
DIRECT ADAPTIVE ALGORITHMS FOR CT RECONSTRUCTION

Joseph Shtok, Michael Elad, and Michael Zibulevsky

Computer Science department

Technion - Israel Institute of Technology

Haifa 32000, Israel

ABSTRACT

This work concerns with linear and spatially-adaptive direct

reconstruction algorithms for 2-D parallel-beam transmission

tomography, extending the Filtered Back-Projection (FBP).

The standard apodized Ram-Lak filter kernel is replaced with

a bank of statistically trained 2-D convolution kernels, lead-

ing to improved reconstruction results. Two types of filter

training procedures are considered. The first deals with re-

construction from noisy and truncated projections in a pre-

defined region of interest, for images from a known family.

In the second algorithm, termed SPADES, the training aims

at improving the impulse response properties of the overall

projection-reconstruction scheme. In this algorithm, the de-

gree of smoothing applied to the reconstructed image is spa-

tially controlled by a switch rule. Both methods are shown by

simulations to operate well and lead to substantially improved

reconstruction results.

Index Terms— Computed Tomography (CT), statistical

training, spatial adaptivity, Filtered-Back-Projection (FBP).

1. INTRODUCTION

Filtered Back-Projection (FBP) is a basic direct reconstruc-

tion algorithm applied in Computed Tomography (CT). It is

fast, simple, cheap, and despite its drawbacks, it is widely

used in clinical CT scanners. While being theoretically ex-

act in the continuous domain, FBP fails to account for the

numerous physical phenomena present in the data acquisition

process and especially for discretization errors. Moreover, it

lacks the flexibility required to manage partial input data, like

truncated projections of a Region Of Interest (ROI) (desired

for reduction of X-ray dosage and hardware cost).

These challenges are met to some extent by more elab-

orate statistically-based algorithms [1]. Here, the objective

function can incorporate the statistical acquisition model

and account for partial projections data. Unfortunately, pro-

hibitive computational complexity of such algorithms forces

the practitioners to use these ideas in a restricted form. For

instance, an iterative restoration of the sinogram (the pro-

jection data), followed by the standard FBP, is proposed in

[2]. The method developed in [3] employs an exemplar-based

classification of the sinogram data patches, combined with

training of local 2-D projection filters.

In most works that consider FBP-based algorithms, the

choice of the projection filter is restricted to the Ram-Lak

(ramp) kernel, with a low-pass window applied in order to

eliminate high-frequency noise (naturally amplified by the

ideal ramp). Such apodized filter requires parameters tuning

and leaves place for improvements. In this paper we propose

to replace the ramp filter with a bank of statistically trained

2-D convolution kernels, leading to improved reconstruction

results. These filters lead to non-linear, spatially-adaptive

reconstruction algorithms that are based on FBP-like linear

operators.

As a first step towards an adaptive reconstruction proce-

dure, we develop a generalized version of FBP, in which the

analytical 1-D projections filter is replaced by one based on

a statistically-trained bank of 2-D kernels, and an additional

2-D filter as post-processing after the back-projection stage.

The training objective for these kernels can be designed to

address different problems in the tomographic reconstruction,

including a reconstruction of a certain family of interest, us-

ing projections contaminated with Poisson noise, truncation

to a ROI, and more. The filters are computed as minimizers

of the Mean-Squared-Error (MSE) between the original train-

ing images and those reconstructed by the proposed scheme.

More details on this algorithm can be found in [4].

Another approach for filter design is to train kernels

that would produce an impulse response of the projection-

reconstruction pair with controlled measure of blur and low

off-focal perturbations. This tool developed here allows us to

compute a sequence of reconstructed images with a varying

degree of blur, all obtained from the same sinogram. Due to

a natural tradeoff between sharpness and noise reduction, in

each such result a different region corresponding to certain

smoothness is successfully recovered. Thus, a spatially-

adaptive local fusion of these images can (and does) result in

a high-quality CT reconstruction.

In this work we present such a Spatially-Adaptive Estima-

tion (termed SPADES). We consider two possible fusion rules

for it, the first based on a learning procedure (using Support

Vector Regression (SVR) or Neural Network), and the second

based on a theoretical consideration. SPADES concludes in



executing a small number of FBP-like algorithms in parallel,

and combining their outputs by a non-linear fusion operation.

This leads to a fast and spatially-adaptive reconstruction algo-

rithm that implicitly employs local smoothness information to

achieve high image quality.

This paper is organized as follows. In Section 2 we

present the AFBP paradigm and how the objective function

is defined for designing the filters of interest. Section 3 de-

scribes the design procedure for filters that give a controlled

Point Spread-Function (PSF) in the projection-reconstruction

cycle. In Section 4 we discuss the SPADES algorithm, which

fuses these filters’ results, getting spatially adaptive yet non-

iterative reconstruction result.

2. AFBP: LINEAR RECONSTRUCTION SCHEME

In 2-D transmission tomography, the attenuation image f(x)
is projected along straight lines by means of the 2-D Radon

transform: gθ(s) = (Rf)ℓ =
∫

ℓ
f(x)dl, where ℓ = ℓ(θ, s) is

the line which makes the angle θ with the x axis and passes

at distance s from the origin. The Radon transform of f(x) is

sampled at large number of fixed angles (evenly covering the

range [0, π]) and fixed signed distances s (bins). The adjoint

R
∗, also known as the Back-Projection transform, is defined

by R
∗g(x) =

∫

θ
gθ([cos(θ), sin(θ)] · x)dθ. We let A ⊂ R

2

stand for the domain of an attenuation image, and P ⊂ R
2

denote the domain of projections.

In reality, the exact Radon operation is replaced by ran-

dom Poisson measurements that account for the number

yℓ (for each projection line ℓ as specified above) of pho-

tons received in a unit of time by the corresponding detec-

tors. yℓ is modeled as a realization of the random variable

Yℓ ∼ Poisson
(

I0e
−(Rf)ℓ

)

. The source X-ray intensity I0

determines the scale of the parameter of the Poisson distri-

bution, thus influencing the noise level. In sequel we denote

gθ(s) = −log yℓ

I0

, the Maximum Likelihood estimate of the

Rf .

The linear reconstruction scheme, labeled as Adaptive Fil-

tered Back-Projection (AFBP), is defined to be the transform

Tκ = FκA ◦ R
∗ ◦ FκP : P → A (1)

with parameter set κ = {κP , κA} (a corresponding block di-

agram is presented in Figure 1).
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Figure 1: AFBPt reconstruction scheme

Assume that the projections are truncated to the central

disk of radius D. We partition this range of s ∈ [−D,D]

into d disjoint sub-segments [−D, D] =
⋃d

i=1 Di, and con-

sider a bank κP = {κP
i }

d
i=1 of 2-D convolution kernels, each

corresponding to a different segment. The sinogram filter is

applied by convolving the neighborhood of the segment Di

of each projection with the kernel κP
i (we refer here to the

2-D neighborhood of the projection in the sinogram matrix).

In the image domain, a single 2-D convolution kernel κA is

applied to the Back-Projection output f̄(x).
By replacing the classical 1-D projection filter with 2-

D filters, we allow contributions from the neighboring pro-

jections in the filtering process. The motivation for using a

spatially-variant sinogram filter (a different kernel for each

projection segment) comes from considerations regarding re-

construction with missing data. When the projections are

truncated to a region of interest, the central part of the re-

maining projections should be filtered using a symmetric ker-

nel with small spatial support in order to reduce the truncation

error. For projection pixels residing near the edges of this re-

gion, the information should be gathered in a non-symmetric

way, only from the non-truncated part of the projection. In

addition, the tuned high-dimensional parameter set (values of

the convolution kernels) of Tκ allows to absorb various im-

perfections in the complex projection-reconstruction process,

such as phenomena in acquisition process, discretization er-

rors and minor effects that are not modeled into the recon-

struction scheme.

Different training procedures for derivation of the kernel

bank κ yield different reconstruction algorithms, as detailed

below.

We now turn to describe the methodology developed in

[4]. This training objective is designed to account for the fol-

lowing considerations: (1) The attenuation image is expected

to come from a certain family of images, represented by an

available training set; (2) The projections are contaminated

with Poisson noise, stemming from low photon count, with

known source intensity; (3) The projections are truncated to

a disk containing the ROI plus a small margin. Given a set

Ftr of representative images, we build the training set Gtr

consisting of noisy truncated sinograms by

Gtr = {gk
f = (Rf + ξk

f )|ROI | f ∈ Ftr, k = 1...K}, (2)

where {gk
f}

K
k=1 are generated from f ∈ Ftr by applying the

Radon transform and generating K instances of the Poisson

noise.

Using the above training sets, the kernel bank κ is then

computed as an optimizer of the objective function

(κ∗) = arg min
κ

∑

gk
f
∈Gtr

‖(Tκgk
f − f)|ROI‖

2
2. (3)

This function is quadratic in each one of the kernels in κP

and the κA. Thus for each of the two sets of variables we can

solve the optimization problem using the Conjugate Gradient

method, applied to the corresponding linear equation. The

training is then carried out in turns, fixing one set of variables

and updating the other. Numerical results on a testing image



of size 256 × 256 with reconstructed ROI of radius 30 pix-

els are presented in Figure 2. As can be seen, the Signal to

Noise Ratio (SNR) in the ROI is substantially improved. This

algorithm is labeled as AFBPt.

From left to right: Original image, ROI close−up, 
AFBP result (SNR= 20.0939 dB), 

standard FBP result (SNR= 13.3517 dB).

Figure 2: ROI reconstruction from truncated projections

3. AFBPS: PSF-DRIVEN TRAINING

Any linear, spatially-invariant operator L is completely char-

acterized by its impulse response, also called the Point Spread

Function (PSF). This is defined as the image of the Dirac delta

function under L. Let T stand for any linear reconstruction

operator T : P → A and consider the PSF of the compo-

sition T ◦ R (which is - ideally - a linear, spatially invariant

operator on A). When T represents the FBP algorithm, the

aforementioned PSF deviates from the ideal one (Dirac delta

function) in a number of ways: the central spike is a spread

spot, it lacks radial symmetry, and it exhibits a spatial vari-

ance. Moreover, it has off-central distortions of global nature

(due to the fact 2-D Radon is a global transform).

We propose to train the parameter set κ of the AFBP re-

construction operator Tκ such that the PSF of Tκ ◦ R has

a controlled amount of blur and diminished off-focal energy.

To that end, κ is computed as the minimizer of an objective

function, whose structure is detailed below. For any pixel p,

let fp(x) be the image defined by fp(p) = 1 and zeros else-

where. Also, let gp = Rfp, be the projection set created by

such an image. The objective function focused on p is

Φ(κ, p) = ‖(Tκgp − 1)|Rp
‖2
2 (4)

+λ‖(Tκgp)|RC
p
‖2
2 + µ‖κP‖2

2.

Here Rp is a small disk centered at p, and RC
p is its com-

plement in the domain. This objective penalizes the off-focal

energy of the PSF Tκgp while keeping constant its integral

over its central disk. The last component serves as a regular-

izer, diminishing the energy of the convolution kernels in the

projection domain, which reduces noise amplification by the

filter. The radius of Rp controls the amount of blur present

in the PSF. Since the reconstructed image f̃(x) can approxi-

mately be described as the original f(x) convolved with the

PSF, this blur is just the degree of smoothing applied to the

original image in the reconstruction process.

Since the operator T◦R is not truly spatially-invariant, we

use an objective function summarizing the penalty Φ(κ, p)
over some set Ω of image locations p. Our choice for Ω
is a coarse rectangular grid, covering the entire image do-

main and making an acute angle with its coordinate sys-

tem. To summarize, the kernel bank κ is computed via

κ∗ = arg minκ

∑

p∈Ω Φ(κ, p). The resulting algorithm is

labeled as AFBPs.

The degree of blur introduced by a given reconstruction

operator is reflected in its noise tolerance properties: the

tradeoff between the X-ray dosage and the reconstruction

quality gradually changes as the measure smoothness grows.

Graphs of some typical cases, displayed in Figure 3, illustrate

this phenomenon.
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Figure 3: Performance of different kernels on

CT images: SNR versus the X-ray power.

4. SPADES: SPATIALLY-ADAPTIVE ESTIMATOR

Our goal is to bridge the gap between the direct and the iter-

ative algorithms by an FBP-based, spatially-adaptive recon-

struction scheme. The motivation comes from locally adap-

tive denoising techniques that apply a smoothing operator

with varying degree of blur, dependent on local smoothness

of the image (see [5] and references therein). An analogue

to denoising with a fixed convolution kernel µ is the AFBPs

algorithm trained to produce the PSF which has the shape of

µ. The degree of smoothing can be adapted locally in the

following way: train a sequence of AFBPs algorithms with

gradually increasing spread of the PSF, compute the corre-

sponding sequence of reconstructed images, and apply a local

switch rule that would chose the appropriate PSF to be used

for each location.

We have designed such a switch rule based on the model

in [5]. It addresses the problem of recovering a signal x from

observations y = x + ξ, where ξ is a homogeneous Gaus-

sian noise. At each location p in the signal domain, a se-

quence of estimates x̃i is computed by fitting to the data a

least-squares polynomial of degree m in a disk with growing

radius δi. Then a rationale based on confidence intervals is

employed to define a local switch rule, which chooses one of

the estimate values x̃i(p).



We have modified and applied this technique to CT re-

construction: different estimates x̃i of the original signal are

replaced by reconstructed images f̃i = Ti(g). Here {Ti}
m
i=1

is the sequence of AFBPs transforms with a growing de-

gree of PSF smoothness. While the noise, present in the

reconstructed image is neither Gaussian nor independent of

data, its second-order statistics can be estimated in order to

compute the confidence intervals for f̃i(p) at each location

p. Then a switch rule, similar to one developed in [5], is

applied to choose the most appropriate from the available

values {f̃i(p)}m
i=1.

Our experiments show that while this algorithm gives im-

proved image quality over the AFBPt output, the gain is small.

This may be explained by insufficient tuning of various pa-

rameters, and the assumptions our method relies on. This

leads us to a learning-based alternative, described below.

To build a powerful local fusion rule we resort to Support

Vector Regression (SVR) or a Neural Network (NN). These

are trained on a set Ftr of representative images. For every

f ∈ Ftr we compute the projections gθ(s) = Rf + ξ where

ξ is the Poisson noise. A sequence of AFBPs reconstruction

operators, {Ti}
m
i=1, described earlier, is then applied to com-

pute the versions f̃i of the image. In addition, we use the

AFBPt operator Tt, also trained on the set Ftr (see Section 2

for details).

For each image location p, we extract a vector of fea-

tures containing the following values: (1) The sequence f̃i(p),
i = 1, ...,m; (2) The value f̃t(p); and (3) The values of f̃t in

the 8-neighborhood of p. At the training stage this vector of

features, along with the true value f(p), is passed to the learn-

ing procedure (this data is extracted from evenly distributed

locations in training images). Notice that the information pro-

vided is local, and therefore, after the learning process, it is

expected to successfully resolve the pixel values for any CT

images.

The resulting SPADES reconstruction scheme is given in

the Figure 4.

Figure 4: SPADES reconstruction scheme

In our numerical experiments, both SVR and NN have

succeeded to improve the reconstruction quality beyond the

performance of our best linear estimator Tt on the test-

ing set compatible to Ftr. Results presented here are for a

single-layer Neural Network. Its output function is defined as

y(x, w, v) =
∑N

j=1 vjσ(
∑M

i=1 wi,jxj + wM+1,j), where N

is the number of neurons, M is the size of the input feature

vector, wi,j is the weight on edge connecting i-th input to

j-th neuron, and σ(x) = x/(1 + |x|) is the sigmoid function.

Figure 5 displays (negatives of) difference images from

numerical experiments with 256 × 256 axial CT thorax ob-

tained from a clinical radiology website MedPix images1. A

small neural network of 50 neurons was trained and applied

to produce the reconstruction. The object background was

eliminated in SNR measurements.
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Figure 5: FBP vs. SPADES

Error close−up. Left: FBP. SNR=  22.7034 dB.
Right:  SPADES. SNR= 23.6545 dB.
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5. SUMMARY

In this work we present direct reconstruction algorithms

that enjoy the computational complexity of the standard

FBP, while leading to improved performance. These algo-

rithms can be easily incorporated in an existing FBP-based

reconstruction framework and serve a wide range of tasks in

Computed Tomography.

6. REFERENCES

[1] I.A. Elbakri and J.A. Fessler, “Statistical image recon-

struction for polyenergetic x-ray computed tomography,”

IEEE Trans. on Medical Imaging, vol. 21, no. 2, pp. 89–

99, 2002.

[2] J. Bian P.J. La-Riviere and P.A. Vargas, “Penalized-

likelihood sinogram restoration for computed tomogra-

phy,” IEEE Trans. on Medical Imaging, vol. 25, no. 8,

pp. 1022–36, 2006.

[3] K.D. Sauer B.I. Anda and C.A. Bouman, “Nonlinear

back-projection for tomographic reconstruction,” IEEE

Trans. on Nuclear Science, vol. 49, no. 1, pp. 61–68,

2002.

[4] M. Zibulevsky J. Shtok, M. Elad, “Adaptive filtered-back-

projection for computed tomography,” in IEEEI, 2008,

pp. 528–532.

[5] A. Goldenshluger and A. Nemirovsky, “On spatial adap-

tive estimation of nonparametric regression,” Mathemat-

ical Methods of Statistics, vol. 6, pp. 135–170, 1997.

1courtesy of Prof. James Smirniotopoulos, Uniformed Services Univer-

sity of the Health Sciences


