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ABSTRACT

This paper deals with the signal denoising problem, assum-
ing a prior based on a sparse representation with respect to
a unitary dictionary. It is well known that the Maximum A-
posteriori Probability (MAP) estimator in such a case has a
closed-form solution based on shrinkage. The focus in this
paper is on the better performing and less familiar Minimum-
Mean-Squared-Error (MMSE) estimator. We show that this
estimator also leads also to a simple closed-form formula, in
the form of a plain recursive expression for evaluating the
contribution of every atom in the solution. We demonstrate
this formula, and compare it to the MAP and the Random-
OMP method devised for approximating the MMSE result.

Index Terms— Sparse representations, MAP, MMSE,
Unitary dictionary

1. INTRODUCTION

One of the most fundamental and extensively studied problem
in signal processing in the removal of additive noise, known
as denoising. In this task, it is assumed that the measured sig-
naly ∈ Rn is the result of a clean signalx ∈ Rn being con-
taminated by noise,y = x + v. As in many other works, we
limit the discussion to zero-mean i.i.d Gaussian noise, with
each entry being drawn according to the Normal distribution
N (0, σ2), with known varianceσ.

In order to be able to differentiate the signal from the
noise, is is important to characterize the signal family as well.
A very successful model is one that leans on the signal’s spar-
sity with respect to some transform. In such a model, the
signal is assumed to be created as a linear combination of a
few basic signal building blocks, known asatoms. Formally
put, x can be represented asx = Dα, whereD ∈ Rn×m

is a known dictionary (set of atoms) andα being asparse
vector of coefficients. Sparsity here implies thatα contains a
small number (¿ n) of non-zero coefficients. In general, the
dictionary may be redundant, containing more atoms than the
dimension of the signal (m ≥ n).
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How can this model be used for recoveringx from the
measurementy? A commonly used method is seeking a sig-
nal x̂ that is both sparse (i.e. has a sparse representation) and
close enough to the measured signal. This task can be written
as seeking the representationα̂ by

α̂ = argmin
α

‖α‖0 + λ‖y −Dα‖22. (1)

This energy function contains two forces, the first promot-
ing sparsity of the signal (where‖α‖0 counts the number of
non-zeros inα) and the second requires proximity to the mea-
surement. This minimization task can be shown to emerge as
the Maximum A-posteriori Probability (MAP) estimator.

Solving the minimization task is in general NP-hard [1],
and therefore approximate solvers are required. A common
such solver, which we will be focusing on here, is a greedy
algorithm known as the Orthogonal Matching Pursuit (OMP)
[2]. In this algorithm, one atom is selected at each step, such
that the norm of the residual (that portion of the signal not yet
represented) is best decreased.

In this paper we focus on the special case where the dic-
tionaryD is unitaryDT D = I (it also means thatm = n). In
such a case, the problem formed in Equation (1) need not be
approximated, as there is a closed-form non-iterative solution
for it [3]. Furthermore, the OMP is known to be exact in such
a case. Needless to say, these facts make the MAP estimator
a very appealing approach for the unitary case.

While MAP estimation promotes seeking the single spars-
est representation, recent work shows that a better result is
possible using the Minimum-Mean-Squared-Error (MMSE)
estimator [4, 5, 6]. The MMSE estimator requires a weighted
average of all the possible sparse representations that may
explain the signal, with weights related to the probability of
these solutions. Just as the MAP in the general setting, this
estimation is impossible to compute, and thus approximation
is proposed. For example, the work reported in [6] suggests
a random version of the OMP for getting several representa-
tions, and plain averaging of them for getting the final result.

The question we focus on in this paper is the following:
When dealing with a unitary dictionary, could the MMSE esti-
mator also enjoy a simple and closed form solution? We show
that this is indeed the case, presenting a recursive formula for
computing this estimation. We develop this formula, and then



demonstrate its superior performance, when compared to the
random-OMP approximate estimator proposed in [6], and the
MAP solution.

The structure of the paper is as follows: In the next sec-
tion we formulate the denoising problem, and review the prior
work on the MAP and the MMSE estimators for the denoising
task described above. Section 3 then re-develops the MMSE
estimation for the unitary case, getting a closed-form recur-
sive formula. Section 4 is dedicated to empirical study of the
various estimators discussed, and in Section 5 we conclude
this paper.

2. PRIOR WORK

In order to deploy the MAP and MMSE estimators for the
denoising task, we need to start by better defining the signal
creation process. The information provided in this section
follows the work in [6].

We assume thatx = Dα is generated by first choosing
the support ofα (locations of non-zero coefficients), denoted
by S, using the probability functionp(S). Following [6] we
shall restrict our treatment for now to the case where all the
supports|S| = k are equally probable, all the rest having zero
probability. We denote the permissable supports byΩk. Once
S is chosen, the representation’s non-zeros are formed as a set
of |S| random iid entries drawn from the Normal distribution
N (0, σ2

x).
We define the operatorPS as the matrix that multiplies

a sparse vectorα ∈ Rm with supportS, and extracts only
the non-zeros by their order to a vector of length|S|. This
is a matrix of size|S| × m, and we denoteDS = DPT

S as
the sub-matrix that contains only the columns referring to the
supportS from D.

For this signal model, if the supportS is known, the best
estimator forx (termedoracle) is given by

x̂oracle = c2DS(DT
SDS)−1DT

Sy = c2yS . (2)

This is a simple projection of the measurementy onto the sub-
dictionary ofD built of the columns of the support. The co-
efficientc2 stands forc2 = σ2

x/(σ2
x +σ2), performing shrink-

age.
As the support is random, the MMSE estimate is given by

an expectation over all possibilities,

x̂MMSE = c2
∑

S∈Ωk

p(S|y)yS . (3)

This is a weighted average of many such oracles, each stand-
ing for a possible support, and each weighted by the proba-
bility of this support to explainy. The termp(S|y) is given
by

p(S|y) ∝ exp
{

c2‖yS‖2
2σ2

}
, (4)

up to a normalization factor. This expression suggests that the
higher the energy remaining in the projection ofy onto the k-
dimensional subspace ofS, the more probable this support
is.

The MAP estimator chooses the supportS that maximizes
the above probability,p(S|y), and computing theoracle es-
timate for this support. Both this estimate and the MMSE
require a sweep through all supports inΩk, which is an im-
possible task in general, due to the exponentially growing size
of this set as a function of the number of atomsm. Thus, OMP
is used to approximate the MAP by solving an exact MAP es-
timator for k = 1 (one atom), peeling the found portion of
the signal, and repeating the process. Similarly, the MMSE
is approximated by the Random-OMP by repeating the OMP
several times, with a random choice of the next atom, based
on p(S|y) for k = 1. This stands as an approximate Gibbs
sampler of this distribution, and thus plain averaging of the
found representations leads to a good approximation of the
MMSE.

In the unitary case, any subset of columns fromD are or-
thogonal, and thus the best supportS that maximizes‖yS‖2
is simply found by computingDT y, sorting the result by (ab-
solute) size, and choosing the firstk entries. Thus, MAP
for this case can be computed exactly. Furthermore, OMP
in such a case is also exact, as the sequential detection of
the largest inner product leads to the same result. Naturally,
we should wonder whether the unitary case installs such sim-
ple and closed-form solution that bypasses the need for the
Random-OMP. This is the topic of the next Section.

3. UNITARY DICTIONARY

3.1. Closed-Form MMSE Formula

The MMSE estimate, as described in Equation (3), can
be read differently. Every possible support in the sum-
mation provides a candidate sparse representation vector
α̂S = PT

S (DT
SDS)−1DT

Sy, each havingk non-zeros in loca-
tions defined by the supportS. Thus, the MMSE estimator is
given by

x̂MMSE = c2D
∑

S∈Ωk

p(S|y)α̂S . (5)

This expression suggests that there is one effective representa-
tion that governs the estimated outcome, given as (we simply
remove the multiplication byD):

α̂MMSE = c2
∑

S∈Ωk

p(S|y)α̂S . (6)

This implies that every atom contributes a pre-specified por-
tion of the overall MMSE estimator. We shall construct a
formula for this contribution, thus turning this estimator into
a practical algorithm.



Returning to Equation (4), we observe that in the unitary
caseyS = DSDT

Sy (sinceDT
SDS = I). Denoting thei-th

entry inDT y asαi, we get that

yS =
∑

i∈S

αidi ⇒ ‖yS‖2 =
∑

i∈S

α2
i . (7)

wheredi is thei-th column fromD. Plugging this in Equa-
tion (4) leads to

p(S|y) ∝ exp
{

c2‖yS‖2
2σ2

}
=

∏

i∈S

exp
{

c2α2
i

2σ2

}
. (8)

We shall denote hereafterqi = exp(c2α2
i /2σ2), and thus

p(S|y) ∝ ∏
i∈S qi. Using this notation, the MMSE estimator

can be re-written as

x̂MMSE = c2
∑

S∈Ωk

p(S|y)yS =
∑

S∈Ωk

∏

i∈S

qi

∑

i∈S

αidi. (9)

Computing this formula in a straight-forward manner is ex-
ponential (≈ mk), as every group ofk = |S| atoms has to be
considered and summed. Rearranging the order of summa-
tions and multiplications in Equation (9) yields an equivalent
expression for the MMSE estimator,

x̂MMSE =
m∑

i=1





 ∑

Ss.t.i∈S

∏

j∈S

qj


 αidi


 . (10)

For simplicity, we denoteQk
i =

∑
Sk

i

∏
j∈Sk

i
qj where we

usedSk
i to denote a group of sizek containingqi. Using this

notation, the MMSE estimator can be written asx̂MMSE =
Ddiag(Q)α. While the direct computation ofQ is exponen-
tial in k, a recursive formula for computingQ is within reach.
Obviously,Q1 = q. Q2 can be obtained fromQ1 by

Q2
i =

∑

j 6=i

qiqj = qi ·
∑

j 6=i

qj = qi ·
∑

j 6=i

Q1
j (11)

= qi ·



m∑

j=1

Q1
j −Q1

i


 .

Similarly, any Qk can be computed from its predecessor
Qk−1 using

Qk
i =

∑

Sk
i

∏

j∈Sk

qj = qi ·
∑

Sk−1s.t.i/∈Sk−1

∏

j∈Sk−1

qj

= qi ·

 ∑

Sk−1

∏

j∈Sk−1

qj −
∑

Sk−1
i

∏

j∈Sk−1

qj


 . (12)

The second term in the brackets is exactly the definition of
Qk−1

i . The first part can also be simplified by

∑

Sk−1

∏

j∈Sk−1

qj =
1

k − 1

m∑

l=1

∑

Sk−1
l

∏

j∈Sk−1

qj (13)

=
1

k − 1

m∑

l=1

Qk−1
l .

with the division by(k − 1) due to each group of(k − 1)
appearing(k − 1) times, once for the summation for each of
its members. Plugging (13) back into (12) we get the final
recursive formula forQk

i :

Qk
i = qi ·

(
1

k − 1

m∑

l=1

Qk−1
l −Qk−1

i

)
. (14)

3.2. Numerical Instability

The recursive formula obtained above suffers from numerical
instability due to errors growing vary rapidly in the recursive
iterations. In order to illustrate this, we consider a toy exam-
ple, where a similar recursive formula is given as

xk+1 = (1− xk)
k2

k + 1
, k = 2, 3, . . . , (15)

We show how numerical errors develop in this simpler for-
mula. To our aid comes the knowledge of an exact solution
for each element in the seriesxk = 1 − 1

k , k = 2, 3, . . .
(this is easy to verify). Now, suppose that at thekth step our
calculation is effected by a small numerical errorεk and thus,
x̃k = xk + εk. Even if the calculation at this stage is done
exactly, the error at the next step becomes

εk+1 = x̃k+1 − xk+1 = (1− x̃k)
k2

k + 1
− xk+1 (16)

= (1− xk − εk)
k2

k + 1
− xk+1 = −εk

k2

k + 1
,

which means that the error grows byk
2

k+1 at the(k + 1)th

iteration, implying an overall growth proportional to(k − 1)!.
This blow of the error is very similar to the one we obtain
in the MMSE recursive formula, and it may cause havoc in
applications (especially for largek).

Stability can be gained by enforcing some known con-
straints on the recursive formula outcome, so as to force the
errors to remain small and controlled. The following con-
straints are straightforward to verify (while normalizing the
series such that

∑
i Qk

i = k):

1. Limited domain:1 ≥ Qk
i ≥ 0

2. Monotonicity ink: Qk
i ≥ Qk−1

i

3. Preservation of order: ifqi > qj thanQk
i > Qk

j .

Enforcing these constraints at each iteration of the recursive
formula is a relatively cheap method of keeping the numer-
ical errors in control. Furthermore, if at stagek during the
calculation of the formula it is determined that one (or more)
probabilityQk

i is to be assigned a value of1, it is then possible
to fix its value for all the following iterations, since it will (ef-
fectively) be in any group ofk or more buckets. To improve
the numerical accuracy for the rest of the entries, it it then
possible to recalculateQk for these entries, by starting over
while ignoring the fixed ones, and running for only(k − 1)
iterations.



3.3. Treating More General Cardinalities

In the above development we assumed that|S| = k and fixed.
However, this is usually not the case, and the more general
case should consider a probability functionp (|S|) (assumed
to be descending for obvious reasons). How does that fit into
the above description?

For the MAP estimator, this is easily integrated. The se-
lected cardinality is one that fulfills

k̂ = argmax
k

max
|S|=k

P (S|y) (17)

or in other words, for each cardinality the probability of the
best support is multiplied by the probability of the cardinality,
and the cardinality that yields the maximal product is then
chosen.

For the MMSE, we need to consider all cardinalities with
their appropriate probabilities. Going back to Equation (9),
this translates into

x̂MMSE = c2
∑

k

p (k)
∑

S∈Ωk

p(S|y)yS (18)

Can the close-form formula developed above still be used?
The answer is yes, with only a slight modification. In the de-
veloped formula, there is a normalization step missing, that
did not affect the computation as long as we had only one
cardinality. This normalization requires division by the num-
ber of groups of sizek that can be formed, which is given by

n!
k!·(n−k)! . This is required to ”level the playing field” between
different cardinalities, as otherwise ifk1 < k2 < n

2 , there are
more combinations for|S| = k2 than for|S| = k1, and this
will create a bias towards|S| = k2. That makes the overall
recursive formula

Qk
i =

p(k)
p(k − 1)

· (k − 1)! (n− k + 1)!
k! (n− k)!

· (19)

qi ·
(

1
k − 1

∑
m

Qk−1
m −Qk−1

i

)
,

where p(k)
p(k−1) introduces the probability of each cardinality,

and (k−1)!(n−k+1)!
k!(n−k)! performs the normalization due to the dif-

ferent number of groups available at each cardinality. Imple-
menting this formula requires slightly more care in overcom-
ing numerical instabilities, as the normalization suggested in
the previous section need to be tracked and then undone in or-
der for the relative weight of each cardinality to be considered
appropriately (when only one cardinality was considered, this
normalization was irrelevant). However, these modifications
hardly effect the number of overall calculations compared to
computing the MMSE for the maximal cardinality only.

4. EXPERIMENTAL RESULTS

We now proceed to demonstrate the superior performance
of the exact MMSE estimator over its approximation, the

Random-OMP, which in itself is superior to the MAP estima-
tor. For this end, we harness synthetic experiments, in which
we can control all the parameters of the signals and the noise.

We usen = 64 as the working dimension, and DCT as
the unitary dictionary. First the support sizek of the signal’s
representation is drawn at random fromp(|S|). For a givenk,
the support itself is drawn at random with uniform probabil-
ity over all

(
n
k

)
possibilities. The coefficients (αi) are drawn

independently for each atom in the support from a Normal
distributionN (0, σ2

x). The resulting sparse vector of coef-
ficients is multiplied by the dictionary to obtain theground-
truth signal. Each entry is independently contaminated by
white Gaussian noise (N (0, σ2)) to create theinput signal
(note that due toD being unitary, this is equivalent to contam-
inating the coefficients themselves with WGN with the same
parameters).

The obtained noisy signal is denoised by several methods:
(i) MAP using OMP, (ii) Random-OMP that approximates the
MMSE [6]; (iii) An exact and exhaustive MMSE using Equa-
tion (3); (iv) The recursive MMSE formula; and (v) An oracle
that knows the exact support (we use the numerical estimator,
and a closed-form formula as well -see [6]). This process is
repeated for1000 signals, and the meanL2 error is averaged
over all signals to obtain an estimate of the expected quality
of each estimator.

In order to test the performance of these estimators un-
der different noise conditions, several such tests are run, with
σx = 1 kept constant in all tests, while the noise levelσ be-
ing changed between experiments (in the range0.1−2). This
is sufficient, since the important parameter is the ratioσx/σ,
and not their individual absolute values.

Figure 1 shows the denoising achieved by each method,
whenP (|S|) = 1 for |S| = 3 and0 otherwise. This Figure
also contains the results for the exhaustive MMSE, which is
the straight forward (exponential) computation of the MMSE
estimator. Figure 2 shows the same graph forP (|S|) = 1
for |S| = 7, with the exhaustive MMSE omitted due to the
enormous number of calculations required. In Figure 3, we
ran a very similar experiment, only this time the cardinality of
the signals is drawn according to the probability ofP (|S| =
k) = 0.8k and normalized to sum to1.

To demonstrate the gap between the different methods, we
show in Figure 4 the effective representation achieved by each
method (forP (|S| = 3) = 1. The MAP estimator selects the
wrong atoms, due to the relatively strong noise (σN = 0.6). It
is important to note that the Random-OMP and MMSE gen-
erally do not result in a sparse representation, but they are still
better than the MAP even though the original signal is sparse.

5. SUMMARY

In this work we discuss the problem of denoising a signal
known to have a sparse representation, considering the MAP
and the MMSE estimators. We focus on unitary dictionaries,



for which we show that a closed-form, exact, and simple re-
cursive formula exists for the MMSE estimator. This replaced
the need for an approximation, such as the Random-OMP al-
gorithm. We show experimentally that this exact MMSE for-
mula out-performs the approximate Random-OMP. We also
discuss several numerical issues raised when implementing
this formula in practice. In a follow-up work, we intend to
implement this estimator on images, with necessary modifi-
cations to the model generation.
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Fig. 1. Denoising achieved (averaged on1000 signals) by
several methods, for different noise strengthes for|S| = 3.
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Fig. 2. Denoising achieved (averaged on1000 signals) by
several methods, for different noise strengthes for|S| = 7.
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Fig. 3. Denoising achieved (averaged on1000 signals) by
several methods, for different noise strengthes forP (|S| =
k) = 0.8k for k = 1− 4.
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Fig. 4. The effective representation achieved by different
methods for one example signal, with noiseσN = 0.6.


