representation model. In
this paper we rely on the ideas of the K-SVD denoising
algorithm [27], which divides the noisy image into

√
n×
√
n

overlapping patches. Then the algorithm performs iterations
of: (i) sparse-coding using OMP on all these patches, followed
by (ii) a dictionary-update applied as a sequence of a rank-1
approximation problems that update each dictionary atom and
the representation coefficients using it. Finally, the denoised
image is obtained by averaging the cleaned patches and the
noisy image. All this process is essentially a numerical scheme
for approximating the solution of the problem

x̂, D̂, {α̂i}Ni=1 = min
x,D,{αi}Ni=1

1

2
‖x− y‖22 + λ

N∑
i=1

‖αi‖0 (4)

s.t. ‖Dαi −Rix‖22 ≤ ε2,

where N is the number of image patches, x̂ is the denoised
image, D̂ is the trained overcomplete dictionary and Ri is
a matrix that extracts the i-th patch from the image. The
first term of Equation (4) demands a proximity between the
noisy image y and its denoised version x. The second and
third terms demand that every patch Rix = xi is represented
sparsely up to a bounded error, with respect to a dictionary
D.

III. THE PROPOSED ALGORITHM

A. The General Objective Function

The single-image interpolation problem can be viewed as
the need to fill-in a regular pattern of missing pixels in a
desired HR image. In terms of a sparsity-based approach, the
HR patches are characterized by having sparse representations
with respect to a learned dictionary, and this should be
assessed while relying (mainly) on the known pixels. In the
spirit of the K-SVD denoising formulation for images, as
described in Equation (4), the interpolation solution can be
cast as the outcome of the minimization problem

x̂, D̂, {αspi }
N
i=1 = min

x,D,{αi}Ni=1

N∑
i=1

‖αi‖0 (5)

s.t. y = ULx and ∀i ‖Dαi −Rix‖2W̃i
≤ ε2i ,

where x̂ is an approximation of the HR image and the
constraint y = ULx is simply the relation to the measure-
ments as given in Equation (1). W̃i ∈ Rn×n is a diagonal
weighting matrix, which sets high weights for known pixels
in Rix = xi, and low ones for the missing\approximated
pixels. ε2i = cε‖W̃i‖22 are error thresholds, where cε is some
constant. The essence of W̃i is to ensure that the influence
of known pixels will be more pronounced compared to the
approximated ones2. In practice, the representations {αspi }

N
i=1

are approximated by a weighted variant of the Orthogonal
Matching Pursuit (OMP), the dictionary D is updated using
a weighted variant of the K-SVD [18], and once D and
{αspi }

N
i=1 are fixed, the output HR image x̂ is computed by

solving the constrained minimization problem

min
x

N∑
i=1

‖Dαspi −Rix‖
2
W̃i

s.t. y = ULx. (6)

This optimization problem leads to a simple solution, in
which the approximated HR patches are averaged followed
by a simple projection of the known pixels in x on the
outcome. Appendix A describes the closed-form solution for
this problem via the Lagrange multipliers method.

Intuitively, if we could improve the sparse-coding step
in Equation (5), this may lead to better results. The OMP
processes each of the patches separately and disregards inter-
relations that may exist between them. As consequence, the
recovery of similar patches may be different despite their sim-
ilar content. Grouping similar patches together and applying
joint sparse-coding is a powerful technique which leverages
the assumption that there are several appearances of the same
image content and those could help each other somehow. In
the case of denoising (as suggested by LSSC [16]), similar
patches contain similar image content but with different noise
realization. In the case of interpolation, the aliasing can be con-
sidered as structured noise [28], and it varies between similar
patches extracted from different locations, thus enriching our
set.

2In Section IV-C we provide an experiment along with a brief discussion
regarding the need for these weights.
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The proposed algorithm is based on the observation that
the more known pixels within a patch, the better its recon-
struction. Performing group decomposition serves this goal;
each patch in the group contributes its known pixels in finding
the atoms decomposition for the whole group. Following
the LSSC algorithm [16], we apply the simultaneous sparse-
coding (SOMP) method, which forces similar patches to have
similar decompositions in terms of the chosen atoms in the
pursuit. SOMP is a variant of the OMP; it is an iterative greedy
algorithm that finds one atom at a time for the representation
of the group signals. Given a group of similar patches and
a dictionary, in the first iteration SOMP finds the atom that
best fits the group of weighted patches. In the next iterations,
given the previously found atoms, it finds the next one that
minimizes the sum of weighted l2 norm of the residuals. Note
that per iteration, the coefficients that correspond to the chosen
atoms are evaluated by solving weighted least-squares.

To summarize, inspired by LSSC we suggest a strengthened
version of Equation (5):

x̂,D̂, {Aspi }
N
i=1 = min

x,D,{Ai}Ni=1

N∑
i=1

‖Ai‖0,∞ (7)

s.t. y = ULx and ∀i
∑
j∈Si

‖D(Ai)j −Rjx‖2Wi,j
≤ Ti,

where Si = {j|1 ≤ j ≤ N, and ‖xi − xj‖1 ≤ cd} is a set
of the similar patches to xi, where cd is a fixed threshold.
Wi,j = W̃j exp (‖xi − xj‖1/cw) ensures that the closer xj
patch to xi, the higher the influence of it. Ai ∈ Rm×|Si| is a
matrix, where the j-th column (Ai)j is the representation of
the j-th patch in Si. The notation ‖Ai‖0,∞ counts the number
of non-zero rows in Ai, and Ti =

∑
j∈Si

cε‖Wi,j‖22 are the
error thresholds. Similar to Equation (6), the reconstruction of
the HR image is obtained by solving

min
x

N∑
i=1

∑
j∈Si

‖D(Aspi )j −Rjx‖2Wi,j
s.t. y = ULx. (8)

Although the non-local approach strengthens the sparsity
model, there are still some potential instabilities in the sparse
coding stage. These are the result of the ratio between the
overall number of pixels in the HR image and the known ones.
This ratio equals 1

L2 , where L is the up-scaling factor along the
horizontal and vertical dimensions. For example, when L = 3,
the number of known pixels within a 7× 7 patch varies from
4 to 9 out of 49 pixels. Fig. 1 demonstrates this for L = 2
and 3 × 3 patch size. Assigning a low weight to unknown
and approximated pixels (e.g. 0.01 in our experiments) raises
the instability of the joint weighted sparse coding. Thus, in
order to further stabilize the sparse-coding step we suggest
modifying the formulation in Equation (7) to

min
x,{αr

i
}N
i=1
{Asp

i
}N
i=1

N∑
i=1

‖[αri Aspi ]‖0,∞ (9)

s.t. y = ULx

∀i ‖Dαri −Rix̂
est‖22 +

∑
j∈Si

‖D(Aspi )j −Rjx‖2Wi,j
≤ Ti,

 

        

        

        

        

        

        

        

        

Fig. 1. Demonstration of a ”strong” patch (solid line) and ”weak” patches
(dash line) for L = 2 and 3 × 3 patch size. The number of known pixels
(dark points) within a ”strong” patch is 4, and within a ”weak” patch is 1 or
2.

where x̂est is an initial estimation of the HR image (e.g. a
cubic-spline approximation), αri ∈ Rm are the representa-
tions of patches x̂i that are computed without discrimination
between known and unknown pixels, ‖[αri Aspi ]‖0,∞ counts
the number of non-zero rows in the matrix [αri Aspi ], and
Ti = cεn +

∑
j∈Si

cε‖Wi,j‖22 are the error thresholds. In
general, sparse coding based on the l2 norm (i.e. a non-
weighted patch) is more stable than the weighted l2 norm
since it finds the atoms according to higher number of pixels.
Following this observation, the essence of αri is to stabilize
the sparse-coding step (due to the non-weighted l2 norm), and
promote their preferred set of atoms to the group they serve3.
These representations are ignored in the reconstruction step,
i.e., reconstruction of x remains as described in Equation (8).
Note that αri is not included in Aspi ; given the joint support, αri
is the outcome of a least-squares while each column in Aspi is
the outcome of a weighted least-squares. Once {[αri Aspi ]}Ni=1

are computed, we update the dictionary by a weighted variant
of the K-SVD that approximates the solution to the problem

min
D̂,{αi}Ni=1

,{Ai}Ni=1

N∑
i=1

‖D̂αi −Rix̂‖22 (10)

+

N∑
i=1

∑
j∈Si

‖D̂(Ai)j −Rjx̂‖2Wi,j

s.t. ∀i Supp{[αi Ai]} = Supp{[αri Aspi ]},

where Supp{[αri Aspi ]} are the supports of the indices of
the non-zero rows in [αri Aspi ] (the joint support) that were
computed in Equation (9).

The above framework is the basis of the proposed two-stage
image interpolation algorithm; our proposed scheme starts
with an initial cubic-spline approximation of the HR image.
In the first stage we iteratively produce a rough approximation
of the HR image accompanied by a learned dictionary. In the
second stage, based on the first-stage’s HR result, we apply a
joint weighted sparse-coding to represent the HR image using
the first-stage’s dictionary. A detailed description of these steps
now follows.

3In terms of PSNR and based on the test images, excluding αri from
the penalty function degrades the restoration performance. The average
differences between the original proposed two-stage algorithm and excluding
αri from it are 0.39 dB and 0.38 dB for interpolation by factor of 2 and 3,
respectively.
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Algorithm 1 : Description of the first stage of the image interpolation algorithm.
Initialization Step:

1: Set x̂est = cubic-spline interpolation of y that satisfies y = ULx.
2: Per each patch x̂esti ∈ Rn, create a diagonal weighting matrix W̃i ∈ Rn×n, which sets high weights to known pixels and

low ones to the missing\approximated pixels in x̂esti .
3: Set D ∈ Rn×m = overcomplete DCT dictionary.

Repeat several times:
1: Grouping Step: Per each patch x̂esti (i) find a set Sstrongi that contains the indices of up to K most similar ”strong”

patches to it within a window of size h × h pixels, sorted according to their l1 distance (from low to high), (ii) set
∀j ∈ Sstrongi Wi,j = W̃j exp (‖xi − xj‖1/cw).

2: Joint Weighted Sparse-Coding Step: Solve

[{αri }Ni=1, {A
sp
i }

N
i=1] := argmin

N∑
i=1

‖[αri Aspi ]‖0,∞ s.t. ∀i ‖Dαri −Rix̂
est‖22+

∑
j∈Sstrong

i

‖D(Aspi )j−Rjx̂
est‖2Wi,j

≤ Ti,

using a joint element-wise weighted SOMP algorithm (which we replace with a batch-SOMP without weights, followed
by a least-squares step that take the weights into account).

3: Dictionary Update Step: Update the dictionary using an element-wise weighted variant of the K-SVD, which approximates

[D̂, {αi}Ni=1, {Ai}Ni=1] :=argmin
N∑
i=1

‖Dαi −Rix̂‖22 +
N∑
i=1

∑
j∈Sstrong

i

‖D(Ai)j −Rjx̂‖2Wi,j

s.t. ∀i Supp{[αi Ai]} = Supp{[αri Aspi ]}.

4: Aggregation Step: Compute the approximation of the HR image

x̂ := argmin
N∑
i=1

‖D(Aspi )1 −Rix‖2Wi,1
s.t. y = ULx,

and set x̂est ← x̂, D← D̂.
Output:

1: x̂est – rough approximation of the HR image.
2: D̂ – an overcomplete learned dictionary.

B. The First Stage of the Proposed Algorithm

The essence of the first-stage of our algorithm is to ef-
ficiently recover regions that fit the non-local self-similarity
assumption, such as flat or smooth regions (e.g. sky, sand,
walls, etc.), and repetitive or continues edges or textures (e.g.
stockades, columns, bricks, etc.). This is achieved by utilizing
the self-similarities between the patches within the image.
Recall that grouping similar patches together in order to find
their joint decomposition has a major advantage in filling-
in missing pixels. The main contribution of each patch in
finding the joint support comes from its small number of
known pixels. Joining similar patches together increases the
number of known pixels which are crucial for the success of
the sparse-coding step.

Within an HR patch, the number of known pixels and their
locations varies according to its location in the image; there
are ”strong” patches, i.e. patches that contain the maximal
number of known pixels, and ”weak” ones, i.e. patches that
contain a lower number of known pixels, see Fig.1 for a
visual demonstration of these types of patches. It is natural
to expect that the restoration of ”strong” patches would be
more accurate than the ”weak” ones, since they have more
known pixels. Motivated by this assumption, we define per

each patch of x̂est (”strong” or ”weak”) a set Sstrongi that
contains the indices of up to K most similar ”strong” patches
to x̂esti , sorted according to their l1 distance (from low to
high), requiring this distance to be at most cd.

Once {Sstrongi }Ni=1 are computed, in the first stage we solve
the minimization problems defined in (9) and (10) with one
major difference – replace {Si}Ni=1 sets with {Sstrongi }Ni=1.
Armed with D and {Aspi }Ni=1, the reconstruction of the HR
image is obtained by4

min
x

N∑
i=1

‖D(Aspi )1 −Rix‖2Wi,1
s.t. y = ULx, (11)

where (Aspi )1 is the representation that corresponds to the first
index in Sstrongi set, i.e. the representation of the most similar
”strong” patch to x̂esti . We draw the reader’s attention to the
resemblance and the differences between this and the equation
given in (8) – here we use only one representation – the one
corresponding to the closest strong patch, while in (8) we
recover the image based on all the representations together.

Notice that when x̂esti is a ”weak” patch, Sstrongi does not
contain its index, i.e., Aspi does not include the representation

4Referring to Equation (11), we found that using the conventional l2 norm
instead of the weighted one performs slightly better.
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Algorithm 2 : Description of the second stage of the image interpolation algorithm.
Initialization Step:

1: Set x̂est = the first-stage approximation of the HR image.
2: Set D̂ ∈ Rn×m = the first-stage’s learned dictionary.
3: W̃i ∈ Rn×n = a diagonal weighting matrix, that corresponds to the i-th patch, with higher weights for unknown pixels

compared to the first stage.
Grouping Step:

Per each patch x̂esti (i) compute a set Si that contains the indices of up to K most similar patches to x̂esti within a window
of size h× h pixels, (ii) set ∀j ∈ Si Wi,j = W̃j exp (‖xi − xj‖1/cw).

Joint Weighted Sparse-Coding Step:
Solve

[{αri }Ni=1, {A
sp
i }

N
i=1] := argmin

N∑
i=1

‖[αri Aspi ]‖0,∞ s.t. ∀i ‖D̂αri −Rix̂
est‖22 +

∑
j∈Si

‖D̂(Aspi )j −Rjx̂
est‖2Wi,j

≤ Ti,

using a joint element-wise weighted SOMP algorithm (which we replace with a batch-SOMP without weights, followed by
a least-squares step that take the weights into account).

Aggregation Step:
Compute the approximation of the HR image:

x̂final := argmin
N∑
i=1

∑
j∈Si

‖D̂(Aspi )j −Rjx‖2Wi,j
s.t. y = ULx.

Output:
x̂final – the final approximation of the HR image.

of the weighted ”weak” i-th patch at all (as opposed to the
case where x̂esti is a ”strong” one). It is important to emphasize
that the approach taken here is very different from a ”simple”
replacement of a ”weak” patch with its most similar ”strong”
one. The non-weighted term ‖Dαri − Rix̂

est‖22 in Equation
(9) has a significant influence on deciding which atoms will
be chosen to represent the {Sstrongi }Ni=1 patches. Thereby the
properties of the ”weak” patch leak into the ”strong” one
owing to the joint decomposition and the fact that there are
infinitely many ways to fill-in the missing pixels within a
patch.

Notice that we suggest reconstructing the HR image based
on (Aspi )1 although αri is available due to the following5:

1) The restoration of a ”weak” reference patch based on
αri cancels the explicit exploitation of the self-similarity
assumption.

2) When the reference patch is a ”strong” one, (Aspi )1 leads
to a patch reconstruction that is close to the known pixels,
while the unknown ones are naturally interpolated. The
interpolation is done by a linear combination of the chosen
HR dictionary atoms, which in turn are updated iteratively
to obtain better and better estimation of these unknown
pixels. On the other hand, αri is the representation of the
non-weighted patch; therefore it leads to a patch recon-
struction that is close to the whole previously interpolated
patch.

5In terms of PSNR and based on the test images, reconstructing the
image based on αri instead of (Aspi )1 degrades the restoration performance.
The average differences between the original proposed two-stage algorithm
and reconstructing the image based on αri are 0.28 dB and 0.31 dB for
interpolation by factor 2 and 3, respectively.

While the joint element-wise weighted sparse-coding leads
to an effective reconstruction, we found it to be computa-
tionally demanding mostly due to the inability to use a batch
implementation [29]. This batch method reduces the sparse-
coding complexity by relying on the fact that large number
of (non-weighted) signals are coded over the same dictionary.
In this work we propose a technique that leverages the batch
SOMP results and approximates the joint weighted sparse-
coding representations. This technique is composed of two
stages: (i) compute the joint supports {Supp{Abatchi }}Ni=1

using the non-weighted batch SOMP implementation, and (ii)
given the supports, approximate {Aspi }Ni=1 representations by
solving the weighted least-squares problem

∀i, j ∈ Sstrongi (Âspi )j = minz ‖Dsiz −Rjx̂
est‖2Wi,j

, (12)

where (Âspi )j are the approximated representations, and Dsi is
a matrix where its columns are atoms from D that correspond
to the nonzero entries of Abatchi .

To conclude, the first-stage is composed of three steps
which are repeated iteratively: joint weighted sparse–coding,
weighted dictionary learning and aggregation of the approx-
imated HR patches by exploiting the ”strong” patches. A
pseudo-code description of the proposed iterative first-stage
is given in Algorithm 1.

C. The Second Stage of the Proposed Algorithm

The goal of the second stage is to generate a robust and
reliable HR image by refining x̂est (the first-stage approxima-
tion) using again the non-local sparsity model, but with some
important differences:
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Fig. 2. Test images from left to right and top to bottom: Bears, Butterfly, Elk, Fence, Flowers, Girl, Koala, Parthenon, Starfish, Boat, Cameraman,
Foreman, House, Leaves, Lena, Parrot, Stream and Texture.

TABLE I
PARAMETERS USED PER EACH SCALING FACTOR AND STAGE

Scaling factor Stage
√
n m K h cε cd cw

Weight for
known pixels

Weight for
unknown pixels

Number of
iterations

2 1 7 256 8 37 0.01 60n 0.7 · 60n 1 0.01 12
2 7 256 9 37 0.01 30n 0.6 · 30n 1 0.05 1

3 1 7 256 7 37 0.01 30n 30n 1 0.01 12
2 7 256 7 37 0.01 10n 10n 1 0.1 1

1) As apposed to the previous stage, we no longer restrict the
sets to use strong patches, and use all kinds equally.

2) In the second stage, we can assign higher weights to the
approximated pixels, as they are already of better quality
after the first stage.

3) Forcing the self-similarity property on patches that are not
similar to others can be harmful. In order to obtain a
reliable estimation, the use of self-similarities in the second
stage is made more conservative than in the first-stage by
reducing cd.

4) In the second stage there is no patch replacement in the
reconstruction step. In practice, given x̂est and D̂, we
represent x̂est patches as described in (9) and finally we
reconstruct the HR image as described in (8)6.

To summarize, in this stage we exploit the first-stage effec-
tive recovery of regions that fit the non-local self-similarity
prior, and the ability of the sparsity model to fill-in missing
pixels within the patches. A pseudo-code description of the
proposed second-stage is given in Algorithm 2.

IV. EXPERIMENTAL RESULTS

In this section, detailed results of the proposed algorithm
are presented for the images Bears, Boat, Butterfly, Camera-
man, Elk, Fence, Flowers, Foreman, Girl, House, Koala,
Leaves, Lena, Parthenon, Parrot, Starfish, Stream and
Texture (see Fig. 2). All these are commonly used in other
related publications, which enables a fair comparison of re-
sults. All the tests in this section are generated by decimating
the input HR image by factor of L in each axis We tested
the proposed algorithm for two scaling factors, L = 2 and
L = 3. The interpolation flow for a color image is: (i) first,
convert the image to YCbCr color space, (ii) interpolate the
luminance channel (i.e. Y) using the proposed algorithm and
interpolate the chromatic channels (i.e. Cb and Cr) using the

6Notice that the only difference between the general objective function and
the second stage is the existence of the dictionary update.

TABLE II
INTERPOLATION RESULTS [PSNR] FOR UP-SCALING BY FACTOR OF L = 2

AND L = 3. WE COMPARE BETWEEN THE GENERAL OBJECTIVE
FUNCTION (SECTION III-A), THE FIRST-STAGE (SECTION III-B) AND THE

SECOND-STAGE (SECTION III-C) OF THE PROPOSED ALGORITHM.
NOTICE THAT IN ALL CASES THE PERFORMANCE OF SECOND-STAGE IS

EQUAL OR BETTER THAN THE FIRST-STAGE, AND OVERCOMES THE
GENERAL OBJECTIVE FUNCTION. THE BEST RESULTS IN EACH LINE ARE

HIGHLIGHTED.

Image L = 2 L = 3
General 1-Stage 2-Stage General 1-Stage 2-Stage

Bears 28.42 28.25 28.57 25.30 25.71 25.71
Boat 29.44 29.62 30.18 26.15 26.72 26.84

Butterfly 28.88 28.74 29.68 23.88 25.07 25.27
Cameraman 25.88 26.31 26.59 22.63 23.27 23.27

Elk 32.33 33.19 33.83 28.30 29.28 29.33
Fence 24.68 24.88 25.03 20.74 20.90 20.90

Flowers 28.57 28.71 28.81 25.85 26.38 26.38
Foreman 36.23 37.66 38.39 32.23 34.51 34.66

Girl 34.29 34.28 34.30 31.67 32.10 32.10
House 32.36 33.68 34.43 28.92 30.18 30.24
Koala 33.39 33.19 33.91 29.77 30.23 30.35
Leaves 27.61 27.48 28.81 22.16 22.99 23.17
Lena 34.29 34.06 34.87 30.60 31.04 31.21

Pantheon 27.13 27.28 27.51 24.44 24.94 24.94
Parrot 26.99 27.06 27.42 23.43 23.97 24.06

Starfish 30.43 30.20 31.24 26.50 26.71 26.87
Stream 25.86 25.66 25.96 23.07 23.33 23.34
Texture 21.50 21.43 22.01 16.59 17.20 17.29
Average 29.35 29.54 30.09 25.68 26.36 26.44

bi-cubic method, and (iii) finalize by converting the interpo-
lated channels back to the RGB color space. We evaluate the
interpolation performance using the Peak Signal to Noise Ratio
(PSNR), defined as 20 log10(

255√
MSE

), where MSE is the mean-
squared-error between the luminance channel of the original
HR image and the recovered one.

We ran many tests to tune the various parameters of the
proposed algorithm. These tests have resulted in a selection
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(a) LR (b) Original (c) Bicubic (d) SAI

(e) SME (f) PLE (g) NARM (h) Proposed

Fig. 3. Visual comparison of crop from Elk, magnified by factor of 2.

TABLE III
SUMMARY OF THE INTERPOLATION RESULTS [PSNR] FOR UP-SCALING BY FACTOR OF L = 2 AND L = 3. THE BEST RESULTS IN EACH LINE ARE

HIGHLIGHTED.

Image
L = 2 L = 3

Bicubic SAI SME PLE NARM Ours Bicubic SAI SME PLE NARM Ours[19] [20] [21] [15] [19] [20] [21] [15]
Bears 28.42 28.46 28.39 28.44 28.27 28.57 25.34 25.34 25.46 25.63 25.34 25.71
Boat 29.30 29.72 29.74 29.83 29.80 30.18 26.06 26.34 26.43 26.48 26.53 26.84

Butterfly 27.69 28.65 29.17 28.79 30.30 29.68 23.51 24.10 24.59 24.56 25.57 25.27
Cameraman 25.50 26.14 25.88 26.40 25.94 26.59 22.54 22.88 22.92 23.20 22.72 23.27

Elk 31.77 32.82 33.16 32.92 33.28 33.83 28.13 28.74 28.81 28.91 28.98 29.33
Fence 24.77 24.53 23.78 24.96 24.79 25.03 20.90 20.66 20.44 21.12 20.53 20.90

Flowers 28.05 28.41 28.65 28.58 28.75 28.81 25.73 25.92 26.08 26.17 26.44 26.38
Foreman 35.39 37.17 37.68 37.15 38.64 38.39 31.86 32.79 33.17 33.06 34.80 34.66

Girl 33.88 34.03 34.13 34.25 34.46 34.30 31.53 31.70 31.85 31.90 31.90 32.10
House 32.33 33.15 32.84 33.28 33.52 34.43 28.78 29.21 29.16 29.45 29.67 30.24
Koala 33.27 33.68 33.74 33.42 33.84 33.91 29.59 29.83 29.95 30.12 30.09 30.35
Leaves 26.77 28.21 28.72 27.82 29.76 28.81 21.76 22.45 22.65 22.55 23.33 23.17
Lena 34.01 34.53 34.68 34.46 35.01 34.87 30.24 30.78 30.98 30.91 31.16 31.21

Pantheon 27.24 27.13 27.10 27.57 27.36 27.51 24.42 24.52 24.65 24.73 24.72 24.94
Parrot 26.50 26.87 27.34 27.00 26.96 27.42 23.14 23.24 23.58 23.85 23.37 24.06

Starfish 30.44 30.35 30.76 30.61 31.72 31.24 26.36 26.28 26.52 26.62 26.86 26.87
Stream 25.77 25.79 25.84 25.91 25.82 25.96 23.06 23.02 23.09 23.27 23.19 23.34
Texture 20.56 21.55 21.49 21.74 21.51 22.01 16.40 17.07 16.81 17.00 16.54 17.29
Average 28.98 29.51 29.62 29.62 29.98 30.09 25.52 25.83 25.95 26.08 26.21 26.44

of a single set of parameters per each scaling factor and stage,
which are given in Table I. Note that we limit the number of
atoms which represent the HR patches for at most 7 atoms.

Before comparing the proposed algorithm with the state-
of-the-art methods, we demonstrate the differences between
the general objective function (Section III-A) and the final
algorithm (Sections III-B, III-C) in terms of PSNR. We imple-
mented the general objective function by repeating iteratively
(i) joint weighted sparse-coding as described in Equation (9),
(ii) dictionary learning as described in Equation (10), and (iii)
image reconstruction as described in Equation (8). Table II lists
the PSNR of the general objective function, the first-stage,
and the second-stage (i.e. the final result) of the proposed
algorithm. It is clear that the restoration of the proposed
algorithm is much better than the general one. In terms of

PSNR, the average differences between them for interpolation
by factors of L = 2 and L = 3 are 0.74dB and 0.76dB,
respectively. The first stage of the proposed algorithm offers
a PSNR improvement of 0.19dB (for L = 2) and 0.68dB
(for L = 3) over the general algorithm, while the second
stage offers a further improvement of 0.55dB (for L = 2)
and 0.08dB (for L = 3) over the first stage. To summarize,
the performance of the proposed two-stage algorithm is much
better than the general non-local sparsity objective function.

A. Up-scaling by a factor of 2

In Table III we compare the proposed algorithm with the
current stage-of-the-art methods. The competitive methods
for interpolation by factor of L = 2 are (i) bicubic, (ii)
Decision and Adaptive Interpolator (SAI) [19], (iii) Sparse
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(a) LR (b) Original (c) Bicubic (d) SAI

(e) SME (f) PLE (g) NARM (h) Proposed

Fig. 4. Visual comparison of crop from Fence, magnified by factor of 2.

(a) Original (b) PLE Err (c) NARM Err (d) Proposed Err

Fig. 5. Visual comparison of the absolute difference between portions from
the original and the interpolated Fence image, magnified by factor of 2.

Mixing Estimation (SME) [20], (iv) Piecewise Linear Estima-
tion (PLE) [21] and (v) Nonlocal Auto-Regressive Modeling
(NARM) [15]7. SAI is an adaptive edge-directed interpolator
which exploits the image directional regularity, SME is a
zooming algorithm that exploits directional structured sparsity
in wavelet representations, PLE is a general framework for
solving inverse problems based on Gaussian mixture model,
and NARM combines the non-local self-similarities and the
sparsity prior as described in the Section I. The results are
generated by the original authors’ software. Note that PLE has

7We do not compare the proposed algorithm with LSSC [16] since it was
not designed\tested for image interpolation.

a special treatment for color images while in the following
simulations we interpolate and measure the PSNR on the
luminance channel only. From table III we can see that
our algorithm is competitive with the current state-of-the-
art NARM interpolator with an average gain of 0.11dB. The
proposed algorithm outperforms the bicubic, SAI, SME and
PLE methods with an average gain of 1.11dB, 0.58dB, 0.47dB
and 0.47dB, respectively.

Figs. 3 and 4 demonstrate a visual comparison between the
above algorithms for interpolation by factor of 2. According
to these figures, the proposed method results in less ringing
and aliasing artifacts than the others. Visually, the results are
comparable to NARM, showing pleasant outcome with hardly
any artifacts. Fig. 5 shows the reconstruction error images of
PLE, NARM, and the proposed method. These error images
show the absolute difference between the original and the
interpolated results, with a proper common magnification. As
can be seen, the proposed method succeeds in recovering the
house’s roof and the left portion of the fence better than PLE
and NARM, while performing roughly equivalent on the right
portion of the fence.

B. Up-scaling by a factor of 3

For interpolation by factor of L = 3 we compare the
proposed algorithm with the bicubic, SAI, SME, PLE and
NARM methods. Since the available implementations for SAI
and SME do not support upscaling of factors other than 2,
we have tested these algorithms by upscaling twice by a
factor of 2 and then reducing the result back by a factor
of 3

4 using the bicubic interpolation. According to Table III,
the proposed algorithm outperforms the bicubic, SAI, SME,
PLE and NARM interpolators with an average gap of 0.92dB,
0.61dB, 0.49dB, 0.36dB and 0.23dB, respectively.

A visual comparison between the above algorithms and the
proposed method can be found in Figs. 6 and 7. The ability
of the proposed algorithm to recover continues edges and fine
details (e.g. the parrot’s eye) despite the large magnification
is demonstrated in Fig. 6, and the ability to handle severe
aliasing is demonstrated in Fig. 7. A comparison between the
reconstruction error images of PLE, NARM, and the proposed
method is given in Fig. 8, supporting the quantified results and
showing improved recovery for the proposed algorithm over
PLE and NARM.

Note that for some images, PLE and NARM perform
slightly better than the proposed algorithm. NARM may
outperform the proposed algorithm for images with large
regions that fit the self-similarity assumption (e.g. Foreman
and Leaves) due to the implicit way that NARM relies on
the image self-similarities. On the other hand, the initialization
of PLE is very effective and leads to visually very pleasant
results with a low computational complexity. Learning an HR
dictionary based on the LR image is challenging in general,
especially for images that suffer from very strong aliasing
artifacts (e.g. Fence and Parthenon). PLE may handle these
type of images in a better way than the proposed method
thanks to its special initial dictionary, which represent the
image very well even without any dictionary update steps.
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(a) LR (b) Original (c) Bicubic (d) SAI

(e) SME (f) PLE (g) NARM (h) Proposed

Fig. 6. Visual comparison of crop from Parrot, magnified by factor of 3.

(a) LR (b) Original (c) SAI (d) SME

(e) PLE (f) NARM (g) Proposed

Fig. 7. Visual comparison of crop from House, magnified by factor of 3.

C. Weighting the Unknown Pixels

Assigning a high weight to known pixels and a low one
for the interpolated pixels is necessary and highly influential
for the success in the overall interpolation task. Fig. 9 plots

(a) Original (b) PLE Err (c) NARM Err (d) Proposed Err

Fig. 8. Visual comparison of the absolute difference between portions from
the original and the interpolated House image, magnified by factor of 3.

the average PSNR over the test images as a function of the
weight for the unknown pixels, ranging from 0.005 up to 1.
Note that differently from the proposed algorithm, here we
use the same weight for both stages in order to measure
its impact. As can be seen, the sensitivity of the algorithm
to varying weights between 0.005 to 0.1 is small. The best
restorations are achieved around the weights 0.01 and 0.05 for
interpolation by factor of 2 and 3, respectively. In the context
of interpolation by a factor of 3, there is a slight advantage
for the weight 0.05 over 0.005 since higher weight results in
more stable sparse-coding.

Another related test we present here studies the impact of
increasing this weight as a function of the iterations. Clearly,
there are many strategies for increasing the weight, and we
explored several options. For example, we linearly increased
the weights of the unknown pixels from the initial first stage
value up to the second stage value, i.e. from 0.01 up to 0.05
and from 0.01 up to 0.1 for interpolation by factor of 2 and 3,
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Fig. 9. The average PSNR [dB] over the test images as a function of the
weight assigned to unknown pixels, ranging from 0.005 up to 1.

respectively. In terms of the resulting PSNR, a constant weight
per-stage performs slightly better than increasing weights,
with an average difference of 0.003 dB and 0.01 dB for
interpolation by factor of 2 and 3, respectively.

Returning to Fig. 9, the worst performance is obtained for
a weight that is equal to 1 (i.e. using the conventional l2 norm
instead of the weighted l2 norm). This result is not surprising.
As a reminder, each (pixel-weighted) group is represented
subject to a low error threshold (cε = 0.01 according to Table
I). Using the weighted l2 norm with this threshold leads to a
patch reconstruction that is close to the known pixels, while
the unknown ones are naturally interpolated. The interpolation
is done by a linear combination of the chosen HR dictionary
atoms, which in turn are updated iteratively to obtain better
and better estimation of these unknown pixels.

Using the same strategy but via the conventional l2 norm
leads to a patch reconstruction that is close to the whole
interpolated patch. The joint sparse coding algorithm in this
case chooses atoms that better fit the interpolated pixels, rather
than the known ones, since the number of known pixels within
a patch is relatively small. This resembles a computation of
a rough approximation of the HR image by replacing every
”weak” patch with its most similar ”strong” one over and over
again (see Equation (11)).

Another explanation for the above degradation emerges
from [15], which claims that the conventional sparsity-based
methods (e.g. [30]) are less effective because the data fidelity
term fails to impose structural constraint on the missing pixels.
The authors of [15] suggest exploiting the self-similarity
assumption in order to connect a missing pixel with its non-
local neighbors. Our algorithm exploits the non-local self-
similarity assumption too, but somewhat differently. We (i)
use a joint weighted sparse coding, and (ii) replace the
representation of each ”weak” patch (whose central pixel is
missing) with its most similar ”strong” patch (whose central
pixel is known) representation, all this in the first stage of the
algorithm. However, using the conventional l2 norm instead
of the weighted l2 norm cancels the discrimination between
the known pixels and the unknown ones, and this results in
inferior interpolation performance.

D. Similarity Function

Many recent papers on subspace clustering (e.g. [31]) indi-
cate that joint sparse-coding should group patches that belong
to the same subspace, and this in turn means that the grouped
patches are not necessarily expected to be close-by in l2 (or

l1). Therefore, grouping similar patches according to their l2
or l1 norm is not the best choice. However, the popularity,
simplicity and low-computational cost of these norms, together
with an impressive restoration performance, make them very
attractive. In our work, we have chosen the l1 norm over the l2
because it is more robust to outliers. In terms of the resulting
PSNR, we found that the l1 norm is slightly better than the l2
norm, with an average difference of 0.1 dB and 0.07 dB for
interpolations by factor of 2 and 3, respectively.

E. Computational Complexity

The complexity of the proposed algorithm is composed of
three main parts: (i) computing K-Nearest Neighbors (K-NN)
per each patch within a window of size h×h pixels, (ii) sparse
coding using an element-wise weighted variant of the SOMP,
and (iii) dictionary learning using an element-wise weighted
variant of the K-SVD. The complexity of computing the K-
NN per-patch is O(n ·h2+h2 · log h2). A detailed complexity
analysis of the OMP, its batch implementation, and the K-SVD
are given in [29]. Note that we approximate the solution of the
weighted SOMP by applying its batch implementation without
weights followed by a weighted least-squares. The complexity
of the batch-SOMP per-patch is O

(
K · (n ·m+ s2 · n+ s3)

)
,

where s is the average number of atoms that partic-
ipate in the representation of the HR patches. Adding
now the weights costs additional O

(
K · (s2 · n+ s3)

)
. The

complexity of one dictionary-update step is approximately
O
(
n · (m3 + s2 ·K ·N)

)
, where K · N is the number of

examples (since the number of patches of the HR image
is N and each patch has K similar patches). The overall
complexity of the proposed algorithm under the assumptions
that s� n < m ≈ h2 is

O
(
I · n ·m3 + I ·K ·N · (n ·m+ s2 · n)

)
, (13)

where I is the number of iterations. The chosen parameters
effect the complexity, which can be reduced by choosing
sub-optimal parameters with a minor impact on the overall
interpolation performance.

We compared the complexity of the proposed algorithm with
SME [20], PLE [21] and NARM [15]. Unfortunately SAI [19]
does not provide a complexity analysis; therefore we do not
include it in this comparison. It is worth mentioning, though,
that the runtime of the published implementation of SAI is
faster than the others.

For an image of size N pixels, the complexity of SME
is O (N · logN), PLE costs O(I · B · n2 · N), where I is
the number of iterations and B is the number of PCA bases
(typically B = 19), NARM costs O(I ·n ·N2), where n is the
patch-size. The proposed algorithm costs O(I ·n3 ·(n2.5+N)).
Note that in order to obtain a comparable complexity terms
we made several assumptions about the variables dimensions8.

We test the runtime of an un-optimized Matlab implemen-
tation on an Intel Core i7 3 GHz processor. The runtime for

8Regarding the complexity analysis of NARM and their notations, we set
T = I , NL = N/L2, and assume that q ≈ N/K, t1 < u ≈ p ≈ n ≈
K � q and κ ≈

√
n. The complexity of the proposed algorithm is obtained

under the assumptions that K ≈ s ≈
√
n, n < m ≈ h2, m ≈ n1.5.
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interpolating a 128×128 LR image to a 256×256 HR image is
about 1 minute per iteration; therefore it takes 10-15 minutes
to obtain our best interpolation performance. The algorithm
could be optimized by replacing the exhaustive K-NN search
with a fast patch matching (e.g. [32]), reducing the number of
examples for the dictionary update (e.g. by choosing mostly
active\textured patches), applying the dictionary update every
several iterations, etc. However, we did not take this route,
and this is left for future work.

To conclude, we demonstrated the efficiency of the proposed
technique to recover an HR image from an observed LR
one. We presented the advantages of the proposed two-stage
algorithm over the general objective function. Furthermore,
the experimental results indicate that the proposed method
outperforms the state-of-the-art algorithms for interpolation by
factors of L = 2 and L = 3. We illustrated the influence of the
weights on the final result, discussed the similarity function
and provided a complexity analysis along with a comparison
to the competitive algorithms.

V. CONCLUSION

The interpolation problem is a special case of the super-
resolution task, where pure decimation is applied on the
original high-resolution image, leading to a subset of known
pixels and void values around them in a regular pattern.
The problem of filling-in these missing values has drawn a
considerable attention in the past several years, and various
techniques that rely on image statistics have been proposed.
Inspired by the work reported in [15], [16], we proposed in
this paper a novel image interpolation scheme that is composed
of two phases. In both, the main forces exploited are sparse
representation of the high-resolution image patches with a
trained dictionary, and non-local relations that exist between
image patches. The obtained results are encouraging, and our
hope is to leverage this approach to treat more complicated
scenarios such as single image super-resolution with assumed
blur and noise, or fusion of several images.

APPENDIX

A closed-form solution for Equation (6) via the Lagrange
multipliers method: This problem could be described more
concisely as

x̂ = min
x

1

2
‖Ax− b‖22 s.t. y = Bx, (14)

where B is the down-sampling operator UL, the matrix
A =

[√
W̃1R1;

√
W̃2R2; · · · ;

√
W̃NRN

]
, and the vector

b =
[√

W̃1Dα
sp
1 ;
√
W̃2Dα

sp
2 ; · · · ;

√
W̃NDαspN

]
. Using La-

grange multipliers, the solution is obtained by the following
steps:
1) Form the Lagrangian with Lagrange multiplier vector z by

L(x, z) = 1
2‖Ax− b‖22 + zT (Bx− y). (15)

2) Null the derivative w.r.t. x,

∂L
∂x = 0⇒ x̂ =

(
ATA

)−1 (
ATb−BT z

)
. (16)

where
(
ATA

)
is a diagonal matrix, which counts the

number of representations per each element.
3) Find z by forcing the constraint y = Bx̂:

y = B
(
ATA

)−1 (
ATb−BT z

)
, (17)

leading to a closed-form solution for z by

z =
(
B
(
ATA

)−1
BT
)−1(

B
(
ATA

)−1
ATb− y

)
.

(18)

Notice that the matrix to invert here is positive definite if
ATA is positive definite, and B has full row-rank. In our
case, these two requirements are met.

4) Finally, obtain a closed-form solution for x̂ by substituting
z into Equation (16).

x̂=
(
ATA

)−1
ATb−

(
ATA

)−1
BT z (19)

=
(
ATA

)−1
ATb

−
(
ATA

)−1
BT

(
B
(
ATA

)−1
BT
)−1

B
(
ATA

)−1
ATb

+
(
ATA

)−1
BT

(
B
(
ATA

)−1
BT
)−1

y.

Notice that this expression is misleadingly complex and long,
and in fact it has a simple interpretation and easy computation.
This can be exposed by separating the pixels in x̂ to two kinds
- the ones that were known in the low-resolution image, and
the others. First, by multiplying x̂ by B we isolate the known
pixels, and using Equation (19) this leads to

Bx̂= (20)

B
(
ATA

)−1
ATb

−B
(
ATA

)−1
BT

(
B
(
ATA

)−1
BT
)−1

B
(
ATA

)−1
ATb

+B
(
ATA

)−1
BT

(
B
(
ATA

)−1
BT
)−1

y

= B
(
ATA

)−1
ATb−B

(
ATA

)−1
ATb+ y

= y,

where we have used the self-cancellation of the term
B
(
ATA

)−1
BT with its inverse. The outcome should not be

surprising, as it is exactly the constraint posed in (14).
As to the interpolated pixels, define the operator B̃ as a

decimation that removes the known pixels, leaving only the
others. As above, we multiply x̂ by B̃ in order to see who those
pixels are in the solution obtained in Equation (19). Observe
that since ATA is diagonal, then the term B̃(ATA)−1BT

is zero. This is because BT interpolates an image by zero
filling, the multiplication by (ATA)−1 scales every pixel in
the outcome, and eventually B̃ chooses only the zero pixels.
Therefore, in Equation (19), the second and third terms are
nulled, leading to

B̃x̂ = B̃(ATA)−1ATb, (21)

which means that we put each reconstructed patch in its
location, average them all, and normalize by the number of
contributions per each pixel along with their weights. So, to
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summarize, the solution of the problem posed in Equation (14)
is given by

x̂ =

{
(ATA)−1ATb if this is an interpolated pixel
y if this is a known pixel.
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