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Abstract—Sparse and redundant representation modeling of
data assumes an ability to describe signals as linear combinations
of a few atoms from a pre-specified dictionary. As such, the
choice of the dictionary that sparsifies the signals is crucial for
the success of this model. In general, the choice of a proper
dictionary can be done using one of two ways: (i) building a
sparsifying dictionary based on a mathematical model of the data,
or (ii) learning a dictionary to perform best on a training set.
In this paper we describe the evolution of these two paradigms.
As manifestations of the first approach, we cover topics such as
wavelets, wavelet packets, contourlets, and curvelets, all aiming
to exploit 1-D and 2-D mathematical models for constructing
effective dictionaries for signals and images. Dictionary learning
takes a different route, attaching the dictionary to a set of
examples it is supposed to serve. From the seminal work of Field
and Olshausen, through the MOD, the K-SVD, the Generalized
PCA and others, this paper surveys the various options such
training has to offer, up to the most recent contributions and
structures.

Index Terms—Dictionary learning, harmonic analysis, signal
representation, signal approximation, sparse coding, sparse rep-
resentation.

I. INTRODUCTION

HE process of digitally sampling a natural signal leads

to its representation as the sum of Delta functions in
space or time. This representation, while convenient for the
purposes of display or playback, is mostly inefficient for
analysis tasks. Signal processing techniques commonly require
more meaningful representations which capture the useful
characteristics of the signal — for recognition, the repre-
sentation should highlight salient features; for denoising, the
representation should efficiently separate signal and noise; and
for compression, the representation should capture a large part
of the signal with only a few coefficients. Interestingly, in
many cases these seemingly different goals align, sharing a
core desire for simplification.

Representing a signal involves the choice of a dictionary,
which is the set of elementary signals — or atoms — used
to decompose the signal. When the dictionary forms a basis,
every signal is uniquely represented as the linear combination
of the dictionary atoms. In the simplest case the dictionary
is orthogonal, and the representation coefficients can be com-
puted as inner products of the signal and the atoms; in the
non-orthogonal case, the coefficients are the inner products of
the signal and the dictionary inverse, also referred to as the
bi-orthogonal dictionary.
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For years, orthogonal and bi-orthogonal dictionaries were
dominant due to their mathematical simplicity. However, the
weakness of these dictionaries — namely their limited ex-
pressiveness — eventually outweighed their simplicity. This
led to the development of newer overcomplete dictionaries,
having more atoms than the dimension of the signal, and which
promised to represent a wider range of signal phenomena.

The move to overcomplete dictionaries was done cautiously,
in an attempt to minimize the loss of favorable properties
offered by orthogonal transforms. Many proposed dictionaries
formed tight frames, which ensured that the representation
of the signal as a linear combination of the atoms could
still be identified with the inner products of the signal and
the dictionary. Another approach, manifested by the Best
Basis algorithm, utilized a specific dictionary structure which
essentially allowed it to serve as a pool of atoms from which
an orthogonal sub-dictionary could be efficiently selected.

Research on general overcomplete dictionaries mostly com-
menced over the past decade, and is still intensely ongoing.
Such dictionaries introduce an intriguing ambiguity in the def-
inition of a signal representation. We consider the dictionary
D=[d;d;...d;] € RNVXL where the columns constitute the
dictionary atoms, and L > N. Representing a signal x € RY
using this dictionary can take one of two paths — either the
analysis path, where the signal is represented via its inner
products with the atoms,

v, =D"x, (1)

or the synthesis path, where it is represented as a linear
combination of the dictionary atoms,

x=D~, . 2)

The two definitions coincide in the complete case (L = N),
when the analysis and synthesis dictionaries are bi-orthogonal.
In the general case, however, the two may dramatically differ.

The synthesis approach poses yet another interesting ques-
tion: when D is overcomplete, the family of representations
~, satisfying (2) is actually infinitely large, with the degrees
of freedom identified with the null-space of D. This allows us
to seek the most informative representation of the signal with
respect to some cost function C():

v, = Argmin C(y) Subject To x =D~ . 3)
Y

Practical choices of C(~) promote the sparsity of the rep-
resentation, meaning that we want the sorted coefficients to
decay quickly. Solving (3) is thus commonly referred to as
sparse coding. We can achieve sparsity by choosing C(v) as
some robust penalty function, which we loosely define as a
function that is tolerant to large coefficients but aggressively



penalizes small non-zero coefficients. Examples include the
Huber function [1] as well as the various /P cost functions
with 0 < p < 1.

The two options (1) and (2), and specifically the prob-
lem (3), have been extensively studied over the past few years.
This in turn has led to the development of new signal process-
ing algorithms which utilize general overcomplete transforms.
However, in going from theory to practice, the challenge
of choosing the proper dictionary for a given task must be
addressed. Earlier works made use of traditional dictionaries,
such as the Fourier and wavelet dictionaries, which are simple
to use and perform adequately for 1-dimensional signals. How-
ever, these dictionaries are not well equipped for representing
more complex natural and high-dimensional signal data, and
new and improved dictionary structures were sought.

A variety of dictionaries were developed in response to the
rising need. The newly developed dictionaries emerged from
one of two sources — either a mathematical model of the
data, or a set of realizations of the data. Dictionaries of the
first type are characterized by an analytic formulation and a
fast implicit implementation, while dictionaries of the second
type deliver increased flexibility and the ability to adapt to
specific signal data. Most recently, there is a growing interest
in dictionaries which can mediate between the two types, and
offer the advantages of both worlds. Such structures are just
beginning to emerge, and research is still ongoing.

In this paper we present the fundamental concepts guiding
modern dictionary design, and outline the various contribu-
tions in the field. In Section 2 we take a historical viewpoint,
and trace the evolution of dictionary design methodology from
the early 1960’s to the late 1990’s, focusing on the conceptual
advancements. In Sections 3 and 4 we overview the state-of-
the art techniques in both analytic and trained dictionaries. We
summarize and conclude in Section 5.

II. A HISTORY OF TRANSFORM DESIGN
A. Signal Transforms: The Linear Era

Signal transforms have been around for as long as signal
processing has been conducted. In the 1960’s, early signal
processing researchers gave significant attention to linear time-
invariant operators, which were simple and intuitive processes
for manipulating analog and digital signals. In this scenery,
the Fourier transform naturally emerged as the basis which
diagonalizes these operators, and it immediately became a
central tool for analyzing and designing such operators. The
transform gained tremendous popularity with the introduction
of the Fast Fourier Transform (FFT) in 1965 by Cooley and
Tukey [2], which provided its numerical appeal.

The Fourier basis describes a signal in terms of its global
frequency content, as a combination of orthogonal waveforms

F= {gbn(x) = emm}nez .

A signal is approximated in this basis by projecting it onto
the K lowest frequency atoms, which has a strong smoothing
and noise-reducing effect. The Fourier basis is thus efficient
at describing uniformly smooth signals. However, the lack
of localization makes it difficult to represent discontinuities,
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which generate large coefficients over all frequencies. There-
fore, the Fourier transform typically produces oversmooth
results in practical applications. For finite signals, the Fourier
transform implicitly assumes a periodic extension of the signal,
which introduces a discontinuity at the boundary. The Discrete
Cosine Transform (DCT) is the result of assuming an anti-
symmetric extension of the signal, which results in continuous
boundaries, and hence in a more efficient approximation.
Since the DCT has the added advantage of producing non-
complex coefficients, it is typically preferred in applications;
see Figure 1 for some 2-D DCT atoms.

Signal approximation in the Fourier basis was soon cate-
gorized as a specific instance of linear approximation: given
a basis {¢, nN:—01 of RY, a signal x € RY is linearly
approximated by projecting it onto a fixed subset of K < N
basis elements

X~ Z ('ng)d)n ) 4)

nelk

where {v,}) - is in general the bi-orthogonal basis
(,, = ¢,, in the orthonormal case). This process is an under-
complete linear transform of x, and, with the right choice
of basis, can achieve compaction — the ability to capture
a significant part of the signal with only a few coefficients.
Indeed, this concept of compaction is later replaced with
sparsity, though the two are closely related [3].

Optimizing compaction was a major driving force for the
continued development of more efficient representations. Dur-
ing the 1970’s and 1980’s, a new and very appealing source of
compaction was brought to light: the data itself. The focus was
on a set of statistical tools developed during the first half of the
century, known as the Karhunen-Loeve Transform (KLT) [4],
[5], or Principal Component Analysis (PCA) [6]. The KLT is
a linear transform which can be adapted to represent signals
coming from a certain known distribution. The adaptation
process fits a low-dimensional subspace to the data which
minimizes the ¢? approximation error. Specifically, given the
data covariance matrix X (either known or empirical), the
KLT atoms are the first K eigenvectors of the eigenvalue
decomposition of X,

> = UAUT .

From a statistical point of view, this process models the data
as coming from a low-dimensional Gaussian distribution, and
thus is most effective for Gaussian data. Figure 1 shows an
example of the KLT basis trained from a set of image patches.
The DCT basis shown in the same figure, is regarded as a good
approximation of the KLT for natural image patches when a
non-adaptive transform is required.

Compared to the Fourier transform, the KLT is superior (by
construction) in terms of representation efficiency. However,
this advantage comes at the cost of a non-structured and
substantially more complex transform. As we will see, this
tradeoff between efficiency and adaptivity continues to play a
major role in modern dictionary design as well.
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Fig. 1. Left: A few 12 x 12 DCT atoms. Right: The first 40 KLT atoms,
trained using 12 X 12 image patches from Lena.

B. Non-Linear Revolution and Elements of Modern Dictionary
Design

In statistics research, the 1980’s saw the rise of a new
powerful approach known as robust statistics. Robust statistics
advocates sparsity as a key for a wide range of recovery and
analysis tasks. The idea has its roots in classical Physics, and
more recently in Information Theory, and promotes simplicity
and conciseness in guiding phenomena descriptions. Motivated
by these ideas, the 1980’s and 1990’s were characterized
by a search for sparser representations and more efficient
transforms.

Increasing sparsity required departure from the linear model,
towards a more flexible non-linear formulation. In the non-
linear case, each signal is allowed to use a different set
of atoms from the dictionary in order to achieve the best
approximation. Thus, the approximation process becomes

Xx Y e, 5)

n€lk (x)

where I (x) is an index set adapted to each signal individually
(we refer the reader to [5], [7] for more information on this
wide topic).

The non-linear view paved the way to the design of
newer, more efficient transforms. In the process, many of
the fundamental concepts guiding modern dictionary design
were formed. Following the historic time line, we trace the
emergence of the most important modern dictionary design
concepts, which are mostly formed during the last two decades
of the 20th century.

Localization: To achieve sparsity, transforms required better
localization. Atoms with concentrated supports allow more
flexible representations based on the local signal characteris-
tics, and limit the effects of irregularities, which are observed
to be the main source of large coefficients. In this spirit, one
of the first structures to be used was the Short Time Fourier
Transform (STFT) [8], which emerges as a natural extension
to the Fourier transform. In the STFT, the Fourier transform is
applied locally to (possibly overlapping) portions of the signal,
revealing a time-frequency (or space-frequency) description
of the signal. An example of the STFT is the JPEG image
compression algorithm [9], which is based on this concept.

During the 1980°s and 1990’s, the STFT was extensively
researched and generalized, becoming more known as the
Gabor transform, named in homage of Dennis Gabor, who
first suggested the time-frequency decomposition back in
1946 [10]. Gabor’s work was independently rediscovered in

1980 by Bastiaans [11] and Janssen [12], who studied the
fundamental properties of the expansion.

A basic 1-D Gabor dictionary consists of windowed wave-
forms

G = {Gnm(@) = w(x = Bm)e>™m}

where w(-) is a low-pass window function localized at 0
(typically a Gaussian), and « and 3 control the time and
frequency resolution of the transform. Much of the mathe-
matical foundations of this transform were laid out during the
late 1980°s by Daubechies, Grossman and Meyer [13], [14]
who studied the transform from the angle of frame theory,
and by Feichtinger and Grochenig [15]-[17] who employed a
generalized group-theoretic point of view. Study of the discrete
version of the transform and its numerical implementation
followed in the early 1990’s, with notable contributions by
Wexler and Raz [18] and by Qian and Chen [19].

In higher dimensions, more complex Gabor structures were
developed which add directionality, by varying the orientation
of the sinusoidal waves. This structure gained substantial
support from the work of Daugman [20], [21], who discovered
oriented Gabor-like patterns in simple-cell receptive fields in
the visual cortex. These results motivated the deployment of
the transform to image processing tasks, led by works such as
Daugman [22] and Porat and Zeevi [23]. Today, practical uses
of the Gabor transform are mainly in analysis and detection
tasks, as a collection of directional filters. Figure 2 shows
some examples of 2-D Gabor atoms of various orientations
and sizes.

Multi-Resolution: One of the most significant conceptual
advancements achieved in the 1980’s was the rise of multi-
scale analysis. It was realized that natural signals, and images
specifically, exhibited meaningful structures over many scales,
and could be analyzed and described particularly efficiently
by multi-scale constructions. One of the simplest and best
known such structures is the Laplacian pyramid, introduced
in 1984 by Burt and Adelson [24]. The Laplacian pyramid
represents an image as a series of difference images, where
each one corresponds to a different scale and roughly a
different frequency band.

In the second half of the 1980’s, though, the signal process-
ing community was particularly excited about the development
of a new very powerful tool, known as wavelet analysis [5],
[25], [26]. In a pioneering work from 1984, Grossman and
Morlet [27] proposed a signal expansion over a series of
translated and dilated versions of a single elementary function,
taking the form

W= {6nm(@) = "2 f(a"z — om) }

This simple idea captivated the signal processing and harmonic
analysis communities, and in a series of influential works by
Meyer, Daubechies, Mallat and others [13], [14], [28]-[33],
an extensive wavelet theory was formalized. The theory was
formulated for both the continuous and discrete domains, and
a complete mathematical framework relating the two was put
forth. A significant breakthrough came from Meyer’s work in
1985 [28], who found that unlike the Gabor transform (and
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Fig. 2. Left: A few 12 x 12 Gabor atoms at different scales and orientations.
Right: A few atoms trained by Olshausen and Field (extracted from [34]).

contrary to common belief) the wavelet transform could be
designed to be orthogonal while maintaining stability — an
extremely appealing property to which much of the initial
success of the wavelets can be attributed to.

Specifically of interest to the signal processing community
was the work of Mallat and his colleagues [31]-[33] which
established the wavelet decomposition as a multi-resolution
expansion and put forth efficient algorithms for computing
it. In Mallat’s description, a multi-scale wavelet basis is
constructed from a pair of localized functions referred to as
the scaling function and the mother wavelet, see Figure 3.
The scaling function is a low frequency signal, and along
with its translations, spans the coarse approximation of the
signal. The mother wavelet is a high frequency signal, and
with its various scales and translations spans the signal detail.
In the orthogonal case, the wavelet basis functions at each
scale are critically sampled, spanning precisely the new detail
introduced by the finer level.

Non-linear approximation in the wavelet basis was shown
to be optimal for piecewise-smooth 1-D signals with a finite
number of discontinuities, see e.g. [32]. This was a striking
finding at the time, realizing that this is achieved without
prior detection of the discontinuity locations. Unfortunately,
in higher dimensions the wavelet transform loses its opti-
mality; the multi-dimensional transform is a simple separable
extension of the 1-D transform, with atoms supported over
rectangular regions of different sizes (see Figure 3). This
separability makes the transform simple to apply, however the
resulting dictionary is only effective for signals with point
singularities, while most natural signals exhibit elongated edge
singularities. The JPEG2000 image compression standard,
based on the wavelet transform, is indeed known for its ringing
(smoothing) artifacts near edges.

Adaptivity: Going to the 1990’s, the desire to push sparsity
even further, and describe increasingly complex phenomena,
was gradually revealing the limits of approximation in orthog-
onal bases. The weakness was mostly associated with the small
and fixed number of atoms in the dictionary — dictated by the
orthogonality — from which the optimal representation could
be constructed. Thus, one option to obtain further sparsity was
to adapt the transform atoms themselves to the signal content.

One of the first such structures to be proposed was the
wavelet packet transform, introduced by Coifman, Meyer
and Wickerhauser in 1992 [35]. The transform is built upon
the success of the wavelet transform, adding adaptivity to
allow finer tuning to the specific signal properties. The main
observation of Coifman et al. was that the wavelet transform
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Fig. 3. Left: Coiflet 1-D scaling function (solid) and mother wavelet (dashed).
Right: Some 2-D separable Coiflet atoms.

enforced a very specific time-frequency structure, with high
frequency atoms having small supports and low frequency
atoms having large supports. Indeed, this choice has deep
connections to the behavior of real natural signals; however,
for specific signals, better partitionings may be possible. The
wavelet packet dictionary essentially unifies all dyadic time-
frequency atoms which can be derived from a specific pair
of scaling function and mother wavelet, so atoms of different
frequencies can come in an array of time supports. Out of
this large collection, the wavelet packet transform allows to
efficiently select an optimized orthogonal sub-dictionary for
any given signal, with the standard wavelet basis being just
one of an exponential number of options. The process was
thus named by the authors a Best Basis search. The wavelet
packet transform is, by definition, at least as good as wavelets
in terms of coding efficiency. However, we note that the multi-
dimensional wavelet packet transform remains a separable and
non-oriented transform, and thus does not generally provide a
substantial improvement over wavelets for images.

Geometric Invariance and Overcompleteness: In 1992, Si-
moncelli et al. [36] published a thorough work advocating a
dictionary property they termed shiftability, which describes
the invariance of the dictionary under certain geometric defor-
mations, e.g. translation, rotation or scaling. Indeed, the main
weakness of the wavelet transform is its strong translation-
sensitivity, as well as rotation-sensitivity in higher dimensions.
The authors concluded that achieving these properties required
abandoning orthogonality in favor of overcompleteness, since
the critical number of atoms in an orthogonal transform was
simply insufficient. In the same work, the authors developed
an overcomplete oriented wavelet transform — the steerable
wavelet transform — which was based on their previous work
on steerable filters and consisted of localized 2-D wavelet
atoms in many orientations, translations and scales.

For the basic 1-D wavelet transform, translation-invariance
can be achieved by increasing the sampling density of the
atoms. The stationary wavelet transform, also known as the
undecimated or non-subsampled wavelet transform, is obtained
from the orthogonal transform by eliminating the sub-sampling
and collecting all translations of the atoms over the signal
domain. The algorithmic foundation for this was laid by
Beylkin in 1992 [37], with the development of an efficient
algorithm for computing the undecimated transform. The
stationary wavelet transform was indeed found to substantially
improve signal recovery compared to orthogonal wavelets,
and its benefits were independently demonstrated in 1995 by
Nason and Silverman [38] and Coifman and Donoho [39].
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C. From Transforms to Dictionaries

By the second half of the 1990’s, most of the concepts for
designing effective transforms were laid out. At the same time,
a conceptual change of a different sort was gradually taking
place. In a seminal work from 1993, Mallat and Zhang [40]
proposed a novel sparse signal expansion scheme based on
the selection of a small subset of functions from a general
overcomplete dictionary of functions. Shortly after, Chen,
Donoho and Saunders published their influential paper on the
Basis Pursuit [41], and the two works signalled the beginning
of a fundamental move from transforms to dictionaries for
sparse signal representation. An array of works since has
formed a wide mathematical and algorithmic foundation of
this new field, and established it as a central tool in modern
signal processing (see [42]).

This seemingly minor terminological change from trans-
forms to dictionaries enclosed the idea that a signal was al-
lowed to have more than one description in the representation
domain, and that selecting the best one depended on the task.
Moreover, it de-coupled the processes of designing the dic-
tionary and coding the signal: indeed, given the dictionary —
the collection of elemental signals — different cost functions
could be proposed in (3), and different coding methods could
be applied.

The first dictionaries to be used in this way were the existing
transforms — such as the Fourier, wavelet, STFT, and Gabor
transforms, see e.g. [40], [41]. As an immediate consequence,
the move to a dictionary-based formalism provided the benefit
of constructing dictionary mergers, which are the unions of
several simpler dictionaries; these were proposed by Chen,
Donoho and Saunders in [41], and provide a simple way to
increase the variety of features representable by the dictionary.

D. Higher Dimensional Signals

The variety of dictionaries developed through the mid-
1990’s served one-dimensional signals relatively well. How-
ever, the dictionaries for multi-dimensional signal represen-
tation were still unsatisfying. Particularly frustrating, for in-
stance, was the common knowledge that 2-D piecewise-
smooth signals could be described much more efficiently using
a simple piecewise-linear approximation over an adaptive
triangle grid, than using any existing dictionary [5], [43].

In 1998, Donoho developed the wedgelet dictionary for 2-D
signal representation [44], which bears some resemblance to
the adaptive triangulation structure. The wedgelet dictionary
consists of constant-valued, axis-aligned squares, bisected by
straight lines, and spanning many sizes and locations. Donoho
showed that this dictionary is optimal for piecewise-constant
images with regular edge discontinuities, and provided a
quick (though non-optimal) approximation technique. The
elegant wedgelet construction, though too simplistic for many
tasks, was adopted and generalized by several researchers,
leading to such structures as wavelet-wedgelets hybrids
(wedgeprints) [45], piecewise-linear wedgelets (platelets) [46],
and higher-dimensional wedgelets (surflets) [47].

In parallel to the wedgelet transform, Candes and Donoho
introduced the ridgelet transform as a multi-dimensional ex-

tension of the wavelet transform [48]. A ridgelet atom is a
translated and dilated wavelet in one direction, and fixed in the
orthogonal directions (similar to a plane wave). The transform
is proven to be optimal for piecewise-smooth functions with
plane discontinuities. Indeed, the basic ridgelet dictionary is
unsuitable for natural signals due its lack of localization.
However, with proper localization and multi-scale extension,
the dictionary forms the core of the much more powerful
curvelet transform [43], [49], introduced by the authors soon
after, and which provides a comprehensive framework for
representing multi-dimensional signals. Similar efforts led to
the development of the contourlet and bandelet transforms,
which are described in more detail in the next section.

E. Analytic versus Trained Dictionaries

The dictionaries described so far all roughly fall under
the umbrella of Harmonic Analysis, which suggests modeling
interesting signal data by a more simple class of mathematical
functions, and designing an efficient representation around this
model. For example, the Fourier dictionary is designed around
smooth functions, while the wavelet dictionary is designed
around piecewise-smooth functions with point singularities.
The dictionaries of this sort are characterized by an analytic
formulation, and are usually supported by a set of optimality
proofs and error rate bounds. An important advantage of this
approach is that the resulting dictionary usually features a fast
implicit implementation which does not involve multiplication
by the dictionary matrix. On the other hand, the dictionary can
only be as successful as its underlying model, and indeed,
these models are typically over-simplistic compared to the
complexity of natural phenomena.

Through the 1980’s and 1990’s, Machine Learning tech-
niques were rapidly gaining interest, and promised to confront
this exact difficulty. The basic assumption behind the learning
approach is that the structure of complex natural phenomena
can be more accurately extracted directly from the data than by
using a mathematical description. One direct benefit of this is
that a finer adaptation to specific instances of the data becomes
possible, replacing the use of generic models.

A key contribution to the area of dictionary learning was
provided by Olshausen and Field in 1996 [34]. In their
widely celebrated paper, the authors trained a dictionary for
sparse representation of small image patches collected from a
number of natural images. With relatively simple algorithmic
machinery, the authors were able to show a remarkable result
— the trained atoms they obtained were incredibly similar
to the simple-cell receptive fields, which until then were
only weakly explained via Gabor filters. The finding was
highly motivating to the sparse representation community, as
it demonstrated that the single assumption of sparsity could
account for a fundamental biological visual behavior. Also, the
results demonstrated the potential in example-based methods
to uncover elementary structures in complex signal data.

The experiments of Olshausen and Field inspired a series
of subsequent works aimed at improving the example-based
training process. Towards the end of the 1990’s, these works
mostly focused on statistical training methods, which model



the examples as random independent variables originating
from a sparse noisy source. With X = [x; X5 ... X,]| denoting
the data matrix, the statistical approach suggests seeking for
the dictionary which either maximizes the likelihood of the
data P(X|D) (Maximum Likelihood estimation), e.g. [50], or
maximizes the posterior probability of the dictionary P(D|X)
(Maximum A-Posterior estimation), e.g. [51]. The resulting
optimization problems in these works are typically solved in
an Expectation-Maximization (EM) fashion, alternating esti-
mation of the sparse representations and the dictionary; earlier
works employ gradient descent or similar methods for both
tasks, while later ones employ more powerful sparse-coding
techniques for the estimation of the sparse representations.

III. ANALYTIC DICTIONARIES — STATE-OF-THE-ART

Recent advances in analytic dictionary design have mostly
focused on the move to two and higher dimensions. Multi-
dimensional signals are significantly more complex than one-
dimensional ones due to the addition of orientation. Also,
the elementary singularities become curves — or manifolds
in general — rather than points, and thus have a much more
complex geometry to trace. In order to handle these complex
signals, new transforms that are both localized and oriented
have been developed.

Analytic dictionaries are typically formulated as tight
frames, meaning that DD”x = x for all x, and therefore the
dictionary transpose can be used to obtain a representation
over the dictionary. The analytic approach then proceeds by
analyzing the behavior of the filter-set D”x, and establishes
decay rates and error bounds.

The tight frame approach has several advantages. Analyzing
the behavior of D as an analysis operator seems easier than
deriving sparsity bounds in a synthesis framework, and indeed,
results obtained for the analysis formulation also induce upper
bounds for the synthesis formulation. Another benefit is that —
when formulated carefully — the algorithms for both analysis
and synthesis operators become nearly reversals, simplifying
algorithm design. Finally, the tight frame approach is ben-
eficial in that it simultaneously produces a useful structure
for both the analysis and synthesis frameworks, and has a
meaningful interpretation in both.

Sparse-coding in this case is typically done by computing
the analysis coefficients D7x, and passing them through a
non-linear shrinking operator. This method has the advantage
of providing a simple and efficient way to achieve sparse
representations over the dictionary, though it is worth noting
that from a pure synthesis point of view, this process is
sub-optimal, and one might benefit from employing a more
advanced sparse-coding technique, e.g. an iferated shrinkage
technique [52], directly to the expansion coefficients.

A. Curvelets

The curvelet transform was introduced by Candeés and
Donoho in 1999 [43], and was later refined into its present
form in 2003 [53]. When published, the transform astonished
the harmonic analysis community by achieving what was then
believed to be only possible with adaptive representations: it
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could represent 2-D piecewise-smooth functions with smooth
curve discontinuities at an (essentially) optimal rate.

The curvelet transform is formulated as a continuous trans-
form, with discretized versions developed for both formula-
tions [49], [53], [54]. Each curvelet atom is associated with
a specific location, orientation and scale. In the 2-D case, a
curvelet atom is roughly supported over an elongated elliptical
region, and is oscillatory along its width and smooth along
its length, see Figure 4. The curvelet atoms are characterized
by their specific anisotropic support, which obeys a parabolic
scaling law width ~ length?. As it turns out, this property is
useful for the efficient representation of smooth curves [55],
and indeed several subsequent transforms follow this path.
In higher dimensions, the curvelet atoms become flattened
ellipsoids, oscillatory along their short direction and smooth
along the other directions [53], [54], [56].

B. Contourlets

The curvelet transform offers an impressively solid con-
tinuous construction and exhibits several useful mathematical
properties. However, its discretization turns out to be challeng-
ing, and the resulting algorithms are relatively complicated.
Also, current discretizations have relatively high redundancies,
which makes them more costly to use and less applicable for
tasks like compression.

With this in mind, Do and Vetterli proposed the contourlet
transform in 2002 [57], [58] as an alternative to the 2-D
curvelet transform. The transform was later refined in 2006
by Lu and Do [59], and a multi-dimensional version, named
surfacelets, was also recently introduced [60].

The contourlet transform shares many of the characteristics
of the curvelet transform, including localization, orientation,
and parabolic scaling. However, as opposed to curvelets,
the contourlets are defined directly in the discrete domain,
and thus have a native and simple construction for discrete
signals. Also, the standard contourlet transform has much
lower redundancy, approximately in the range [1.3, 2.3] for the
second-generation implementation [59], compared to [2.8,7.2]
for second-generation curvelets [53].

The contourlet transform implementation is based on a
pyramidal band-pass decomposition of the image followed
by a directional filtering stage. The resulting oriented atoms
are elongated and oscillatory along their width, with some
visual resemblance to the curvelet atoms (see Figure 4). The
main appeal of the transform is due to its simple discrete
formulation, its low complexity and reduced redundancy. It
should be noted, though, that while the transform is well suited
for tasks such as compression, its aggressive sub-sampling
has been noted to lead to artifacts in signal reconstruction, in
which case a translation-invariant version of the transform is
preferred [61], [62]; indeed, this option significantly increases
redundancy and complexity, though the simpler structure of
the transform remains.

C. Bandelets

The bandelet transform was proposed in 2005 by Le Pennec
and Mallat [63], with a second version introduced soon after
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Fig. 4. Some curvelet atoms (left) and contourlet atoms (right). Both represent
the second version of the corresponding transform.

by Peyré and Mallat [64]. The bandelet transform represents
one of the most recent contributions in the area of signal-
adaptive transforms, and as such it differs fundamentally from
the non-adaptive curvelet and contourlet transforms.

The idea behind the bandelet construction is to exploit
geometric regularity in the image — specifically edges and
directional phenomena — in order to fit a specifically op-
timized set of atoms for the image. The original bandelet
construction operates in the spatial domain, and is based on an
adaptive subdivision of the image to dyadic regions according
to the local complexity; in each region, a set of skewed
wavelets is matched to the image flow, in such a way that
the wavelet atoms essentially ”wrap-around” the edges rather
than cross them. This process significantly reduces the number
of large wavelet coefficients, as these typically emerge from
the interaction of a wavelet atom and a discontinuity.

The resulting set of atoms forms a (slightly) overcomplete
set, which is specifically tailored for representing the given
image. In the second bandelet construction, which is formu-
lated in the wavelet domain, the transform is further refined
to produce an orthogonal set. In terms of dictionaries, the
bandelet transform selects a set of atoms from a nearly infinite
set, and in fact discretization is the main source for limiting
the size of this set. This is as opposed to the wavelet packet
transform, for instance, where the complete set of atoms is not
much larger than the signal dimension. See Figure 5 for an
example of bandelets.

D. Other Analytic Dictionaries

Many additional analytic transforms have been developed
during the past decade, some of which we mention briefly.
The complex wavelet transform [65], [66] is an oriented and
near-translation-invariant high-dimensional extension of the
wavelet transform, achieved through the utilization of two
mother wavelets satisfying a specific relationship between
them. Similar to the original wavelet transform, the complex
wavelet transform is efficient and simple to implement, and the
added phase information delivers orientation sensitivity and
other favorable properties. The shearlet transform [67]-[69]
is a recently proposed alternative to curvelets, which utilizes
structured shear operations rather than rotations to control
orientation. Similar to curvelets, the shearlet transform is based
on a comprehensive continuous mathematical construction,
and it shares many of the properties of the curvelet transform
while providing some attractive new features. See Figure 6 for
some examples of complex wavelet and shearlet atoms.
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Fig. 5. Left: the flow in a specific image region. Right: some bandelet atoms
adapted to the region. Note how the 1-D wavelets are skewed to follow edges.

Recent adaptive dictionaries include the directionlet trans-
form [70], which is a discrete transform which constructs
oriented and anisotropic wavelets based on local image di-
rectionality, utilizing a specialized directional grouping of
the grid points for its numerical implementation. Finally, the
grouplet transform [71] is a multi-scale adaptive transform
which essentially generalizes Haar wavelets to arbitrary sup-
ports, based on image content regularity; when applied in the
wavelet domain, the transform bears some resemblance to the
second-generation bandelet transform, and thus is referred to
as grouped bandelets.

IV. DICTIONARY TRAINING — STATE-OF-THE-ART

Dictionary training is a much more recent approach to
dictionary design, and as such, has been strongly influenced
by the latest advances in sparse representation theory and
algorithms. The most recent training methods focus on ¢° and
¢! sparsity measures, which lead to simple formulations and
enable the use of recently developed efficient sparse-coding
techniques [41], [42], [72]-[75].

The main advantage of trained dictionaries is that they lead
to state-of-the-art results in many practical signal processing
applications. The cost — as in the case of the KLT — is
a dictionary with no known inner structure or fast imple-
mentation. Thus, the most recent contributions to the field
employ parametric models in the training process, which
produce structured dictionaries, and offer several advantages.
A different development which we mention here (though we
do not discuss the topic further) is the recent advancement
in online dictionary learning [76], [77], which allows training
dictionaries from very large sets of examples, and is found to
accelerate convergence and improve the trained result.

A. Method of Optimal Directions

The Method of Optimal Directions (MOD) was introduced
by Engan et al. in 1999 [78], [79], and was one of the first
methods to implement what is known today as a sparsification
process. Given a set of examples X = [xq X3 ... X,], the goal
of the MOD is to find a dictionary D and a sparse matrix I’
which minimize the representation error,

Argmin |X —DT||% Subject To ||v,||5<T Vi, (6)

where ~, represent the columns of T', and the ¢° sparsity
measure || - ||§ counts the number of non-zeros in the repre-
sentation. The resulting optimization problem is combinatorial
and highly non-convex, and thus we can only hope for a local
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Fig. 6. Left: a few complex wavelet atoms (real part). Right: a few shearlets
(extracted from [69]).

minimum at best. Similar to other training methods, the MOD
alternates between sparse-coding and dictionary update steps.
The sparse-coding is performed for each signal individually
using any standard technique. For the dictionary update, (6)
is solved via the analytic solution of the quadratic problem,
given by D = XI'" with I'" denoting the Moore-Penrose
pseudo-inverse.

The MOD typically requires only a few iterations to con-
verge, and is overall a very effective method. The method
suffers, though, from the relatively high complexity of the
matrix inversion. Several subsequent works have thus focused
on reducing this complexity, leading to more efficient methods.

B. Union of Orthobases

Training a union-of-orthobases dictionary was proposed in
2005 by Lesage et al. [80] as a means of designing a dictionary
with reduced complexity and which could be more efficiently
trained. The process also represents one of the first attempts
at training a structured overcomplete dictionary — a tight
frame in this case. The model suggests training a dictionary
which is the concatenation of k orthogonal bases, so D =
[D1 Dy ...Dy| with the {D;} unitary matrices. Sparse-coding
over this dictionary can be performed efficiently through a
Block Coordinate Relaxation (BCR) technique [81].

A drawback of this approach is that the proposed model
itself is relatively restrictive, and in practice it does not perform
as well as more flexible structures. Interestingly, there is a
close connection between this structure and the more powerful
Generalized PCA model, described next. As the GPCA model
deviates from the classical sparse representation paradigm,
identifying such relations could prove valuable in allowing
the merge of the two forces.

C. Generalized PCA

Generalized PCA, introduced in 2005 by Vidal, Ma and
Sastry [82], offers a different and very interesting approach to
overcomplete dictionary design. The GPCA view is basically
an extension of the original PCA formulation, which approx-
imates a set of examples by a low-dimensional subspace. In
the GPCA setting, the set of examples is modeled as the union
of several low-dimensional subspaces — perhaps of unknown
number and variable dimensionality — and the algebraic-
geometric GPCA algorithm determines these subspaces and
fits orthogonal bases for them.

The GPCA viewpoint differs from the sparsity model de-
scribed in (2), as each example in the GPCA setting is
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represented using the atoms corresponding to only one of
the subspaces; thus, atoms from different subspaces cannot
jointly represent a signal. This property has the advantage of
limiting over-expressiveness of the dictionary, which charac-
terizes other overcomplete dictionaries; on the other hand, the
dictionary structure may be too restrictive for more complex
natural signals.

A unique property of the GPCA is that as opposed to
other training methods, it can detect the number of atoms
in the dictionary in certain settings. Unfortunately, the al-
gorithm may become very costly this way, especially when
the amount and dimension of the subspaces increases. Indeed,
intriguing models arise by merging the GPCA viewpoint with
the classical sparse representation viewpoint: for instance, one
could easily envision a model generalizing (6) where several
distinct dictionaries are allowed to co-exists, and every signal
is assumed to be sparse over exactly one of these dictionaries.

D. The K-SVD Algorithm

The desire to efficiently train a generic dictionary for sparse
signal representation led Aharon, Elad and Bruckstein to
develop the K-SVD algorithm in 2005 [83]. The algorithm
aims at the same sparsification problem as the MOD (6),
and employs a similar block-relaxation approach. The main
contribution of the K-SVD is that the dictionary update, rather
than using a matrix inversion, is performed atom-by-atom in a
simple and efficient process. Further acceleration is provided
by updating both the current atom and its associated sparse
coefficients simultaneously. The result is a fast and efficient
algorithm which is notably less demanding than the MOD.

The K-SVD algorithm takes its name from the Singular-
Value-Decomposition (SVD) process that forms the core of
the atom update step, and which is repeated K times, as the
number of atoms. For a given atom k, the quadratic term in (6)
is rewritten as

IX=> div] —avf 7 = 1B —divi 7, (D
ik

where 'ij are the rows of I, and E, is the residual matrix. The
atom update is obtained by minimizing (7) for d;, and ~} via
a simple rank-1 approximation of E;. To avoid introduction
of new non-zeros in I', the update process is performed
using only the examples whose current representations use
the atom dy. Figure 7 shows an example of a K-SVD trained
dictionary for 2-D image patch representation.

The K-SVD, as well as the MOD, suffer from a few
common weaknesses. The high non-convexity of the problem
means that the two methods will get caught in local minima
or even saddle points. Also, the result of the training is a non-
structured dictionary which is relatively costly to apply, and
therefore these methods are suitable for signals of relatively
small size, such as image patches. In turn, in recent years
several parametric dictionary training methods have begun
to appear, and aim to address these issues by importing the
strengths of analytic dictionaries to the world of example-
based methods.
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Fig. 7. Left: Atoms from a K-SVD dictionary trained on 12 X 12 image
patches from Lena. Right: A signature dictionary, trained on the same image.

E. Parametric Training Methods

There are several motivations for training a parameterized
dictionary. By reducing the number of free parameters and
imposing various desirable properties on the dictionary, we can
accelerate convergence, reduce the density of local minima,
and assist in converging to a better solution. A smaller number
of parameters also improves generalization of the learning
process and reduces the number of examples needed. Another
advantage of the parameterization is that the dictionary will
typically have a more compact representation, and may lend
itself to a more efficient implementation. Finally, with the
proper structure, a parameterized dictionary may be designed
to represent infinite or arbitrary-sized signals. Several para-
metric dictionary structures have been recently proposed, and
we mention a few examples.

Translation-Invariant Dictionaries: Given a dictionary for
a fixed-size signal patch, a dictionary for an arbitrary-sized
signal can be constructed by collecting all the translations of
the trained atoms over the signal domain and forming a large
translation-invariant dictionary. Several training methods for
such structures have been proposed in recent years. Blumen-
sath and Davies [84] employed statistical training method-
ology to design dictionaries for time series representation;
Jost et al. [85] developed a learning process based on a
unique sequential computation of the dictionary atoms, and
employed it to signals and images; finally, Engan et al. [86]
extended the original MOD method to translation-invariant and
optionally linearly-constrained dictionary training, which they
successfully applied to electrocardiogram (ECG) recordings.

A different and unique approach to translation-invariance
was recently proposed by Aharon and Elad in [87]. In the 2-D
case, their proposed signature dictionary is a small image in
which each V x N block constitutes an atom (see Figure 7).
Thus, assuming a periodic extension, an M x M signature
dictionary stores M? atoms in a compact structure. Compared
to the previous methods, this approach does not aim to produce
a dictionary for arbitrary-sized signals, and instead, describes
an interesting form of invariance at the block level. A possible
extension of this model could allow extraction of variable-
sized atoms from the signature image, though this option
remains for future research.

Multiscale Dictionaries: Training dictionaries with multi-
scale structures is an exciting and challenging option which
has been only partially explored. Sallee and Olshausen [88§]
proposed a pyramidal wavelet-like signal expansion, generated
from the dilations and translations of a set of elementary small
trained patches. The training method learns the elementary

patches as well as a statistical model of the coefficients. In
simulations, the structure was found to compete favorably
with other pyramidal-based transforms. While the results of
this method seem slightly constrained by the small number
of elementary functions trained, it is likely to substantially
benefit from increasing the overcompleteness and employing
some more advanced sparse-coding machinery.

Another interesting contribution in this direction is the semi-
multiscale extension of the K-SVD introduced in 2008 by
Mairal, Sapiro and Elad [89]. The semi-multiscale structure is
obtained by arranging several fixed-sized learned dictionaries
of different scales over a dyadic grid. The resulting structure
was found to deliver a pronounced improvement over the
single-scale K-SVD dictionary in applications such as denois-
ing and inpainting, producing nearly state-of-the-art denoising
performance. The main significance of this work, though, is
the potential it demonstrates in going to multi-scale learned
structures. Such results are highly encouraging, and motivate
further research into multi-scale training models.

Sparse Dictionaries: One of the most recent contributions
to the field of parametric dictionaries, specifically aimed at
merging the advantages of trained and analytic dictionar-
ies, was recently provided by Rubinstein, Zibulevsky and
Elad [90]. Their proposed sparse dictionary takes the form
D = BA, where B is some fixed analytic dictionary with a
fast computation, and A is a sparse matrix. Thus, the dictio-
nary is compactly expressed and has a fast implementation,
while adaptivity is provided through the matrix A. Also,
the parameterization of the dictionary is shown to improve
learning generalization and to reduce the training set size.
All this enables the training method to learn significantly
larger dictionaries than the MOD or K-SVD, such as for large
image patches, or 3-D signal patches. Nonetheless, the sparse
dictionary structure remains targeted at fixed-size signals,
and indeed further work is required to design more general
dictionary models which will truly capture the benefits of both
analytic and example-based worlds.

Non-Adaptive Parameter Tuning: We conclude with a very
recent contribution to parametric dictionary design due to
Yaghoobi, Daudet and Davies [91]. This work, which rep-
resents a very different approach to the design problem,
assumes a pre-selected family of dictionaries characterized
by the choice of a small set of values — for instance,
we have seen the Gabor and wavelet dictionary families
which are controlled by the resolution parameters « and f.
Yaghoobi ef al. propose a non-adaptive method for selecting
the “’best” set of parameters for the given family, such that the
resulting dictionary is as close as possible to a Grassmannian
frame. In other words, the algorithm aims to minimize the
correlation between the dictionary atoms — corresponding
to the off-diagonals of DYD — which is a feature known
to be favorable for sparse-coding techniques [42]. The main
advantage of this method is that by applying it to existing
analytic dictionaries, it can produce dictionaries with efficient
implementations which are specifically optimized for sparse-
coding tasks. Another interesting option may be to incorporate
this machinery in a parametric example-based training method,



leading to an adaptive learning process which also promotes
well-conditioned results.

V. CONCLUSIONS

Dictionary design has significantly evolved over the past
decades, beginning with simple orthogonal transforms and
leading to the complex overcomplete analytic and trained dic-
tionaries now defining the state-of-the-art. Substantial concep-
tual advancement has been made in understanding the elements
of an efficient dictionary design — most notably adaptiv-
ity, multi-scale, geometric invariance, and overcompleteness.
However, with a wealth of tools already developed, much work
remains to be done; indeed, the various components have yet
to be neatly merged into a single efficient construct. Many
future research directions have been mentioned in the text,
and demonstrate the viability and vividness of the field as
well as the large number of challenges that still await. Of
specific interest, we highlight the strong need for a multi-scale
structured dictionary learning paradigm, as well as methods to
use such dictionaries in applications, which will clearly be the
focus of much research in the near future.
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