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Dictionary Learning for Analysis-Synthesis
Thresholding

Ron Rubinstein, Member, IEEE,

Abstract—Thresholding is a classical technique for signal de-
noising. In this process, a noisy signal is decomposed over an
orthogonal or overcomplete dictionary, the smallest coefficients
are nullified, and the transform pseudo-inverse is applied to
produce an estimate of the noiseless signal. The dictionaries used
is this process are typically fixed dictionaries such as the DCT
or Wavelet dictionaries. In this work, we propose a method for
incorporating adaptive, trained dictionaries in the thresholding
process. We present a generalization of the basic process which
utilizes a pair of overcomplete dictionaries, and can be applied to a
wider range of recovery tasks. The two dictionaries are associated
with the analysis and synthesis stages of the algorithm, and we
thus name the process analysis-synthesis thresholding. The pro-
posed training method trains both the dictionaries and threshold
values simultaneously given examples of original and degraded
signals, and does not require an explicit model of the degradation.
Experiments with small-kernel image deblurring demonstrate
the ability of our method to favorably compete with dedicated
deconvolution processes, using a simple, fast, and parameterless
recovery process.

Index Terms—Analysis dictionary learning, signal deblurring,
sparse representation, thresholding.

I. INTRODUCTION

PARSE representation of signals is a widely-used tech-
S nique for modeling natural signals, with applications
ranging from denoising, deconvolution, and general inverse
problem solution, through compression, detection, classifica-
tion, and more [1]. Such techniques typically take a synthesis
approach, where the underlying signal is described as a
sparse combination of signals from a prespecified dictionary.
Specifically, x = D-y, where x € R" is the original signal,
D € RY*L is a dictionary with atom signals as its columns,
and v € R is the sparse synthesis representation, assumed to
contain mostly zeros. The dictionary D is generally overcom-
plete (I > N), a property known to improve expressiveness
and increase sparsity. The cardinality of -y, i.e., the number of
non-zeros in this vector, is denoted by ||y|lo. We assume that
l7]|o is substantially smaller than N, the signal dimension,
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implying that the model produces an effective dimensionality
reduction.

Recently, a new analysis sparse representation approach has
been proposed, and is attracting increasing attention [2], [3].
This new model considers a dictionary £2 € RZ*" with atom
signals as its rows, and aims to sparsify the analysis representa-
tion of the signal, ¥ = £2x, where y has many vanishing coeffi-
cients (i.e., ||€2x||¢ is small). Recently produced theoretical re-
sults reveal intriguing relations between this model and its syn-
thesis counterpart [3], [4], and research in this direction is still
ongoing. More on this matter appears in Section II below.

While the analysis and synthesis sparsity-based models are
conceptually different, both share a common ancestor known as
thresholding. This classical technique, originally proposed for
Wavelet-based denoising [5], utilizes an orthogonal or overcom-
plete analysis dictionary €2, and suggests a process of the form

x = Q18,(Qy). (1)

Here, y is the noisy signal, T is the dictionary pseudo-inverse,
and S is an element-wise attenuation of the analysis coeffi-
cients governed by A (which should be carefully selected based
on the noise power). Typical choices for £ include the DCT,
Wavelet, Curvelet, and Contourlet dictionaries, among others
[6].

As we show in the next section, the thresholding process is
essentially optimal for finding the sparsest representation, if the
dictionary (analysis or synthesis) is orthogonal [5]. In contrast,
for overccomplete dictionaries, this method is less rigorously
justified, though more recent works have provided important
clues as to the origins of its success (see e.g., [7]).

Several common choices for the operator Sy exist. A par-
ticular widely-used choice, which is also closely related to the
analysis and synthesis sparse representation models, is the hard
thresholding operator S)(«) = «a - 1(Ja| > A). This oper-
ator nullifies the smallest coefficients in 2y, essentially per-
forming an £° sparsification of the analysis coefficients. At the
same time, by multiplying with the synthesis dictionary 1 the
process can also be viewed as a form of synthesis sparse repre-
sentation, and thus, it is essentially a hybrid model. This duality
has initially led to some confusion between the two approaches,
though the distinction between them is now widely recognized

[2].

A. This Work

The nature of the hard thresholding process as a combination
of analysis and synthesis models makes it an appealing target
for research. In this work we consider specifically the task of
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training a dictionary for (1). This task is closely related to the
£° analysis dictionary learning problem [8]-[12], though the op-
timization in our case focuses on recovery performance rather
than on model fitting. Similar task-driven approaches have been
recently employed for #' analysis dictionary training [13], [14],
though the non-explicit form of the analysis estimator in these
cases leads to a more complex bi-level optimization problem.

This paper is organized as follows: We begin in Section II
with more background on the synthesis and the analysis spar-
sity-inspired models and their inter-relations. We introduce the
role of the thresholding algorithm in both these models, and dis-
cuss its optimality. All this leads to the definition of a simple
generalization of the process posed in (1), which disjoins the
analysis and synthesis dictionaries, and thus allows more gen-
eral inverse problems to be solved. We continue in Section III
by presenting our dictionary learning algorithm for this gener-
alized thresholding process, and apply it to small-kernel image
deblurring in Section IV. In Section V we discuss a few specific
related works, focusing on a family of machine-learning tech-
niques which employ formulations similar to (1) for the task of
unsupervised feature training. We summarize and conclude in
Section VL.

II. ANALYSIS-SYNTHESIS THRESHOLDING

A. Synthesis, Analysis, and Thresholding

Sparsity-inspired models have proven valuable in signal and
image processing, due to their ability to reduce the dimension of
the underlying data representation. These models are universal
in the sense that they may fit to various and diverse sources of
information. In the following we shall briefly introduce the syn-
thesis and analysis sparsity-based models, their relationships,
and then discuss the thresholding algorithm, which serves them
both. More on these topics can be found in [1]-[3].

In its core form, a sparsity-based model states that a given
signal x € RY is believed to be created as a linear combination
of few atoms from a pre-specified dictionary, D € R™*L_ This
is encapsulated by the relation x = D-y, where y € R’ is the
signal’s representation, assumed to be k-sparse, i.e., ||y/lo =
k < N. This model is referred to as the synthesis approach,
since the signal is synthesized by the relation x = D-y.

Given a noisy version of the original signal, y = x + n,
where n stands for an additive white Gaussian noise, denoising
of y amounts to a search for the k-sparse representation vector
7 such that ||y — Dry||> is minimized, i.e.,

4 = Argmin||ly — Del||2 Subject To |lv]jo = k. (2)
v

Once the representation is found, the denoised signal is obtained
by X = D#4. If the true support (non-zero locations) of the rep-
resentation has been found in 4, the noise in the resulting signal
is reduced by a factor of /N, implying a highly effective noise
attenuation.

The problem posed in (2) is referred to as a pursuit task. It
is known to be NP-hard in general, and thus approximation al-
gorithms are proposed for its solution. Among the various ex-
isting possibilities, the thresholding algorithm stands out due
to its simplicity. It suggests approximating «y by the formula
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4 = S\(DTy), where Sy nulls all the small entries (positive
or negative) in D7y, leaving intact only the % largest elements
in this vector. Thus, the denoised signal under this approach be-
comes X = DS, (DTy).

What is the origin of the thresholding algorithm? In order to
answer this, consider the case where D is square and orthog-
onal (i.e., DDT = I). In this case, the pursuit task simplifies
because of the relation! ||y — Dyll; = [[DTy — 7||2. With
this modification, the original pursuit task collapses into a set
of 1D optimization problems that are easy to handle, leading
to a hard-thresholding operation on the elements of D¥ yas the
exact minimizer. This implies that in this case the thresholding
algorithm leads to the optimal solution for the problem posed in
(2).

The above is not the only approach towards practicing spar-
sity in signal models. An appealing alternative is the analysis
model: A signal x is believed to emerge from this model if
Qx is known to be (N — k)-sparse, where 2 € RE*Y is the
analysis dictionary. We refer to the vector £2x as the analysis
representation.

Although this may look similar to the above-described
synthesis approach, the two options are quite different in gen-
eral. This difference is exposed by the following view: in the
synthesis approach we compose the signal by gathering atoms
(columns of D) with different weights. A k-sparse signal im-
plies that it is a combination of k& such atoms, and thus it resides
in a k£ dimensional subspace spanned by these vectors. In con-
trast, the analysis model defines the signal by carving it from
the whole R -space, by stating what directions it is orthogonal
to. If the multiplication £2x is known to be (N — k)-sparse, this
means that there are (N — k) rows in §2 that are orthogonal to
x, which in turn means that the signal of interest resides in a
k-dimensional subspace that is the orthogonal complement to
these rows.

The difference between the two models is also clearly seen
when discussing the denoising task. Given a noisy version of an
analysis signal, y = x + n, denoising it amounts to a search for
the signal x which is the closest to y such that || Qx||o = N — &,
ie.,

% = Argmin|ly — x|» Subject To ||Qx|jo = N — k. (3)

Clearly, the denoising process here is quite different from the
one discussed above. Nevertheless, just as before, if the true sup-
port (non-zero locations) of the analysis representation £2x has
been found correctly, the noise in the resulting signal is reduced
by the same factor of &£/N. Furthermore, this problem, termed
the analysis pursuit, is a daunting NP-hard problem in general,
just as the synthesis purusit, and various approximation algo-
rithms were developed to evaluate its solution.

What happens when €2 is square and orthogonal? In this
case the analysis pursuit simplifies and becomes equivalent to
the synthesis model. This is easily seen by denoting 2x as -y
which implies x = Q7. Plugging these two relations into the
problem posed in (3), we obtain the very same problem posed
in the synthesis case, for which the very same thresholding

IThe L» norm is invariant to unitary rotations, a property known as the Par-
seval theorem.
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algorithm is known to lead to the optimal solution. Thus, in this
case, the thresholding solution becomes * = Q7' S, (Qy).

To summarize, we have seen that both the synthesis and the
analysis models find the thresholding algorithm as optimal in the
orthogonal case. When moving to non-orthogonal dictionaries,
and indeed, to redundant ones, this optimality claim is no longer
valid. Nevertheless, the threshodling algorithm remains a valid
approximation technique for handling both pursuit problems (2)
and (3), and in some cases, one could even get reasonable ap-
proximations with this method [1], [7]. In such cases, the general
formula to use would be the one posed in (1), where a pseudo-in-
verse is replacing the plain transpose operation.

B. Analysis-Synthesis Decoupling

The denoising process posed in (1) can be easily extended to
handle more general recovery tasks, by decoupling the analysis
and synthesis dictionaries in the recovery process:

% = DS\ (Qy). 4)

Here, D € RM*L Q ¢ RE*N and M # N in general. This
generalization can model, for example, degradations of the form
y = Hx + n, where H is linear (possibly rank-deficient) and
n is white Gaussian noise, by setting D = H'Q'. Additional
study of the degradations supported by this formulation is left
for future research; instead, in this work we adopt an alternative
model-less approach in which the training process itself learns
the degradation model from examples.

One advantage of the proposed dictionary decoupling is that
it results in a simpler dictionary training task, due to the elim-
ination of the pseudo-inverse constraint between the two dic-
tionaries. The decoupling of the dictionaries makes the process
a true analysis-synthesis hybrid, which we thus name analysis-
synthesis thresholding.

Threshold Selection: One point which must be addressed in
any shrinkage process of the form (1) or (4) is the choice of the
threshold A. Common techniques for threshold selection include
SureShrink [15], VisuShrink [16], BayesShrink [17], K-Sigma
shrink [18], and FDR-shrink [19], among others. Alternatively,
in this work we adopt a learning approach to this task, and train
the threshold as a part of the dictionary learning process. We
note that in practice, the threshold value will generally depend
on the noise level. For simplicity, in the following we address
this by training an individual triplet (£2, D, ) for each noise
level. In a more practical setting, it is likely that a single dic-
tionary pair could be trained for several noise levels, adapting
only the threshold values to the different noise levels using the
proposed threshold training process.

III. DICTIONARY TRAINING PROCESS

A. Training Target

The recovery process (4) gives rise to a supervised learning
formulation for estimating the signal recovery parameters.
Specifically, given a set of training pairs {(x;,y;)} consisting
of original signals x; and their degraded versions y;, we seek
a triplet (D, €2, A) which best recovers the x;’s from the y;’s.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 22, NOVEMBER 15, 2014

Letting X = [x1X2...xXg|andY = [y1¥2...¥r], the training
process takes the form?:

{2, D, A} = Argmin||X — DS, (QY)||%. (5)
QD)

As such, the analytical form of the thresholding estimator in (4)
leads to a closed-form expression for the parameter tuning opti-
mization target posed here. This should be contrasted with more
effective pursuit methods such as Basis Pursuit [1], which ap-
proximate the sparsest representation via yet another optimiza-
tion goal, and thus lead to a complex bi-level optimization task,
when plugged into the above learning-based objective function.

Returning to (5), we note that this problem statement is in fact
ill-posed, as we are free to rescale @ — (af2), D — (1/a D),
A — (a)) for any &« > 0. Thus, we could normalize this
problem by selecting, e.g., A = 1, and allowing the optimization
to set the norms of the rows in €2 to fit this threshold. Alterna-
tively, the normalization we choose here—mainly for presenta-
tion clarity—is to fix the norms of all rows in €2 to unit length,
and allow the threshold to vary. However, to accommodate this
normalization, we must clearly allow different threshold values
for different rows in Q2. Thus, we define A = (A1, ... Ag), where
A; is the threshold for the i-th row of £2. With this notation, we
reformulate our training target as:

{2, D, A} = Argmin||X — DS, (QY)||%
Q.D.A

Subject To ||w;ill2 = 1V, (6)

where Sy is a function operating on matrices with L rows,

thresholding the i-th row by A;. The vectors w;{(i = 1...L)
represent the rows of {2, arranged as column vectors.

B. Optimization Scheme

We optimize (6) using a sequential approach similar to the
K-SVD and Analysis K-SVD [11], [20]. At the j-th step, we
keep all but the j-th pair of atoms fixed, and optimize:

{@;,d;,A;} = Argmin||X — DS (QY)||%

Wi dj,Aj

Subject To |lw;|l2 = 1. (7)
To isolate the dependence on the j-th atom pair, we write:
X~ DSX\QY)|F = X = > diSx @i Y)|7
k
= |[E; — d; S, (w] Y[,

where E; = X — 37, . d,Sy, (wlY). Thus, our optimization
goal for the j-the atom pair becomes:

{@j,d;, A} = AI’%IHiHHEj — ;S (W] Y)|IF

Subject To |lw;ll2 =1. (8)

2Note that here and elsewhere in the paper, whenever referring to a minimiza-
tion target with possibly a multitude of solutions, we use the simplified notation
x = argmin_f(x) to denote the goal of locating any one of the members in
the solution-set, assuming all are equally acceptable.
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We note that the hard thresholding operator defines a parti-
tioning of the signals in Y to two sets: letting J = J(w;, A;)
denote the indices of the examples that remain intact after the
thresholding (i.e., lwly;| > Aj), we split Y to the matrices
Y7 and Y/, containing the signals indexed by .J and the
remaining signals, respectively. We similarly split E; to the
submatrices E,’ and EJ] . With these notations, the above can
be rearranged as:

ArgminHET] - djw]TYJ”% + ||E_]7”%‘
wj,dj, A

Subject To |lw;llz =1. (9)

Optimizing this expression is obviously non-trivial as the target
function is non-convex and highly discontinuous. The main
difficulty is due to the fact that updating w; and A; modifies
the signal partitioning J, causing a non-smooth change to
the cost function. One straightforward approach, taken by
the K-SVD algorithm for instance, is to perform the update
while constraining the partitioning of the signals to remain
fixed. Under such a constraint, the atom update task can be
formulated as a convex Quadratic Programming (QP) problem,
and can be globally solved. Unfortunately, this approach can
only accommodate small deviations of the solution from the
initial estimate, and thus we take a different approach here. For
completeness, we detail the derivation of the QP formulation in
Appendix A.

1) Optimization via Rank-One Approximation: A simple and
effective alternative to the above approach is to make the ap-
proximation that the update process does not change much the
partitioning of the signals. This approach assumes that the set ./
remains roughly constant during the update, and thus, approxi-
mates the target function in (9) by

Argmin||EZ — djw! Y73+ 1B |3
wi.dj. A

Subject To |lw;ll2 = 1. (10)
Here, .Jy denotes the current partitioning of the signals. For-
mally, this approach is equivalent to optimizing (8) under a
first-order expansion of Sy, which is reasonably accurate for
coefficients far from the threshold.

Deriving a formal bound on the error of the proposed approx-
imation is difficult. In fact, when the set .J is small, the approx-
imation becomes useless as the signal partitioning may be sub-
stantially altered by the update process. However, when the set
J covers a significant enough portion of the examples, we ex-
pect the majority of examples to follow this assumption due to
the nature of the update which favors signals already using the
atom. Our simulations support this assumption, and indicate that
the typical fraction of signals moving between .J and .J is quite
small. A representative case is provided in Fig. 1: we see that
the fraction of signals moving between .J and .J in this case is
<12% for the first iteration, and goes down to just 2—6% for the
remaining iterations.

By refraining from an explicit constraint on the partitioning,
we both simplify the optimization as well as allow some outlier
examples to “switch sides” relative to the threshold. Returning
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Average RMSE

% signals switching sides

Iteration Iteration

Fig. 1. Fraction of examples “switching sides” relative to the threshold during
dictionary training. Results are for a pair of dictionaries with 256 atoms each,
used to denoise 8 x 8 image patches (¢ = 10). Training patches are extracted
from eight arbitrary images in the CVG Granada dataset [21], 40 000 patches
from each image. Left: Percentage of examples switching sides during each
algorithm iteration (median over all atom pairs). Right: Corresponding target
function evolution.

1: Input: Matrices E, Y € RV*E
2: Output: Solution to:

Argl}lin |E —dw?Y||% Subject To [w|o=1
w

3: procedure:
4. Compute the SVD: Y = USV7T
5. Ac=diag(sy ..., 55
6 Y:=AUTY
~T
7 {d,@}:= Argmin |EY —do’||%
g wl:=oTAUT
9.0 d:=d- w2
100 wh=wl/|wl2
11: end

Fig. 2. Rank-one approximation used in the dictionary training.

to (10), &/ ;]“ in this optimization is now constant, allowing us to
reduce the atom update task to:

{w;, &J} = Arg min||E‘7»]U - djw;‘-rYJ“ I
wj.d; ’
Subject To |lw;|l2 = 1. (11)
We note that A ; is omitted in this formulation, as the partitioning
is fixed and thus A; has no further effect. Nonetheless, we in-
deed update ) ; following the update of w; and d;, in order to
optimally tune it to the new atom values.

The resulting problem (11) is a simple rank-one approxima-
tion, which can be solved using the SVD. Due to the presence of
the matrix Y”°, the solution requires a short derivation which
we detail in Appendix B. The resulting procedure is listed in
Fig. 2. We should note that the solution proposed assumes that
Y 70 is full rank, a condition easily satisfied if enough examples
are available.

2) Threshold Update: Oncew; and d; are updated according
to (11), we recompute the threshold A; to match the new atoms.
Optimizing the target function (8) for A; translates to the fol-
lowing optimization task:

Aj = Argmin||E; — d; Sy, (w]Y) |3
A

J

(12)
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1: Input: Matrices E, Y € RV*®_atoms d,w € RV
2 Output: Solution to Argmin |E — dSx(wTY)|%

3: Preprocess: Sort the columns of E and Y in increasing
order of |wTY]|

4. procedure:

50 Vi ooy = |e|3

6: Vi : ﬂz = ||eZ — dwTyiH%
7 81 1= Z?:l 52

8 for k=1...R do

9 Sky1 =8k + ok — B

10: epd for
11 k= Argmkin Sk

0 k=1
122 A= Jwlyp[+1 E=R+1
(|wTy;_ | + [wTyz])/2  otherwise
13: end

Fig. 3. Threshold update used in the dictionary training.

This problem can be globally solved due to the discrete nature
of the hard threshold operator. Without loss of generality, we as-
sume that the signals are ordered such that |w? y1| < |w] y»| <
--- < |w] yg|. Thus, for any threshold A; € ([w] y1|, |w} y &),
there exists a unique index k& = k(};) such that |w] yi 1| <
A; < |w]-Tyk|. The examples which survive this threshold are

Yk, Ye+1: - - - » YR, and we can thus rewrite (12) as:
k(Xj)—1 R
Aj=Argmin Y e+ Y llei — djwl vill3,
Ay i=1 i— (N
1= i=k(A;)

where e; is the i-th column of E;. In this formulation, & en-
closes all the necessary information about A;, and the optimiza-
tion can therefore be carried out over the discrete transition point
k, which is a simple task. Introducing the notations a; = ||e;||3
and 3; = ||e; — djwfyiﬂg, the optimization task for & is given
by:

k-1 R
k= Argmin Z a; + Z Bi. (13)
o= i=k

This expression is minimized directly by computing the values
s = Zf;ll w + Zfik 3; for all k and taking the global min-
imum. The values sj; are computed via the recursion s; =
2?:1 f3; and sgy1 = s + ar — Bi. Once the value k is
known, any suitable value for A; can be selected, e.g., A; =
(|w]'yi 4] + |} y;])/2. The threshold update process is sum-
marized in Fig. 3.

3) Full Training Process: Putting the pieces together, the
atom update process for the j-th atom pair consists of the fol-
lowing steps: (a) finding the set .Jy of signals using the current
atom pair; (b) updating w; and d; according to (11); and (c)
recomputing the threshold A; by solving (13). The algorithm
processes the dictionary atoms in sequence, and thus benefits
from having the updated atoms and error matrix available for

1: Input: Training signals X € RM* 2 degraded signals
Y € RV*E initial dictionaries ©y € R"*N, D, €
RMx*L  initial thresholds Ao, number of iterations
N, iter

2: Output: Dictionaries €2, D and threshold vector A
minimizing (6)

3: Init: Set Q := Qo, D= Do, A= AO

4: for n =1... Njjer do
5: forj=1...Ldo
6: Ji={ie{l...R}| |wly,| > A}
7: Ej :X_Zkyéjdkshk(ng)
8: {d;,w;} = Argmin HE;’ — dTY’|Z
d,]|wl|2=1
(Fig. 2)
9: Aj = Argm)\in |E; —d;Sx(w]Y)||3  (Fig. 3)
10: Q{j-th row} := w]
11 D{j-th col} :=d,;
12: A{j-th elem} = ),
13:  end for
14: end for

Fig. 4. Full analysis-synthesis dictionary learning algorithm.

the subsequent updates. The full training process is detailed in
Fig. 4. Note that the algorithm assumes some initial choice for
Q. Dy and Ag. In practice, our implementation only requires an
initial dictionary §24. Our tests indicate that the overall process
is sensitive to the choice of the initialization, and thus care must
be taken with respect to this matter. We have chosen to use the
redundant DCT as §2g, as this proves to be effective for nat-
ural images. For Dy we initialize with either Dy = Qf or
Dy = X(Q0Y)" (we have found the first to give slightly better
results in our experiments below), and for Ag we begin with
an arbitrary choice Ag = (A, ..., A) where A is the median of
the coefficients in |€2Y |, and run one sweep of the algorithm in
Fig. 3 over all threshold values.

As previously mentioned, the proposed atom update is sub-
ject to the condition that the set .Jy have some minimal size. In
practice, we set this minimum to a liberal 5% of the examples.
However, if this minimum is not satisfied, we discard the current
atom pair, and apply steps (b) and (c) above with .J; being the
entire set of signals. This heuristic process replaces the atom
pair with a new pair which is hopefully used by more exam-
ples. A complementary approach, which we did not currently
employ, would be to allow a few atoms with a smaller number
of associated examples to prevail, and optimize them using the
QP process described in the Appendix.

IV. EMPIRICAL EVALUATION AND DISCUSSION

A. Experiment Setup

We evaluated the performance of the proposed technique for
small-kernel image deblurring. Our training set consists of eight
natural images taken from the CVG-Granada dataset [21]. Four
of these are shown in Fig. 5. Each of the training images was
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Average RMSE
2 o2 B 2

H H
S o &

o 2 4 6 8 10 12 14 16 18 20
teration

Fig. 6. Results of the training algorithm for image deblurring. Top left: trained
€. Top right: trained D. The squares in each grid represent the atoms of the
dictionary, contrast-normalized and reshaped to the block size. Bottom left: ab-
solute values of the entries in D£2. Bottom right: Error evolution during the
algorithm iterations (y-axis is the average RMSE of the recovered patches). Pa-
rameters for this experiment are listed in Table I (case 1).

subjected to blur and additive white Gaussian noise, producing
eight pairs of original and degraded input images. We then ex-
tracted from each image 40 000 random training blocks along
with their degraded versions, for a total of 320 000 example
pairs. We subtracted from each example pair the mean of the
degraded block, to obtain the final training set.

The initial dictionary §£2y was an overcomplete DCT dictio-
nary, and training was performed for 20 iterations. An example
result of the training process is shown in Fig. 6. The top row
shows the trained € (left) and D (right). The bottom-left figure
shows the absolute values of the entries in the matrix D€2, which
exhibits a diagonal structure characteristic of a local deconvolu-
tion operator. The bottom-right figure depicts the error evolution
during the algorithm iterations. We note that while the error re-
duction is not completely monotonic due to the approximations
made in the algorithm derivation, overall the error goal is effec-
tively decreased.

To evaluate deblurring performance on new images, we used
the following procedure: given a new blurry image, we extracted
all overlapping blocks, subtracted their means, and applied the
learned thresholding process to each block. We then reintro-
duced the blocks means, and constructed the recovered image
by averaging the overlapping blocks. We tested our method on
seven standard test images, all of which were not included in
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TABLE I
DEBLURRING EXPERIMENT PARAMETERS. THE TWO DEGRADATION CASES
ARE TAKEN FROM [22]

Case 1 (Fig. 7) Case 2 (Fig. 8)
Blur kernel size 5X5 11 x 11
Blur standard deviation 1.5 1.75
Noise power o =825 o =115

(BSNR=15dB) (BSNR=30dB)
Block size 10 x 10 12 x 12
Dictionary size 256 x 100 576 x 144
Training iterations 20 20
Numer of training blocks 320,000 320,000

Fig. 7. Deblurring results for Lena. See Table I for the full experiment param-
eters. RMSE values are 10.78 (blurry), 7.55 (ForWaRD), 6.76 (LPA-ICI), 6.12
(AKTV) and 6.63 (Thresholding). (a) Original. (b) Blurry and noisy. (c¢) For-
WaRD. (d) LPA-ICI. (¢) AKTV. (f) Thresholding.

the training set: Barbara, Cameraman, Chemical Plant, House,
Lena, Peppers and Man.

B. Results

Results of our deblurring process for two example cases are
shown in Figs. 7 and §; see Table I for the full list of experiment
parameters. The two cases are taken from [22], whose inputs are
made available online [23]. The figures compare our results with
those of ForWaRD [24], LPA-ICI [25] and AKTV [22].3 The
first case (Fig. 7) represents strong noise and small blur, while
the second case (Fig. 8) represents moderate noise and moderate
blur. In the current work we limit ourselves to handling small
to moderate blur kernels, as large kernels require much larger
block sizes which are impractical in the current formulation.
We thus do not replicate the two additional cases considered in
[22], which employ very large blur kernels. A few options for
addressing larger blur kernels are mentioned in the conclusion.

As can be seen, our results in both cases exceed ForWaRD
and LPA-ICI in raw RMSE by a small margin, and lose only
to the AKTV. Visually, our result in Fig. 7 maintains more of
the noise than the other methods, though subjectively it also
appears less “processed”, and we note that lines and curves, for

3We note that while later works on image deblurring have been recently pub-
lished [26], our goal here is mainly to assess the performance of our simple
learning approach and demonstrate its unique properties, rather than compete
with the state-of-the-art.
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TABLE 11
FuLL RESULTS FOR THE TWO CASES IN TABLE I. VALUES REPRESENT RMSE

Case [ Case 2
Tmage Degraded | Thresh. T ForWaRD Tmage Degraded | Thresh. T ForWaRD
Barbara 17.64 15.44 1584 Barbara 16.57 14.74 1481
Cameraman 17.37 13.26 13.46 Cameraman 17.78 11.87 11.82
Chem. Plant 14.48 10.46 11.48 Chem. Plant 15.05 8.67 8.58
House 8.76 3.90 5.03 House 4.94 2.54 2.50
Lena 10.77 6.61 7.44 Lena 8.92 5.47 5.54
Peppers 10.78 6.85 7.33 Peppers 8.60 5.93 6.06
Pirate 12.36 8.87 9.54 Pirate I1.11 7.62 773

Fig. 8. Deblurring results for Chemical Plant. See Table I for the full experi-
ment parameters. RMSE values are 15.09 (blurry), 8.98 (ForWaRD), 8.98 (LPA-
ICI), 8.57 (AKTV) and 8.76 (Thresholding). (a) Original. (b) Blurry and noisy.
(c) ForWaRD. (d) LPA-ICI. (e)AKTV. (f) Thresholding.

instance, appear straighter and less “jaggy”. Continuing with
Fig. 8, our result in this case seems more visually pleasing than
that of ForWaRD and LPA-ICI, and reproduces more fine details
(see for instance the field area at the top right). Compared to
the AKTYV, our result maintains slightly more noise, though it
also avoids introducing the artificial smear and “brush stroke”
effects characteristic of the AKTV, and likely associated with
its steering regularization kernel.

C. Discussion

Compared to the other methods in this experiment, our de-
blurring process is simple and efficient, and involves essen-
tially no parameter tuning (except for the block size). In these
respects, the ForWaRD algorithm is the most comparable to
our system as it is fast and its parameters can be automati-
cally tuned, as described in [24]. The ForWaRD algorithm is
also the most similar to our work as it is based on a scaling
(shrinkage) process of the image coefficients in the Fourier and
Wavelet domains. The LPA-ICI and AKTYV, on the other hand,
both involve parameters which must be manually tuned to opti-
mize performance. Also, while the LPA-ICI is relative fast, the
AKTYV is particularly computationally intensive, requiring e.g.,
in the case shown in Fig. 7, at least 12 minutes to achieve a rea-
sonable result, and nearly an hour to reproduce the final result
shown in the figure. In comparison, our method on the same

hardware# completed in just 8 seconds, due to the diversion of
most of the computational burden to the offline training phase.
Furthermore, our recovery method is highly parallelizable and
consists of primitive computations only, and thus, can likely be
optimized to achieve real-time performance.

Another notable difference between our method and the
others is its “model-less” nature, as previously mentioned.
Indeed, all three methods (ForWaRD, LPA-ICI and AKTV)
assume accurate knowledge of the blur kernel, which is typical
of deconvolution frameworks. Our method is fundamentally
different in that it replaces this assumption with a very different
one—the availability of a set of training images which undergo
the same degradation, and implicitly represent the convolution
kernel. In practice, this difference may not be as significant as it
seems, as in both cases a real-world application would require
either a prior calibration process, or an online degradation
estimation method. Nevertheless, in some cases, acquiring a
training set may be a simpler and more robust process (e.g.,
using a pair of low and high quality equipment) than a precise
measurement of the point spread function.

Finally, our method is inherently indifferent to boundary con-
ditions, which plague some deconvolution methods. Our decon-
volution process can be applied with no modification to images
undergoing non-circular convolution, and will produce no vis-
ible artifacts near the image borders. Of the three methods we
compared to, only the AKTV provides a similar level of immu-
nity to boundary conditions.

Table II lists our deblurring results for all seven standard test
images. We compare our results to those of the ForWaRD al-
gorithm, which we chose due to its combination of efficiency,
lack of manual parameter tuning, and relation to our method.
The thresholding results in these tables were produces using the
same trained dictionaries used to produce the results in Figs. 7
and 8. The ForWaRD results were generated using the Matlab
package available at [27].

V. RELATED WORKS

Just before we conclude this paper, we would like discuss
possible relations between the paradigm proposed here past
work. We shall put special emphasis on two very different lines
of work which are of some relevance to the approach taken
in this paper—the one reported in [28] and follow-up work,
which proposes a closely related shrinkage strategy for image
processing tasks, and the vast work on feature learning and
auto-encoders, which emerged recently in machine learning, in
the context of deep-learning [29], [30].

4All the simulations reported in this paper have been run on an Intel Core
i7 CPU 2.8 Ghz PC, with 8 GB of memory, and using Matlab R2013a without
parallelization.
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A. Shrink Operator Learning

One aspect of problem (1) which has been previously studied
in the literature [28], [31], [32] is the design of the shrink func-
tion Sy. In this family of works, the dictionary €2 is assumed
to be fixed, and the goal is to learn a set of scalar shrink func-
tions (or, more precisely, a set of scalar mappings) given pairs
of original and degraded examples. The process trains an indi-
vidual mapping S; for each representation coefficient, using a
piecewise-linear approximation of the function. The method is
found to produce competitive results for image denoising, and
is shown to apply to other recovery tasks as well.

One interesting observation, relevant to the current work, is
that the resulting trained shrinkage operators in [28] bear no-
table resemblance to the hard thresholding operators we use in
our work (though with a small and intriguing non-monotonicity
around the center in some cases, see Fig. 8 there). This is an en-
couraging result, as it demonstrates the usefulness and near-op-
timality of the hard thresholding operator for practical applica-
tions, as explored in the analysis-then-synthesis system we pro-
pose in (4).

B. Feature Learning

Dictionary learning for the tasks (1) and (4), in the context of
signal reconstruction, has not yet been addressed in the literature
(to the best of the authors’ knowledge). However, closely related
methods have been receiving substantial attention by the Ma-
chine Learning community, in the context of feature (or repre-
sentation) learning [29], [30]. The automatic learning of signal
features—for tasks such as classification, detection, identifica-
tion and regression—has become enormously successful with
the advent of greedy deep learning techniques, due to Hinton et
al. [33]. In these works, a set of features is extracted from the
signal x via the relation

p(x) = S(Qx +b), (14)
where S is an element-wise non-linear shrink function. Typ-
ical choices for S include the sigmoid and tanh, though smooth
soft-thresholding has also been proposed [34]. We note however
that as opposed to thresholding functions, the sigmoid and hy-
perbolic tangent are not true sparsifying functions, and thus do
not produce sparse outputs in the £° sense.

The feature-extraction process (14) is iteratively applied
to ¢(x) (or rather, to a post-processed version of it, see e.g.,
[35]), forming a hierarchy of increasingly higher-level features
01(X)...o(x). The resulting feature-extracting networks
lead to state-of-the-art results in many machine learning tasks
[30].

Many heuristic approaches have been proposed to train the
parameters (2, b) of the feature extractors in (14). Among
these, two highly successful approaches which are particularly
relevant to the present work are (denoising) auto-encoders [36]
and predictive sparse decompositions [37]. Auto-encoders train
features using an information-retention criterion, maximizing
recoverability of the training signals from the extracted features
via an affine synthesis process of the form x = Dg(x) + ¢
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(where D and c are trained as well).> Denoising auto-encoders
build on this concept by seeking features which achieve de-
noising of the training signals, leading to:

{2,5,D, &} = Argmin||X — (DS(QY +b) +¢) |2,
Q.b,Dc

where X and Y are clean and noisy training signals, respec-
tively. It should be noted that (in a slight abuse of notation)
we use matrix-vector additions in the above to denote adding
a vector to each column of the matrix.

Closely related, predictive sparse decomposition (PSD)
learns features which aim to approximate the solution of an
¢* synthesis sparse coding problem, in a least-squares sense.
The method can similarly be used in both noiseless and noisy
settings, and is given by:

{€2,b,D} = Argmin||X — DL||Z + A|T|x
Q.bD
+ ||l = S(QY + b)||%,

where I acts as a mediator between the analysis feature vectors
and the synthesis sparse representations.

In all these formulations, the training process outputs a syn-
thesis dictionary D alongside the analysis one, though the actual
outcome of the algorithm is the analysis dictionary alone. The
target function is minimized using a gradient-based technique
such as stochastic steepest-descent or Levenberg-Marquardt it-
erations, and thus, the shrink function is intentionally selected
to be smooth.

Despite the mathematical similarity, the present work dif-
fers from these feature-learning approaches in several ways.
Most evidently, our work specifically employs a non-smooth
hard thresholding function, which leads to a very different
minimization procedure in the spirit of £° dictionary learning
methods. This has two advantages compared to gradient-based
methods—first, our approach requires significantly fewer itera-
tions than gradient-based techniques; and second, our training
process has no tuneable parameters, and is very easy to use.
Another obvious difference between the two frameworks is
the very different nature of their designated goals—whereas
the trained features are stacked to multi-layer cascades and
ultimately evaluated on clean signals for machine-learning
tasks, our method is a single-level process, intended for signal
reconstruction.

VI. SUMMARY AND CONCLUSIONS

In this work we have presented a technique for training the
analysis and synthesis dictionaries of a generalized thresh-
olding-based image recovery process. Our method assumes
a hard-thresholding operator, which leads to ¢°-sparse rep-
resentations. This exact sparsity was exploited to design a
simple training algorithm based on a sequence of rank-one
approximations, in the spirit of the K-SVD algorithm.

SNote that in the case of restricted-range shrink functions such as the sigmoid
or tanh, the input signals are typically normalized to enable a meaningful recon-
struction.
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Our training method is designed to simultaneously learn the
dictionaries and the threshold values, making the subsequent
recovery process simple, efficient, and parameterless. The
thresholding recovery process is also naturally parallelizable,
allowing for substantial acceleration. A unique characteristic
of the process is its example-based approach to the degradation
modeling, which requires no explicit knowledge of the degra-
dation, and instead implicitly learns it from pairs of examples.
Our approach can thus be applied in cases where an exact
model of the degradation is unavailable, but a limited training
set can be produced in a controlled environment.

The proposed technique was applied to small-kernel image
deblurring, where it was found to match or surpass two dedi-
cated deconvolution methods—ForWaRD and LPA-ICI—and
lose only to the computationally demanding AKTV. Our re-
covery process is also robust to boundary conditions, which
some deconvolution methods are sensitive to. We conclude that
the proposed learning algorithm provides a simple and effi-
cient method for designing signal recovery processes, without
requiring an explicit model of the degradation.

A. Future Directions

The proposed technique may be extended in several ways.
First, our method could be adapted to degradations with wider
supports by either incorporating downsampling in the recovery
process, or more generally, by training structured dictionaries
which can represent much larger image blocks [6], [38] (in this
respect, we note that downsampling is in fact just a particular
choice of dictionary structure). Other possible improvements
include training a single dictionary pair for multiple noise levels,
and incorporating the block averaging process directly into the
dictionary learning target, as done, for example, in [28].

Other directions for future research include performing a
more rigorous mathematical analysis of the properties and suc-
cess guarantees of the thresholding approach, and developing
a unified method for simultaneously training the dictionaries
and the shrink functions—which could potentially provide a
dramatic improvement in restoration results.

Finally, the relation between our method and recent unsu-
pervised feature-learning techniques—namely auto-encoders
and predictive sparse decompositions—gives rise to several
intriguing future research directions. Among these, we high-
light the applicability of the feature-learning formulations to
signal restoration tasks; the use of specialized optimization
techniques, similar to those developed for dictionary-learning
problems, to accelerate feature-training processes; and the
extension of our work as well as other sparse representation
methods (particularly analysis-based) to form multi-level fea-
ture-extracting hierarchies for machine learning tasks. Among
the directions mentioned in this section, we find some of the
latter to offer particularly promising opportunities for future
research.

APPENDIX A
QUADRATIC PROGRAMMING ATOM UPDATE

In this Appendix we describe the formulation of the atom
update process (8) as a convex QP problem. Beginning with (8),
we take a block-coordinate-relaxation approach and update d;
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independently of w; and A;. Thus, the update of d; becomes a
simple least-squares task, given by

d; = Ej’)’j/(')';r’)’j)»

withy; = Sy, (Y wj).

Moving to the update of w; and A;, in the QP approach we
constrain the update such that it maintains the partitioning of the
training signals about the threshold. Thus, we split Y to the sig-
nals Y which survive the current threshold and the remaining
signals Y, and similarly split E; to E}’ and E}I , obtaining:

(15)

{@;, 4} = Argmin||B] — djw] Y77 + |B] I3

WA
Subject To |wlyi| > A\;Vie J
\w?yi| < )\JVI eJ
(16)

The constraints ensure that the signal partitioning is maintained
by the update process. Note that due to the constraining, .J is
constant in the optimization.

We now recall that the norm constraint on w; is in fact an ar-
bitrary normalization choice which can be replaced, e.g., with a
fixed value for A;. Thus, we choose to lift the norm constraint on
w; and instead fix the threshold A; at its current value. Indeed,
the outcome of this optimization can be subsequently re-scaled
to satisfy the original unit-norm constraint. Adding the fact that
EJ] is fixed in the above optimization (as J is fixed), the update
task can be written as:

lwilla = 1.

w; = AriminHET] — djw?YJH%
i

Subject To |wlyi| > A\;Vie J
|wJTyi| < )\j Vie J.

This formulation does not yet constitute a QP problem, as the
first set of constraints is clearly non-convex. To remedy this, we
add the requirement that the coefficients wfyi do not change
sign during the update process, for the signals in the set J. In
other words, we require thatw, does not “change sides” relative
to the signals in Y. While this choice adds further constraining
to the problem, in practice many local optimization techniques
would be oblivious to the discontinuous optimization regions
anyway, and we thus accept the added constraints in return for a
manageable optimization task. Of course, an important advan-
tage of this specific choice of constraints is that it necessarily
leads to a non-empty feasible region, with the current w; con-
stituting a good starting point for the optimization.

With the updated set of constraints, the optimization domain
becomes convex, and the problem can be formulated as a true
QP problem. To express the new constraints, we denote by o; =
sign(wfy,-) the signs of the inner products of the signals with
the current atom. We can now write the update process for w;
as:

w; = Ar%;minHET] - djw?YJH%
i

Subject To aiwfyi >X VieY;
—/\j < w]Ty,i < )\j Vi e Yj. (17)
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This is a standard QP optimization task, and can be solved
using a variety of techniques. Once w; is computed according
to (17), we restore the original constraint on w; by normalizing
{w]—, )\J} — {Oéjwj./ ij)\j} with o; = 1/”(4]]'”2, and compute
d; using (15), which concludes the process.

APPENDIX B
RANK-ONE APPROXIMATION SOLUTION

In this Appendix we consider the solution to

(18)

argmin||E — dw’ Y||7  Subject To |lw]l2 = 1,
d,w

where E, Y € RY*E and are assumed to be full-rank. To de-
rive the solution, we first assume that YYZ = I (ie, YT isa
tight frame). In this case we have®:

IE - dw" Y[}
=tr {ETE —2ETdw?Y + YdewaTY}
=tr {ETE —2YETdw! + YYdewaT}
= tr {ETE —2YETdw! + wdewT}
+tr {YE'EY" - YE'EY"}
=tr {E'E- YE'EY"}
+tr {YETEY? - 2YETdw” + wd”dw”}
=tr {E'"E- YE'EY"} + |[EY" — dw”||7.

Since the left term is constant in the optimization, we see that
when Y7 is a tight frame, (18) is equivalent to:

Argmin||[EYT — dw® || Subject To |lw|2 =1, (19)
dw

which is a standard rank-one approximation of EY " whose so-
lution is given by the singular vector pair corresponding to the
largest singular value of EY” .

For a general full-rank Y, we compte its SVD,Y = USVT,
We denote the singular values on the diagonal of S by 1 ... sn,
and let A = diag(s; ', ..., s ). We note that the matrix

Y = AUTY = ASVT =14,z V7T

satisfies YY7 = I and thus Y7 is a tight frame.
Returning to problem (18), we can now write

|E - dw” Y||7 = |[E - do” (AUT) 'AUTY|IE
= ||E - dw"UA Y2,

which leads to the optimization task:

Argmin||E — dwTUA Y2, (20)
dw
Since Y7 isa tight frame, (20) can be solved for d and @’ :=

wTUA " using (19). Once @’ is computed, the computation
is completed by setting w” = @’ AU7, and renormalizing the

SFor simplicity of presentation, we slightly abuse notation and allow differ-
ently-sized matrices to be summed within the trace operator. These should be
interpreted as summing the matrix traces.
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obtained d and w such that |Jw||z = 1. The resulting procedure
is summarized in Fig. 2.
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