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Abstract—In this paper we propose a method for solving
various imaging inverse problems via complexity regularization
that leverages existing image compression techniques. Lossy
compression has already been proposed in the past for Gaussian
denoising – the simplest inverse problem. However, extending this
approach to more complicated inverse problems (e.g., deblurring,
inpainting, etc.) seemed to result in intractable optimization
tasks. In this work we address this difficulty by decomposing
the complicated optimization problem via the Half Quadratic
Splitting approach, resulting in a sequential solution of a simpler
`2-regularized inverse problem followed by a rate-distortion
optimization, replaced by an efficient compression technique. In
addition, we suggest an improved complexity regularizer that
quantifies the average block-complexity in the restored signal,
which in turn, extends our algorithm to rely on averaging mul-
tiple decompressed images obtained from compression of shifted
images. We demonstrate the proposed scheme for inpainting of
corrupted images, using leading image compression techniques
such as JPEG2000 and HEVC.

I. INTRODUCTION

Signal compression and image restoration are two funda-
mental and interconnected topics in signal processing. Image
restoration relies on solving inverse problems and often re-
quires regularization when the Bayesian approach is practiced.
Past work has considered complexity, measured as the com-
pression bit-cost of candidate solutions, as regularization for
image restoration. Several studies (e.g., [1], [2]) suggested
complexity-regularized solutions to the Gaussian denoising
task, which is the simplest inverse problem, by applying lossy
compression on the noisy signal.

The extension of the complexity-regularized approach to
more complicated inverse problems (e.g., deblurring, inpaint-
ing, super-resolution, etc.) was studied in [3], where a thor-
ough theoretical treatment of the problem was provided.
However, the practical employment of the approach reached a
dead-end in the form of highly intractable optimization tasks,
that rarely reduce to reasonable structures. For example, this
approach was demonstrated in [3] only for Poisson denoising
and with a particularly designed compression architecture.

In this paper, we propose a methodology that enables
practical solution of various complexity-regularized inverse
problems, removing the limitations on the image deterioration
model and the utilized compression method, hence, estab-
lishing a generic complexity-regularized approach for image
restoration. We suggest to decouple the two intricate parts
of the optimization problem via the useful Half Quadratic
Splitting approach (for another use of it see [4]). Our approach
results in an iterative solution involving simpler `2-regularized

inverse problems followed by standard rate-distortion opti-
mizations that can be replaced by any existing compression
technique. The proposed approach can be viewed as the
compression counterpart of the recent Plug-and-Play Priors
framework [5], where restoration problems were solved by an
iterative process that relies on an arbitrary Gaussian denoiser,
allowing the solution of complicated problems (e.g., see [6]).

As many compression methods operate on non-overlapping
blocks in the image, the corresponding complexity measure
is shift-sensitive. In order to alleviate this shortcoming, we
further extend the complexity regularization to measure the
average complexity of all the overlapping blocks in the re-
covered image. This can be interpreted as a variant of the
Expected Patch Log-Likelihood (EPLL) concept [4]. In our
case, this approach enhances the proposed procedure, leading
to an average of multiple decompressed images following
compression of shifted images. Interestingly, this procedure
recalls the cycle-spinning approach [7], originally proposed for
wavelet-based denoising. Moreover, whereas the compression
artifact-reduction techniques in [8], [9] suggest to enhance de-
compressed images by repeated compressions of their shifted
versions that are averaged, here we generalize this approach
to the solution of various image restoration tasks.

We demonstrate our approach for image inpainting, con-
sidering the noisy and the noiseless corruption models. The
proposed technique is evaluated with the JPEG2000 and the
HEVC still-image compression methods, showing impressive
restoration results.

II. COMPLEXITY REGULARIZATION

Our starting point is the degradation model that defines the
relation between the measurements and the desired signal: A
signal x ∈ RN is corrupted via

y = Hx + n (1)

where H is a M × N matrix representing a deteriorating
operation (such as blur, pixel erasure, decimation, etc.) and
n is a M -length vector of white Gaussian noise1 (zero mean
and variance σ2

n). The considered task is to restore x from
its corrupted version y. A popular approach for addressing
this problem from a statistical perspective is the Maximum
A-Posteriori (MAP) estimation, x̂ = argmax

x
p (x|y), where

p (x|y) is the posterior probability. Then, via Bayes rule,

1The proposed scheme could be easily generalized to handle other noise
statistics, but we omit this here for the lack of space.



applying logarithm on the minimized function, and using the
AWGN property in (1), we get

x̂ = argmin
x

1

2σ2
n

‖Hx− y‖22 − log p (x) (2)

where p(x) is the prior probability, used here for evaluating the
probability of the candidate solution. State-of-the-art methods
often replace the term − log p (x) with a general regularization
function s(x), which does not necessarily directly embody a
prior probability function, providing the optimization form

x̂ = argmin
x
‖Hx− y‖22 + µs(x) (3)

where s(x) returns a lower value for a more likely candidate
solution and µ ≥ 0 is a parameter, generalizing the role of σ2

n,
weighting the regularization effect.

The complexity-regularized approach follows the form (3)
with a regularization function, s(·), that quantifies the com-
plexity of the candidate solution. This can be achieved by
letting s(x) be the number of bits needed to digitally represent
the signal x. One can leverage existing compression designs
that effectively compress signals based on established models
and, as such, get an increased suitability to the underlying
signal-model.

For the mathematical development of our method we con-
sider a compression procedure operating on non-overlapping
fixed-size blocks of the image by independently encod-
ing them. Each block contains Nb samples. The block-
compression is based on a codebook, C, containing a finite
set of block reproduction options, each coupled with a binary
codeword for its compressed-domain representation. The as-
sumed architecture allocates shorter codewords for more likely
patterns, and we denote the length of the binary codeword
of z ∈ C as r(z). Thus, a signal x, comprising the blocks
{xi}i∈B (where B denotes the index set of blocks in the non-
overlapping partitioning of the signal), is compressed via the
following rate-distortion optimization (for the commonly used
Mean-Squared-Error distortion metric):

{x̃i}i∈B = argmin
{vi}i∈B∈C

∑
i∈B
‖xi − vi‖22 + λ

∑
i∈B

r(vi), (4)

where λ ≥ 0 is a Lagrange multiplier controlling the com-
pression bit-cost. Also note that the optimization in (4) can be
solved independently for each block [10], [11].

Let us reformulate (4) as follows. First, let Pi be a matrix
that extracts the ith block from a full signal by standard
multiplication, i.e., Pix = xi, where this operation can extract
any block of the signal, not necessarily only from the non-
overlapping decomposition B (note that similar matrices are
widely used, e.g., see [4]). Then, we note that a full signal can
be expressed as a combination of its non-overlapping blocks
that are located in their respective positions by multiplication
by PTi , namely, x =

∑
i∈B

PTi xi. Accordingly, the above

algebraic tools for block handling are utilized to reformulate

the rate-distortion optimization in (4) to

min
{vi}i∈B∈C

∥∥∥∥∥x−∑
i∈B

PTi vi

∥∥∥∥∥
2

2

+ λ
∑
i∈B

r(vi). (5)

We further define the group of candidate solutions, correspond-
ing to the full signal, based on non-overlapping blocks as

CB =

{
v
∣∣∣ v =

∑
i∈B

PTi vi, {vi}i∈B ∈ C

}
. (6)

In addition, we define the total bit cost for v ∈ CB as
rtot(v) ,

∑
i∈B

r(Piv). Then, we can reformulate the rate-

distortion optimization in (5) to the form

x̃ = argmin
v∈CB

‖x− v‖22 + λrtot(v). (7)

We now return to the inverse problem formulation in
(3) and update it by setting the complexity regularizer
s(x) = r̄tot(x) ,

∑
i∈B

r̄(Pix), where r̄(z) is defined for any

z ∈ RNb as

r̄(z) =

{
r (z) , z ∈ C
∞ , z /∈ C , (8)

i.e., blocks that are not in the codebook have infinite com-
plexity. Thus, the complexity-regularized restoration task is
formulated as

x̂ = argmin
x
‖Hx− y‖22 + µr̄tot(x), (9)

noting that due to (8) the solution candidates are only within
CB as defined in (6).

When the corruption is only an additive white Gaussian
noise (i.e., H = I), the problem in (9) takes the form of the
rate-distortion optimization in (7), here compressing the signal
y. However, for more intricate models involving arbitrary H,
the optimization in general does not lend itself to a standard
rate-distortion optimization form nor having a practically
convenient procedure to its solution. In the next section we
explain how this optimization structure can be accommodated
to provide a constructive procedure to its treatment.

III. THE PROPOSED METHOD

A. Total Complexity of Non-Overlapping Blocks
Our goal is to provide a method that can practically solve

the optimization problem in (9). We start by rewriting (9) as

x̂ = argmin
x
‖Hx− y‖22 + µ

∑
i∈B

r̄(Pix), (10)

noting that for a general H the above problem cannot be
decomposed to independent treatment of the blocks. We sug-
gest to remedy this via the Half Quadratic Splitting approach,
applied here by introducing the auxiliary variables {zi}i∈B,
where zi is associated with the ith non-overlapping block.
More explicitly, we update the optimization (10) to(

x̂, {ẑi}i∈B
)

= argmin
x,{zi}i∈B

‖Hx− y‖22 + µ
∑
i∈B

r̄(zi)

s.t. zi = Pix ,for i ∈ B. (11)



Then, an unconstrained problem is formed by extending the
cost function to include quadratic penalizing terms for the
above equality constraints:(

x̂, {ẑi}i∈B
)

= argmin
x,{zi}i∈B

‖Hx− y‖22 + (12)

β

2

∑
i∈B
‖Pix− zi‖22 + µ

∑
i∈B

r̄(zi),

where β > 0 is a parameter enforcing each zi to be close to
Pix, accordingly, the constraints in (11) will be more closely
satisfied for a larger β. Applying an alternating minimization
approach on the problem in (12), together with increasing the
parameter β in each iteration, provides an effective iterative
solution (e.g., see [4]), where its tth iteration is formed of the
following three steps:

x̂(t) = argmin
x
‖Hx− y‖22 +

β(t)

2

∑
i∈B

∥∥∥Pix− ẑ
(t−1)
i

∥∥∥2
2

(13)

ẑ
(t)
i = argmin

zi

β(t)

2

∥∥∥Pix̂(t) − zi

∥∥∥2
2

+ µr̄(zi), i ∈ B (14)

Set β(t+1) as an increment of β(t). (15)

Importantly, we can identify the set of optimization problems
in (14) as a full-image rate-distortion optimization based
on a partitioning of non-overlapping blocks, operating at
a Lagrange multiplier value of λ = 2µ

β(t) . We denote the
full image compression-decompression procedure in (14) as
ẑ(t) = CompressDecompressλ

(
x̂(t)

)
, where ẑ(t) is the

decompressed image composed of the non-overlapping decom-
pressed blocks.

In addition, the analytic solution of the first optimization
problem in (13) is a weighted averaging of the corrupted image
with the decompressed blocks, explicitly formulated as

x̂(t) =

(
HTH +

β(t)

2
I

)−1(
HTy +

β(t)

2

∑
i∈B

PTi ẑ
(t−1)
i

)
where, in the last calculation, we used the fact that∑
i∈B

PTi Pi = I as the blocks do not overlap.

B. Average Complexity of All Overlapping Blocks

We return to the basic formulation of the inverse problem
given in (10) and suggest to extend the regularization to mea-
sure the average complexity (bit-cost) of all the overlapping
blocks in the signal, then the optimization becomes

x̂ = argmin
x
‖Hx− y‖22 + µ

∑
i∈B∗

r̄(Pix), (16)

where B∗ is the set containing the indices of all the overlapping
blocks in the image. In addition, note that the normalization
by the size of B∗, needed for the averaging, is included here
in the value of µ. It is important to note that the solution of
(16) is no longer restricted to CB defined in (6).

The suggested problem in (16) is even more intricate than
the previous formulation in (10) as it includes all the over-
lapping blocks. Nevertheless, the approach of Half Quadratic

Splitting helps us again to establish a practical solution. Here,
the auxiliary variables are defined as {zi}i∈B∗ , where zi
corresponds to the ith overlapping block. Accordingly, the
optimization problem (16) is updated to(

x̂, {ẑi}i∈B∗
)

= argmin
x,{zi}i∈B∗

‖Hx− y‖22 + µ
∑
i∈B∗

r̄(zi)

s.t. zi = Pix ,for i ∈ B∗. (17)

As in the former subsection we insert the constraints as
quadratic penalizing terms and apply alternating minimization,
and the achieved iterative solution has the following three steps
in each iteration:

x̂(t) = argmin
x
‖Hx− y‖22 +

β(t)

2

∑
i∈B∗

∥∥∥Pix− ẑ
(t−1)
i

∥∥∥2
2
(18)

ẑ
(t)
i = argmin

zi

β(t)

2

∥∥∥Pix̂(t) − zi

∥∥∥2
2

+ µr̄(zi), i ∈ B∗ (19)

Set β(t+1) as an increment of β(t). (20)

However, the meaning of the optimizations in (18) and (19)
is different than before due to the overlapping blocks.

The step (19) consists of block-level rate-distortion opti-
mizations for all the overlapping blocks in the image. We
can identify this stage as multiple applications of a full
image compression-decompression procedure, each operates
on a different set of non-overlapping blocks that forms a
corresponding shifted version of the image. For an image
x, also having a 2D form, and a compression block-size
of
√
Nb ×

√
Nb samples, there are Nb shifted block-grids.

The jth shift (j = 1, ..., Nb) corresponds to a rectangular
image defined by taking the jth pixel of x’s first block
as its upper left corner and defining its entire domain by
containing an integer number of blocks. We denote the jth

shifted image as shiftj {x}. Additionally, we denote the set
of block indices that participate in the jth shifted image
as Bj (noting that B1 = B), accordingly, B∗ = ∪Nb

j=1Bj .
This lets us produce the decompressed blocks

{
ẑ
(t)
i

}
i∈B∗

by
multiple full-image compression decompression applications,
i.e., ẑj,(t) = CompressDecompressλ

(
shiftj

{
x̂(t)

})
for

j = 1, ..., Nb, where the jth decompressed image2, ẑj,(t),
consists of the blocks

{
ẑ
(t)
i

}
i∈Bj

and λ = 2µ
β(t) .

The optimization in (18) is again a weighted averaging, but
now it considers all the overlapping decompressed blocks, the
analytic solution is formulated as

x̂(t) =

(
HTH +

β(t)

2

∑
i∈B∗

PTi Pi

)−1
(21)

×

(
HTy +

β(t)

2

∑
i∈B∗

PTi ẑ
(t−1)
i

)
.

2For mathematical convenience, ẑj,(t) is considered to have the size of x,
as can be achieved by appropriately locating and padding the decompressed
jth shift of x.



Here the term
∑
i∈B∗

PTi Pi is a diagonal matrix, where each

diagonal element corresponds to a signal sample and counts
the number of decompressed blocks that it participates in.
Furthermore, the averaging in (21) can be directly applied
on the full decompressed images ẑj,(t) (j = 1, ..., Nb) as
also appear in the summary in Algorithm 1, where we re-
fer to the sum of decompressed images via the definition

ẑ
(t)
sum ,

Nb∑
j=1

( ∑
i∈Bj

PTi Pi

)
ẑj,(t).

As we suggest to apply compression-decompression by
utilizing a standardized image compression method it is im-
portant to note the following issues. First, we argue that
our technique can leverage also compression methods that
do not accurately follow the above defined rate-distortion
optimization. In addition, many compression softwares do not
necessarily take the Lagrange multiplier λ as the parameter
determining their working point, and may use instead various
replacements such as quality parameter, compression ratio,
or output bit-rate. Therefore, our method should practically
adapt itself to the chosen compression method and its specific
controlling parameter, denoted as θ, such that in each iteration
the quality (or output bit-rate) of the compression is increased.
Without loss of generality, we consider here θ that its reduction
increases the output quality and, therefore, our iteration update
rule follows θ(t+1) < θ(t). Furthermore, the value of this
parameter can be set independently of the value of β(t). These
generalizations are also included in Algorithm 1.

Algorithm 1 Proposed Method: Solution Based on Average
Complexity

1: Initialize ẑ
(0)
sum (depending on the deterioration type).

2: t = 1, β(1) = β1, θ(1) = θ1
3: repeat

4: x̂(t) =

(
HTH + β(t)

2

∑
i∈B∗

PTi Pi

)−1
×
(
HTy + β(t)

2 ẑ
(t−1)
sum

)
5: ẑj,(t) = CompressDecompressθ(t)

(
shiftj

{
x̂(t)

})
,

(j = 1, ..., Nb).

6: ẑ
(t)
sum =

Nb∑
j=1

( ∑
i∈Bj

PTi Pi

)
ẑj,(t)

7: Set β(t+1) as an increment of β(t)

8: Set θ(t+1) as a decrease of θ(t)

9: t← t+ 1
10: until stopping criterion is satisfied

IV. APPLICATION TO IMAGE INPAINTING

In this section we demonstrate a specific utilization of the
proposed technique for solving the inpainting problem.

A. Noisy Corruption Model

The corruption model of this problem is defined in the form
y = Hx+n, where the matrix H is of N×N size and diagonal

form, with main diagonal entries that can be zero or one.
Accordingly, the product Hx results in an N -length vector
where its kth sample is determined by H: if H[k, k] = 0 then
it is zero, and for H[k, k] = 1 it equals to the corresponding
sample of x.

Now we turn to specifically interpret the optimization in
step 4 of Algorithm 13. First, since H is a square diagonal
matrix then HT = H. Consequently, the multiplication HTy
results in a vector y with zeroed entries according to H’s
structure. Second, we note that HTH = H, so the weight
matrix is correctly adapted to the missing pixels in HTy.
Finally, also recall that W ,

∑
i∈B∗

PTi Pi is a diagonal matrix.

Hence, the computation of step 4 of Algorithm 1 is eased to
be componentwise, such that the kth sample of x̂(t) is:

x̂(t)[k] =
H[k, k] · y[k] + 1

2β
(t)ẑ

(t−1)
sum [k]

H[k, k] + 1
2β

(t)W[k, k]
. (22)

B. Noiseless Corruption Model

The noiseless inpainting problem considers the corruption
model y = Hx, i.e., again pixels are zeroed according to H,
however, no noise is involved. The fact that there is no noise on
the pixels that were not erased lets us update the computation
of step 4 of Algorithm 1, from the formula given in (22), to

x̂(t)[k] =

{
y[k] , for H[k, k] = 1
ẑ(t−1)
sum [k]
W[k,k] , for H[k, k] = 0

(23)

while the remaining procedure is as outlined in Algorithm 1.

C. Experimental Results

We here provide experimental results demonstrating the
proposed method for recovery from corruption by the above
inpainting models. The proposed method was evaluated for its
work in conjunction with JPEG2000 (as provided in Matlab)
and HEVC still-image compression4 techniques. As will be
described next, we set our method to run many iterations
and, therefore, we suggest to consider only a part of all the
possible shifts, i.e., taking a portion of B∗5. In addition, the
parameters should be set according to the utilized compression
method. Moreover, the parameter values should be wisely
paired with the number of iterations to conduct, as well as
with the number of image shifts. All the following experiments
share the settings β(t+1) = 1.1β(t) and β1 = 0.001, and
the JPEG2000 applications are at a compression-ratio of
θ(t) = max{1, (2µ)/β(t)}.

Let us start from the noisy deterioration model, we applied
Algorithm 1 together with the computation stage in (22) to
images degraded by noise and pixel erasure at rates of 25%,

3As for the initialization step, ẑ(0)sum is set to y and a graylevel value of
128 replaces the missing pixels.

4Using the BPG software (0.9.6) available at http://bellard.org/bpg/.
5The shifts are taken by considering the rectangular cropped images which

have their upper-left corner pixel within a a×a block in the upper-left corner
of the full image, and their bottom-right corner pixel is the same as of the full
image. This extends the mathematical developments in the previous section
as practical compression handles arbitrarily sized rectangular images.



(a) Corrupted (b) Exemplar-based [12] (21.60dB) (c) Deterministic-Annealing [13] (26.81dB) (d) Proposed JPEG2000 (25.67dB) (e) Proposed HEVC (25.60dB)

Fig. 2. Restoration of Lena (512×512) from noiseless deterioration of missing square blocks (each of 16×16 pixels). The PSNR values in this experiment
are only of the missing regions.

(a) Corrupted (8.87dB) (b) Reconstruction (28.97dB)

Fig. 1. Restoration of Barbara (512×512) from deterioration of 50% missing
pixels and noise of σn = 5. The restoration utilized JPEG2000 compression.

TABLE I
NOISY INPAINTING: PSNR RESULTS

Image
512x512

Missing
Pixels

σn = 5 σn = 15
Deteriorated Recovered Deteriorated Recovered

Lena 75% 6.92 31.16 6.86 28.27
50% 8.67 34.47 8.57 29.12
25% 11.66 36.54 11.46 29.21

Barbara 75% 7.13 25.29 7.06 24.36
50% 8.87 28.97 8.77 26.70
25% 11.87 32.71 11.67 28.26

50% and 75%. We apply our method based on JPEG2000
with the following specific settings: 45 iterations, µ = 0.25,
considering shifts in the 8× 8 upper-left block. The results in
Table I and Fig. 1 show that the images were well restored
with respect to the addressed deterioration.

In the noiseless deterioration model we consider a corrupted
512x512 pixels image with repeatedly missing square blocks
(Fig. 2a). We applied Algorithm 1 in conjunction with the
calculation in (23). Here we show results obtained by utilizing
JPEG2000 (Fig. 2d) and HEVC (Fig. 2e). Comparison to other
techniques (see Fig. 2) shows that our method achieves good
results both objectively and subjectively. Our method based on
JPEG2000 is applied here with the following specific settings:
60 iterations, µ = 2, considering shifts in the 20×20 upper-left
block. In the application based on HEVC we found it effective
to set the initial quality parameter to 51 (its maximal value)
and decrease it by one, once in every three iterations.

V. CONCLUSION

In this paper we proposed a method that revives the utiliza-
tion of complexity regularization for various image restoration

tasks. The complicated inverse problem was decomposed to
an iterative procedure consisting of solution of a simpler `2-
regularized inverse problem followed by a rate-distortion opti-
mization, which we further suggested to replace by an efficient
independent compression technique. Moreover, we revised the
regularization to measure the average block-complexity in the
restored signal, which, in turn, extended the former algorithm
to rely on the average of multiple decompressed images.
The proposed approach was demonstrated for the inpainting
problem, addressed by utilization of the JPEG2000 and HEVC
image compression techniques.
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