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Abstract—We consider an underdetermined linear system of
equations Ax = b with non-negative entries of A and b, and the
solution x being also required to be non-negative. We show that
if there exists a sufficiently sparse solution to this problem, it is
necessarily unique. Furthermore, we present a greedy algorithm
– a variant of the matching pursuit – that is guaranteed to find
this sparse solution. The result mentioned above is obtained by
extending the existing theoretical analysis of the Basis Pursuit
problem, i.e. min ‖x‖1 s.t. Ax = b, by studying conditions for
perfect recovery of sparse enough solutions. Considering a matrix
A with arbitrary column norms, and an arbitrary monotone
element-wise concave penalty replacing the �1-norm objective
function, we generalize known equivalence results, and use those
to derive the above uniqueness claim.

I. INTRODUCTION

This paper is devoted to the analysis of underdetermined
linear systems of equations of the form Ax = b, where the
entries of A ∈ R

n×k and b ∈ R
n are all non-negative1, and

the desired solution x ∈ R
k is also required to be non-negative.

Such problems are frequently encountered in signal and image
processing, in handling of multi-spectral data, considering
non-negative factorization for recognition, and more (see [3],
[19], [24], [27], [28], [31] for representative work).

When considering an underdetermined linear system (i.e.
k > n), with a full rank matrix A, the removal of the non-
negativity requirement x ≥ 0 leads to an infinite set of feasible
solutions. How is this set reduced when we further require a
non-negative solution? How can these solutions be effectively
found in practice?

Assuming there could be several possible solutions, the
common practice is the definition of an optimization problem
of the form

(Pf ) : min
x

f(x) subject to Ax = b and x ≥ 0, (1)

where f(·) measures the quality of the candidate solutions.
Possible choices for this penalty could be various entropy
measures, or general �p-norms for various p in the range
[0,∞). Popular choices are p = 2 (minimum �2-norm), p = 1
(minimum �1-norm), and p = 0 (enforcing sparsity). For
example, recent work reported in [11]–[13] proved that the
p = 0 and p = 1 choices lead to the same result, provided that
this result is sparse enough. This work also provides bounds
on the required sparsity that guarantee such equivalence, but
in a different setting.

1This non-negativity requirement could be substantially relaxed, as we shall
see in Section 3.

Clearly, if the set of feasible solutions {x| Ax = b and x ≥
0} contains only one element, then all the above choices of
f(·) will lead to the same solution. In such a case, the above-
discussed �0-�1 equivalence becomes an example of a much
wider phenomenon. Surprisingly, this is exactly what happens
when a sufficiently sparse solution exists. The main result
shown of this paper proves the uniqueness of such a sparse
solution, and provides a bound on ‖x‖0 below which such a
solution is guaranteed to be unique.

There are several known results reporting an interesting
behavior of sparse solutions of a general underdetermined
linear system of equations, when minimum of �1-norm is
imposed on the solution (this is the Basis Pursuit algorithm
(BP)) [7], [17]. These results assume that the columns of
the coefficient matrix have a unit �2-norm, and state that the
minimal �1-norm solution coincides with the sparsest one, for
sparse enough solutions. As mentioned above, a similar claim
is made in [11]–[13] for non-negative solutions, leading to
stronger bounds.

In this work we extend the BP analysis, presented in [7],
[17], to the case of a matrix with arbitrary column norms and
an arbitrary monotone element-wise concave penalty replacing
the �1-norm objective function. A generalized theorem of the
same flavor is obtained. Using this result, we get conditions
of uniqueness of sparse solutions of non-negative system of
equations, as mentioned above. Interestingly, there is no need
for the �1 penalty in these cases – non-negativity constraints
are sufficient to lead to the unique (and sparsest) solution.

Returning to the practical side of things, and assuming
that we are interested in the sparsest (and possibly the only)
feasible solution of

(P+
0 ) : min

x
‖x‖0 subject to Ax = b and x ≥ 0, (2)

there are several possible numerical methods for solving this
problem. We present a variant of the Orthogonal Matching
Pursuit (OMP) for this task. We provide a theoretical analysis
of this algorithm that shows that it is guaranteed to lead to the
desired solution, if it is indeed sparse enough.

The structure of this paper is as follows: In Section 2 we
extend the BP analysis to the case of arbitrary monotone
element-wise concave penalty and matrix A with arbitrary
column norms. This analysis relies on a special definition
of coherence measure of the matrix A. In Section 3 we
develop the main theoretical result in this paper, claiming that
a sufficiently sparse solution of {Ax = b,x ≥ 0} is unique.



We also introduce preconditioning that improves the above-
mentioned coherence. Section 4 presents the OMP variant for
the non-negative problem, along with empirical and theoretical
analysis of its performance. e note that a longer and more
detailed version of this paper is available in [1].

II. BASIS PURSUIT: AN EXTENDED RESULT

In this section we develop a theorem claiming that a
sufficiently sparse solution of a general underdetermined linear
system Dz = b is necessarily a minimizer of a separable
concave function2. It extends Theorem 7 in [7] in several ways:

• It does not assume normalization of the columns in D
(and thus it is more general);

• It relies on a different feature of the matrix D – a one-
sided coherence measure;

• The objective function is more general than the �1-norm
used in [7]. In fact, it is similar to the one proposed
by Gribonval and Nielsen in [18], but due to the above
changes, the analysis is different.

The results presented in this section form the grounds for the
analysis of non-negative linear systems in Section 3.

For an arbitrary n×k matrix D with columns di we define
its one-sided coherence as

ρ(D) = max
i,j;j �=i

|dT
i dj |

‖di‖2
2

. (3)

Defining the Gram matrix G = DT D, its elements satisfy

|Gij |
Gii

≤ ρ(D) ∀i, j �= i. (4)

This measure tends to behave like 1/
√

n for random matrices,
very much like the regular mutual-coherence as defined in [7].

Lemma 1: Any vector δ from the null-space of D satisfies

‖δ‖∞ ≤ tD‖δ‖1, (5)

where we denote

tD =
ρ(D)

1 + ρ(D)
. (6)

Proof: Multiplying the null-space condition Dδ = 0 by
DT , and using G = DT D, we get Gδ = 0. The i-th row of
this equation,

Giiδi +
∑
j �=i

Gijδj = 0, i = 1, 2, . . . , k, (7)

gives us

δi = −
∑
j �=i

Gij

Gii
δj , i = 1, 2, . . . , k. (8)

Taking absolute value of both sides, we obtain

|δi| =

∣∣∣∣∣∣
∑
j �=i

Gij

Gii
δj

∣∣∣∣∣∣ ≤
∑
j �=i

∣∣∣∣Gij

Gii

∣∣∣∣ |δj | ≤ ρ(D)
∑
j �=i

|δj |, (9)

2We introduce here a different notation for the linear system: Dz = b,
instead of Ax = b, for reasons to be clarified in the next Section.

where the last inequality is due to (4). Adding a term ρ(D)|δi|
to both sides, we get

|δi| ≤ ρ(D)
1 + ρ(D)

‖δ‖1 = tD‖δ‖1, i = 1, 2, . . . , k. (10)

Thus, ‖δ‖∞ ≤ tD‖δ‖1, as the Lemma claims.
Theorem 1: Consider the following optimization problem:

min
z

k∑
i=1

ϕ(|zi|) subject to Dz = b (11)

with a scalar function ϕ : R+ → R satisfying:

• ϕ is concave (see [1]);
• ϕ is increasing semi-monotonic: ϕ(t2) ≥ ϕ(t1) for all

t2 > t1 > 0; and
• ϕ(t) > ϕ(0) ∀t > 0 (in order to avoid ϕ(t) ≡ 0).

A feasible solution z̄ (i.e. Dz̄ = b) is a unique global optimum
of (11) if

‖z̄‖0 <
1

2tD
, (12)

where tD is given by (6).
Proof: Adding a constant to the objective function does

not change the solution. Therefore, without loss of generality,
we shall assume hereafter that

ϕ(0) = 0.

We intend to show that under the conditions of the theorem,
any feasible non-zero deviation vector δ ∈ R

k of z̄ (i.e. z̄ +
δ) necessarily leads to an increase in the objective function,
namely

k∑
i=1

ϕ(|z̄i + δi|) >
k∑

i=1

ϕ(|z̄i|). (13)

Feasibility of the deviation vector means

D(z̄ + δ) = b, (14)

implying Dδ = 0. Thus, by Lemma 1 we can state that

|δi| ≤ tD‖δ‖1 ≡ δtol, i = 1, . . . , k. (15)

Among all vectors δ of fixed total amplitude ‖δ‖1 =
δtol/tD satisfying inequalities (15), we shall try to compose
one that reduces the objective function. For this, we separate
the summation of the objective function into two parts – the
on-support elements (i.e. those with |z̄i| > 0), and the off-
support ones (where z̄i = 0). We denote the support of z̄ as
Γ and write

k∑
i=1

ϕ(|z̄i + δi|) =
∑
i∈Γ

ϕ(|z̄i + δi|) +
∑
i/∈Γ

ϕ(|δi|). (16)

We consider first the on-support term. Taking into account
monotonicity and concavity of ϕ(·), a maximal decrease of
the objective function would be possible for the choice

δi =
{ −δtol · sign(z̄i) |z̄i| ≥ δtol−z̄i 0 < |z̄i| < δtol

. (17)



For this assignment, the descent in the objective function is
given by

EΓ =
∑
i∈Γ

ϕ(|z̄i|) −
∑
i∈Γ

ϕ(|z̄i + δi|) (18)

=
∑
i∈Γ

ϕ(|z̄i|) −
∑
i∈Γ

ϕ(|z̄i| − δi)

=
∑
i∈Γ

ϕ(|z̄i|) −
∑
i∈Γ

ϕ
(
max{|z̄i| − δtol, 0}

)

≤ |Γ| · ϕ(δtol).

The last inequality is a direct consequence of the zero-bias
(ϕ(0) = 0), monotonicity, and the concavity properties of the
function ϕ(·).

Turning to the off-support term in Equation (16), any
assignment of δi �= 0 implies an ascent. Of the original
deviation vector δ, we are left with a total amplitude of at
least ‖δ‖1 − |Γ| · δtol = ‖δ‖1 · (1 − tD|Γ|), to be assigned to
the off-support elements. Again, due to the concavity of ϕ(·),
this remaining energy leads to the smallest possible ascent if
the assignment chosen is δtol to as few as possible elements.
Thus, the obtained ascent becomes

EΓ̄ =
‖δ‖1 − |Γ| · δtol

δtol
· ϕ(δtol) (19)

=
‖δ‖1 · (1 − tD|Γ|)

‖δ‖1 · tD|Γ| · ϕ(δtol) =
1 − tD|Γ|

tD|Γ| · ϕ(δtol).

In order for z̄ to be a unique global minimizer of the
problem posed in Equation (11), the change of the objective
function should be positive – i.e., EΓ < EΓ̄, implying

1 − tD|Γ|
tD|Γ| · ϕ(δtol) > |Γ| · ϕ(δtol). (20)

which is always satisfied if |Γ| ≡ ‖z̄‖0 < 1
2tD

, as claimed.

III. NON-NEGATIVE SYSTEMS OF EQUATIONS

We now turn to the main result of this paper, showing that
a sufficiently sparse solution of a linear system is necessarily
the only non-negative possible solution. Afterwards, we show
how to preconditioning of the linear system can be used to
strengthen this theorem.

Suppose that we are given a system of linear of equations
with non-negativity constraints

Ax = b, x ≥ 0, (21)

with non-negative A ∈ R
n×k and b ∈ R

n. In order to simplify
the exposition, we re-scale the problem to have unit column
sums of the coefficients. Let W be a diagonal matrix with
the entries Wjj =

∑
i Aij . We assume that there are no zero

columns of in A, and thus W is invertible. The equivalent
system is

AW−1Wx = b, x ≥ 0. (22)

Denoting D ≡ AW−1 and z ≡ Wx, we get the normalized
system with

∑
i Dij = 1:

Dz = b, z ≥ 0. (23)

Denote 1n a column vector of n ones. Multiplying the last
equation with 1T

n , and using the fact that 1T
nD = 1T

k , we
obtain

1T
k z = 1T

nb = c, (24)

where c denotes the sum of the entries in b.
Theorem 2: Suppose that we are given a system of linear

equations with non-negativity constraints Dz = b, z ≥ 0,
such that all its solutions satisfy 1T z = c, where c is some
constant. If a vector z̄ is a sparse solution of this system with
‖z̄‖0 < 1

2tD
, then it is a unique solution of this problem3.

Proof: Taking into account non-negativity of z, we can
rewrite the condition 1T z = c differently, as

‖z‖1 = c. (25)

The vector z̄ is a sparse (with less than 1/2tD non-zeros)
feasible solution of the linear programming problem

min
z

‖z‖1 subject to Dz = b. (26)

Notice that we do not specify the constraint 1T
k z = c

because any feasible solution of this problem must satisfy
this condition anyhow. Also, we do not add a non-negativity
constraint – the problem is defined as described above, and
we simply observe that z̄ is a feasible solution.

By Theorem 1, the vector z̄ is necessarily a unique global
minimizer of (26), i.e. any other feasible vector z : Dz = b
has a larger value of ‖z‖1; hence, being non-negative, it cannot
satisfy 1T z = c, and therefore it can not be a solution of
Dz = b, z ≥ 0.

We add the following two comments:

• Assume that a very sparse vector z̄ has been found to be
a feasible solution of Dz = b, z ≥ 0. At least locally,
if we aim to find other feasible solutions, we must use
a deviation vector that lies in the null-space of D, i.e.,
Dδ = 0. Positivity of the alternative solution z̄+δ forces
us to require that at the off-support of z̄, all entries of δ
are non-negative. Thus, the above theorem is parallel to
the claim that such constrained vector is necessarily the
trivial zero one.

• We started the discussion in this section by requiring that
A is non-negative. The only place that used this property
is the normalization by W in Equation (22), requiring
that W is invertible. Thus, any matrix A that leads to an
invertible positive weight matrix W is adequate for our
analysis.

The problem (11) can be rewritten in an equivalent form

min
z

∑
i

ϕ(|zi|) subject to PDz = Pb, (27)

where the “preconditioner” matrix P is any invertible n ×
n matrix. Therefore the statement of the Theorem 1 remains
valid if we change ρ(D) and tD by ρ(PD) and tPD. This
gives us a useful degree of freedom in the analysis of problem

3Recall that tD is given by (3) and (6).



(11): In order to relax the requirement on the number of non-
zeros, one can try to find such P that reduces ρ(PD). The
same is valid for problem posed in (23).

In the case of positive matrix D, an efficient preconditioning
can be obtained just by subtracting the mean of each column
di from its entries:

Pdi = di − mean(di)1n =
(
I − 1

n
E

)
di, (28)

where E is n × n matrix of ones and I is the identity
matrix of the same size. Such preconditioner typically reduces
correlation between columns. For example, when the columns
are normalized,

∑
k dkl = 1,

(Pdi)T (Pdj) = di
T

(
I − 1

n
E

)
di = dT

i dj − 1
n

,

i, j = 1, ..., k.

This usually leads to a smaller coherence constant ρ(PD).
Note that the matrix (I − 1

nE) is singular (and thus non-
invertible); therefore we use (I− 1−ε

n E) instead, with ε being
a small positive constant 0 < ε << 1.

We should note again that this preconditioning does not
change the solution of the original linear system; it just
improves our worst-case forecast of uniqueness versus sparsity.
On the other hand, as we shall see in Section 4, it improves
significantly the behavior of the OMP [21], [23], targeting the
above problem.

IV. ORTHOGONAL MATCHING PURSUIT PERFORMANCE

A. Approximation Algorithm

We have defined an optimization task of interest, (P+
0 ) (2)

but this problem is very hard to solve in general. We could
replace the �0-norm by an �1, and solve a linear programming
problem. This is commonly done in a quest for sparse solutions
of general linear systems, with good theoretical foundations.
In fact, based on Theorem 2, one could replace the �0 with any
other norm, or just solve a non-negative feasibility problem,
and still get the same result, if it is indeed sparse enough.
However, when this is not the case, we may deviate strongly
from the desired solution of (P+

0 ).
An alternative to the �1 measure is a greedy algorithm. We

present this option in this section and study is performance,
both empirically and theoretically. Specifically, we consider
the use of the orthogonal matching pursuit (OMP) algorithm
[21], [23], finding the sparsest and non-negative solution to
Ax = b one atom at a time. As we have shown before, rather
than operate on the original linear system, we can use the
�1-normalized version Dz = b, or even the centered version
PDz = Pb.

The algorithm is is a modified version of the regular
OMP that takes into account the non-negativity of the sought
solution. The positivity is imposed in two locations: (i) When
searching for the next atom to join, we consider only positive
inner products; and (ii) When updating the residual based on
the accumulated atoms, the least-squares solver should impose
a positivity on the coefficients.

An important observation we have already mentioned is that
one can apply the above-described OMP in the very same way
on the original problem (P+

0 ), or a centered version of it. The
solutions of both problems are equivalent. How well will this
algorithm perform in the two described cases? In the following
subsections we offer two kinds of answers - an empirical one
and a theoretical one. We start with an empirical evidence.

B. Experimental Results

We start with a (random) non-negative and �1-normalized
dictionary D of size 100 × 200. We generate 1000 random
sparse representations with varying cardinalities in the range
1 − 40, and then check the performance of the OMP in
recovering them. We test both the regular OMP and the cen-
tered version. Matlab’s lsqnonneg instruction is used within
this algorithm for computing the non-negative least-squares
solution for the current set of chosen atoms.

For comparison, we also test the BP, solving the problem
min ‖z‖1 subject to Dz = b. When there exist only one so-
lution, this method necessarily finds it exactly, thus, expected
to outperform the OMP (both its versions). On the other hand,
when there are several possible solutions, it is not necessarily
finding the sparsest one, thus leading to sometimes to errors.
Note that this alternative requires many more computations, as
its complexity is much4 higher. Also, preconditioning of the
form discussed here does not affect its solutions.

Figure 1 shows the relative average number of wrong atoms
detected in the tested algorithms. Figure 2 shows the average
representation error. As can be seen in both graphs, the
centered OMP performs much better. We also see, as expected,
that BP outperforms both greedy options and yielding very low
error rate, with the obvious added cost in complexity. Notice
that the BP’s representation error is zero simply because the
BP always finds a solution to satisfy Dz = b, whereas the
OMP is operated with a fixed (assumed to be known) number
of atoms.

C. Theoretical Study

First, let us remind the reader of the two-sided (un-centered)
coherence, as defined and used in [7], [17]:

µ(D) = max
1≤i,j≤k,i�=j

∣∣dT
i dj

∣∣
‖di‖2 · ‖dj‖2

. (29)

Using this definition, we state the following result.
Theorem 3: For the linear system of equations Dz = b

(where D ∈ R
n×k), if a non-negative solution exists such that

‖z‖0
0 <

1
2

(
1 +

1
µ{D}

)
, (30)

then the non-negative OMP is guaranteed to find it exactly.
We omit the proof as it appears in details in [1]. Further-

more, it is a variation on a similar result that appears in [9].
The above theorem is practically useless for handling of

(P+
0 ) directly, since µ{D} tends to be too high, implying that

4As an example, the Matlab run-time ratio BP-versus-OMP for 1000
examples was found to be roughly 500/‖z‖0 .
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Fig. 1. Performance comparison between regular and centered OMP. This
graph shows the relative and average number of wrongly detected atoms as a
function of the original cardinality.
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Fig. 2. Performance comparison between regular and centered OMP. This
graph shows the average representation error for the test set.

we can handle only empty supports well. This of-course is
a meaningless claim. However, when applying the very same
analysis to the centered problem, we obtain a parallel result
(with the very same proof) of the form

Theorem 4: For the linear system of equations PDz = Pb
(where D ∈ R

n×k, P ∈ R
n×n is invertible,) if a non-negative

solution exists such that

‖z‖0
0 <

1
2

(
1 +

1
µ{PD}

)
, (31)

then OMP is guaranteed to find it exactly.
As we saw in the experimental results, the centered OMP is

indeed performing much better, and theoretically we see that
this is an expected phenomenon. However, as mentioned in
past work on the analysis of pursuit algorithms, we should
note that the bounds we provide here are far worse compared
to the actual (empirical) performance, as they tend to be over-
pessimistic. In the experiments reported in the previous section
we have µ{D} = 0.858 and µ{PD} = 0.413, implying that

at best one can recover supports of cardinality T = 1. Clearly,
the OMP succeeds far beyond this point.

V. CONCLUSIONS

Non-negative linear systems of equations come up often in
many applications in signal and image processing. Solving
such systems is usually done by adding conditions such as
minimal �2 length, maximal entropy, maximal sparsity, and so
on. In this work we have shown that if a sparse enough solution
exists, then it is the only one, implying that all the mentioned
measures lead to the same solution. We have also proposed an
effective preconditioning for improving the chances of such
linear system to be handled well by greedy algorithms.

In addition, in this work we have introduced an extended
analysis of general BP to the case of arbitrary monotone
element-wise concave penalty, and a matrix A having arbitrary
column norms and being preconditioned. The obtained result
generalizes the equivalence claims found in [7], [17].

There are several directions in which this work should/could
be extended, and several intriguing questions that form the
grounds for such extended work. Is the positivity of the
matrix A important for the claims that are developed here?
This question requires a closer inspection, as this requirement
seems to be redundant. What about optimal choice of the
preconditioning? this option seems to encompass stronger
potential in the developed bounds. One might follow the
algorithm proposed in [15] for designing the optimal P. Also,
it should be clear that the positivity requirement may be
replaced by any sign-pattern requirement, with the same effect.
How such generalization should affect the requirements on
A? Finally, there is a clear gap between the proved bound
and the empirical behavior as reported in Section 4. Can we
strengthen the bounds by relying on probabilistic analysis?
All these questions and more promise a fruitful path for more
work on this topic.
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