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ABSTRACT

This paper introduces a new empirical model for dynamic
MRI and shows its application to MRI reconstruction. The
model proposes that short 1D signals, so-called snippets,
along the image’s temporal dimension are sparse under non-
linear transformation using a compact dictionary trained on
the data itself. We employ this model to the problem of
reconstructing dynamic abdominal MRI and validate its effi-
cacy on a dynamic computational phantom and on an in vivo
dynamic MRI sequence. We show how the approach extends
and outperforms a state-of-the-art reconstruction algorithm.

Indexr Terms— Dynamic MRI, Compressed Sensing,
Dictionary Learning, Sparse Coding, Abdominal MRI

1. INTRODUCTION

This paper introduces a new MR image model and its ap-
plication to reconstruction of dynamic magnetic resonance
imaging (MRI) of the human abdomen. Abdominal MRI is
used, among other things, to detect malignant liver lesions
after the injection of a contrast agent. For this, high spatial
and temporal resolution is needed. A major challenge in such
settings is patient motion, which leads to blurring and other
image artifacts that impair the underlying physiological in-
formation. A common way of addressing this problem is to
ask the patient to lay still and to hold his/her breath during
the acquisition. For various reasons, not all patients are able
to do so. To complicate matters further, other types of mo-
tion are present in abdominal MRI, most notably peristalsis
of the gastrointestinal tract.

From a technical perspective, motion artifacts in MRI ap-
pear due to limited temporal resolution. The time it takes
to sample a single time frame of a dynamic sequence is long
enough for significant global and local displacements to take
place in the subject. The only way to decrease the acquisi-
tion time (given a fixed imaging sequence) is to reduce the
number of sample points, that is, decrease the resolution.
Any dynamic MRI acquisition thus involves a basic trade-off
between spatial and temporal resolution. Decreasing the spa-
tial resolution is undesirable for obvious reasons: details of
anatomical structures and physiological processes are lost by
increasing the pixel size. The temporal and spatial resolution
are therefore carefully balanced according to the diagnostic
or other requirements of an acquisition.
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A particularly successful way of improving the spatio-
temporal trade-off in MRI has been multi-channel acquisi-
tion, or parallel imaging [1, 2]. By using multiple coils, sev-
eral images are acquired simultaneously. The individual coil
images are under-sampled along the phase encoding direc-
tion and thus acquired faster. Due to the variation in the coil
sensitivity fields, the resulting aliasing can be unfolded into
a full field-of-view image by the use of computational post-
processing. By exploiting image redundancies along the tem-
poral dimension, these concepts have been further leveraged
for dynamic imaging [3]. At the core of these computational
methods is the following image encoding model

y = UFSx (1)

where x is the vectorized image, y = [y]y3..y&]” is the
concatenation of the data acquired from C coils (y” denotes
the non-conjugate transpose of y), U is a sampling operator,
F is the Fourier transform, and S = [S;S»...8¢]” is a coil
sensitivity operator.

More recently, the framework of compressed sensing (CS)
and its application to MRI has further improved the spatio-
temporal trade-off in dynamic MRI [4, 5, 6]. CS theory asserts
that MR images can be under-sampled (below the Nyquist
rate), thus decreasing acquisition time, without sacrificing
resolution in the reconstructed image. The CS MRI problem
can be formulated as follows:

min®(¥x) s.t. |[UFSx —ylls <e¢ (2)

where x and y are vectors containing the reconstructed image
and the acquired k-space data, respectively, W is a sparsifying
operator, and ® is a sparsity promoting function, often the
L, (p < 1) norm. The error threshold € is set according to
the image noise level.

CS relies on two things: sparsity of the signal in the trans-
form domain (¥), and on the under-sampling artifacts of ¥x
being incoherent (noise-like). Wavelets and finite difference
transforms are widely used as sparsifying transforms in CS
MRI, and shrinkage methods for reducing the artifacts in the
sparse domain. A different class of transforms use the MR
data itself for signal representation [7, 8, 9, 10, 11]. These
methods use sparse representations of spatial image patches
to reduce under-sampling artifacts in the CS reconstruction.

Great advances have been achieved with respect to sam-
pling efficiency and reconstruction quality of dynamic MRI.
Certain under-sampling artifacts, however, remain difficult
to get rid off. One of them is the fluctuation of the image
intensities (ripples) over time. In this work we explore the



application of a new type of image-based transform designed
to reduce these temporal ripples in dynamic MRI of the hu-
man abdomen. Previous patch-based approaches to dynamic
MRI reconstruction have used spatial [11] or spatiotempo-
ral [9, 10] image patches. Here we propose using the self-
similarity among short 1D temporal signals (snippets) which
are retrieved by collecting a number of temporally adjacent
signal values at each spatial voxel position. We compress the
information contained in these snippets into a sparse coding
dictionary which we subsequently use for sparse representa-
tion of the snippets themselves.

2. METHOD

2.1. Problem formulation

The CS problem in Eq.2 is often given in its Lagrangian form
and can be generalized to allow multiple regularization terms:

Q
min [[UFSx —y[[3 + ) A®q(¥0) (3)
q=1
in which A, determines the weight of the gth regularizing

term. In [11], the dynamic (2D+time) reconstruction prob-
lem includes both spatial and temporal regularization terms:

T
Pl:x;_, r=arg min {|| ZUtFSxt —vill3
x,{ai jt p—y
T
+ 00 ) Y IIRE % — i P DYl
t=1 i,

+ A2 Z l[xe — (xe—1 +xe41)/2|5}  (4)

The first term ensures fidelity between the acquired data of
temporal frame ¢ and the data synthesized by the acquisition
model U¢FS from the solution estimate of the tth frame x;.
The second term promotes local proximity between adjacent
slices up to a scaling of the intensities: Rf, ; extracts an np X
np spatial patch from location ¢,j in x;, P; ;DY is a local
dictionary of patches that is specific to image position i, j
and frame t, and ;¢ is a set of weights that yields the least
squares solution of the term. Allowing local scaling in this
way is particularly useful in the case of perfusion imaging
where image contrast changes locally over time. The third
term promotes proximity among adjacent slices in an spatially
global fashion.

It is well known that self-similarity among image patches
can be exploited for signal enhancement in MRI [12]. Based
on the observation of high similarity among temporal 1D
snippets in dynamic MRI, we propose to extend P1 by an
additional regularization term (for compactness we abuse no-
tation and keep in mind that P2 should be minimized with
respect to x, {a,j,¢}, and {5, ;,¢}):

P2:P1+X3 ) |[Bisllo
2]

st. ||Ri;x—DBijullz <e Vi j,t (5)

Given a trained dictionary D?, this term promotes sparsity of
the coefficient vector §; ;: subject to a proximity constraint
between temporal snippets of the full reconstruction estimate
x and their approximation using D?®. The snippets are of size
1 x1Xxns and are extracted from all locations 4, j, ¢ in x using

s

the operator R; ; ;.

The acronym of the method of [11] is PROUD. In the fol-
lowing we shall thus refer to the proposed method by PROUD
with extended regularization, or, PROUDer.

2.2. Method implementation

In [11], P1 was solved for each t by an iterative scheme sim-
ilar to the one proposed in [8]: the method alternates be-
tween solving for a and x;: first the current x; estimate is
"denoised” using D?. Next, the denoised estimate is added
to the adjacent frames x¢—1 and x:4+1 in a weighted average.
Finally, the residual (U;FSx; — y:) is back-projected onto
the solution estimate in a gradient descent step.

The method was initialized by an iteration that included
only the two first terms of P1. The spatial dictionary D? in
all iterations was constructed by concatenating the temporal
frame x;_1 and a reference frame. The reference frame was
created by averaging UZFZSHy, over all time points t (MH
denotes the conjugate transpose of M). P; ; was constrained
to extract n, X np patches from the dictionary frames only at
position 4, j. A patch size of n, = 7 was found experimentally
to yield good results.

The new regularization term was incorporated into the
above scheme by applying an additional ”denoising” step at
the end of each iteration. All snippets R; ; ;x were extracted
from x and replaced by their approximations D?®g3; ;. Here,
the error threshold € was chosen experimentally as a multi-
ple of the background standard deviation, and a sparse f; ;.
was found by orthogonal matching pursuit [13]. The recon-
struction was reassembled by simply averaging the temporally
overlapping “denoised” snippets back into x:

-1
X = {Z(Rf,j,t)TRf,j,t} Z(Rf,j,t)TDsﬁi,j,t (6)
iyt ©,J,t
The dictionary D° was trained using K-SVD [14]. The
1 x 1 Xx mn, training signals were extracted at either
all image locations i,j (for the phantom dataset), or for a
large randomly selected subset thereof (for the in vivo MRI
dataset). ns was experimentally chosen to be 5 for the phan-
tom experiments and 11 for the MRI data experiments. The
number of atoms in the dictionary was set to 20 in both
experiments. A simple way to accommodate K-SVD training
on complex signals is to concatenate the real and imaginary
components of the signals into vectors of length 2ns. This was
done prior to both training and reconstruction. The image
acquisition matrix U.F was implemented by a non-uniform
fast Fourier transform [15, 16] and coil sensitivity maps S
were constructed by dividing low-resolution coil images by
their root sum of squares. The coil images were obtained by
merging all sampled time frames into a single image per coil.



2.3. Experimental setup

The proposed method was validated using two data sets. For
quantitative experiments we used a computational phantom
of the abdominal region (Fig. 1). The phantom was con-
structed by segmenting a 3D reference frame of a 4D abdom-
inal MRI scan into aorta, portal vein, liver, kidney, spine,
colon, and abdominal wall regions. A cartoon frame was cre-
ated by applying intensities to the segmented areas resem-
bling the appearance of the acquisition. The remaining 139
temporal 3D frames were non-rigidly registered to the refer-
ence frame, and the deformation parameters subsequently ap-
plied to the cartoon frame. To reduce the computational bur-
den in our experiments, we used a single cropped 2D slice over
time (256 x 180 x 140). Before simulating the under-sampled
acquisitions, additive zero-mean Gaussian noise was added
to the phantom. Experiments were performed with noise of
standard deviations 0, 10, 20, and 30. A single coil acquisi-
tion was simulated by y; = U;FSx, where S implemented a
uniform sensitivity field and U; was a variable density spi-
ral trajectory with golden angle rotation of the spiral leaves
between each time frame ¢ [17]. As measures of reconstruc-
tion quality we used peak signal-to-noise ratio (PSNR) and
the mean structural similarity index measure (mean SSIM)
(averaged over the time frames).
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Fig. 1. Left: Temporal frame of the phantom. Right: The
corresponding phantom frame after acquistion simulated by
y+ = U, FSx, and reconstruction by x = (UtFS)Hyt.

For qualitative in vivo experiments we used an 8-coil 4D
liver perfusion acquisition which use a golden angle spiral
LAVA sequence with a stack of variable density spiral trajec-
tories [17]. As for the phantom, a 2D+time image (recon-
struction grid size: 256 x 256 x 240) was extracted and used
for the experiments.

3. RESULTS

Fig. 2 shows the PSNR and mean SSIM of the phantom re-
construction experiments for varying noise levels. It is seen
how PROUDer improves the reconstruction considerably over
PROUD, for all noise-levels. PSNR improvements after 11 it-
erations are 0.7, 1.7, 2.1, and 1.4 dB for noise-levels of 0, 10,
20, and 30, respectively. The corresponding improvements in
mean SSIM are 0.26, 0.50, 0.49, and 0.44. It is also seen how
PROUDer nearly converges after 1 iteration. The computa-
tional overhead of the dictionary-based snippet ”denoising”
step in PROUDer is thus more than compensated for.

In Fig. 3, a single time frame of the PROUD and
PROUDer reconstructions are shown on the left. There
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Fig. 2. PSNR and mean SSIM of PROUD and PROUDer
reconstructions for simulated acquisitions with noise standard
deviations of 0 (red), 10 (green), 20 (blue), 30 (magenta).

is hardly any visible difference between these two frames. If
the window/level is adjusted, it can be seen how PROUDer
reduces the background noise more. In the center and on
the right, temporal cross-sections of the reconstructions are
shown. Here the effect of the snippet-based regularization
in PROUDer can be appreciated: the temporal intensity
fluctuations (ripple artifacts) present in the PROUD recon-
struction are much less visible in PROUDer after 1 iteration
and practically gone after 6.

Fig. 3.
PROUDer.

Top/bottom:
Left to right: Reconstructed frame, temporal
cross-section at dashed line after 1 iteration, and 6 iterations.

Reconstruction using PROUD/

In studies of contrast enhanced MRI of the liver, it is
common practice to consider the time-intensity curves of the
aorta and the portal vein. In Fig. 4, the efficient removal of
the ripples in these curves by PROUDer is again seen clearly.
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Fig. 4. Time-intensity curves extracted from aorta and por-

tal vein regions in PROUD and PROUDer reconstructions
after 1 (left) and 6 (right) iterations.



4. DISCUSSION

In this paper, we have proposed a new empirical model for
dynamic MRI according to which short temporal snippets can
be represented sparsely using a trained dictionary. We have
shown that the model can be used to regularize an abdomi-
nal MRI reconstruction problem. Our reconstruction method
compares favourable, both quantitatively and qualitatively,
with the state-of-the-art method which it extends, especially
in dealing with the temporal intensity fluctuations which are
a well-known artifact in spiral under-sampling schemes.

The results presented here are preliminary but point out
multiple directions of future research: it will be interest-
ing to apply and validate the snippet-based regularization in
other settings: to other dynamic MRI reconstruction applica-
tions (e.g. cardiac cine), in conjunction with other sampling
schemes (e.g. Cartesian and stack-of-stars sampling), and in-
corporated into other CS algorithms (e.g. the recent matrix
recovery approaches [18, 19]). Also, ways of automatically de-
termining parameters such as snippet length ns, dictionary
size, and the error threshold e should be studied, both in
order to avoid tedious tuning work, but also to learn more
about the properties of the model.
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