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Abstract. This paper deals with the single image scale-up problem us-
ing sparse-representation modeling. The goal is to recover an original
image from its blurred and down-scaled noisy version. Since this problem
is highly ill-posed, a prior is needed in order to regularize it. The liter-
ature offers various ways to address this problem, ranging from simple
linear space-invariant interpolation schemes (e.g., bicubic interpolation),
to spatially-adaptive and non-linear filters of various sorts. We embark
from a recently-proposed successful algorithm by Yang et. al. [1,2], and
similarly assume a local Sparse-Land model on image patches, serving as
regularization. Several important modifications to the above-mentioned
solution are introduced, and are shown to lead to improved results. These
modifications include a major simplification of the overall process both in
terms of the computational complexity and the algorithm architecture,
using a different training approach for the dictionary-pair, and introduc-
ing the ability to operate without a training-set by boot-strapping the
scale-up task from the given low-resolution image. We demonstrate the
results on true images, showing both visual and PSNR improvements.

1 Introduction

Many applications require resolution enhancement of images acquired by low-
resolution sensors (e.g. for high-resolution displays), while minimizing visual
artifacts. The single image scale-up1 problem can be formulated as follows: de-
note the original high-resolution image as yh ∈ R

Nh , represented as a vector
of length Nh pixels. In addition, denote the blur and decimation operators as
H : R

Nh → R
Nh and S : R

Nh → R
Nl (where Nl < Nh) respectively. It is assumed

hereafter that H applies a known low-pass filter to the image, and S performs
a decimation by an integer factor s, by discarding rows/columns from the input
image. zl ∈ R

Nl is defined to be the low-resolution noisy version of the original
image as

zl = SHyh + v, (1)

1 This problem is often referred to in the literature as super-resolution. The term
super-resolution may be confusing, as it is also used in the context of fusing several
low-resolution images into one high-resolution result.[3].
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for an additive i.i.d. white Gaussian noise, denoted by v ∼ N (
0, σ2I

)
.

Given zl, the problem is to find ŷ ∈ R
Nh such that ŷ ≈ yh. Due to the

Gaussianity of v, the maximum-likelihood estimation is obtained by the mini-
mization of ‖SHŷ − zl‖2. However, since SH is rectangular with more columns
than rows, it cannot be inverted stably, and there are infinitely many solutions
that lead to a zero value in the above-mentioned least-squares term. Existing
single-image scale-up algorithms use various priors on the image in order to sta-
bilize this inversion, ranging from Tikhonov regularization, robust statistics and
Total-Variation, sparsity of transform coefficients, and all the way to example-
based techniques that use training set of images as priors. While we do not
provide a comprehensive review of these techniques, we refer the reader to the
following papers [4,5,6,7,8,9,10,11].

In this work we shall use the Sparse-Land local model, as introduced in
[12,13,14,15], for the scale-up problem. This model assumes that each patch from
the images considered can be well represented using a linear combination of few
atoms from a dictionary. Put differently, each patch is considered to be gener-
ated by multiplying a dictionary by a sparse (mostly zero) vector of coefficients.
This assumption will help us in developing an algorithm for image scale-up. It is
important to note that this is also the path taken by [1,2] and similar to [16,17].
However, our work differs from their solution in several important aspects, as
described in the paper.

This paper is organized as follows: The incorporation of the Sparse-Land
model into the scale-up problem is shown in Section 2. Section 3 describes the
actual implementation details of the algorithm. Experiments and comparative
results are given in Section 4, and conclusions are drawn in Section 5.

Just before we embark to the journey of handling the image scale-up problem
in this work, we should refer to a delicate matter of the involvement of the blur
that operates on the high-resolution image before the sub-sampling. In most
cases, when an image is scaled-down, this process is necessarily accompanied
by some pre-filter that averages local pixels, in order to reduce aliasing effects.
Our work assumes that this is indeed the case, and the role of the scale-up
process we aim to develop is to reverse both degradation steps – blur and sub-
sampling. As such, our work considers a task that is a generalization of the
deblurring problem, and by assuming no sub-sampling, the algorithm we derive
here becomes yet-another deblurring method.2

There exists a different line of work on the image scale-up problem that strive
to separate the treatment of the deblurring and the up-sampling problems. Such
work would assume that there is no blur involved, so that the inversion process
is purely an interpolation task. Alternatively, if there is a blur, the recovery per-
formance would be measured with respect to the blurred high-resolution image.
The rationale of such work is that once the image has been scaled-up in the best
possible way, a deblurring stage should be used to get the final outcome. This

2 In fact, the work reported in [17] does exactly that – developing a deblurring algo-
rithm based on this paradigm.
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is the approach taken, for example, in [18,19], and this explains why we cannot
compare our results to theirs.

We should note that, since scaled-down images are typically blurred prior to
sub-sampling, a separate treatment of the sampling and blur is necessarily sub-
optimal, compared to a joint treatment, as done in [1,2] and our work. Indeed,
after whatever (plain or smart) interpolation scheme, the additive noise in the
resulting high-resolution image cannot be assumed as homogeneous, implying
that off-the-shelf deblurring algorithms may perform poorly.

2 Incorporating the Sparse-Land Prior

In order to avoid the complexities caused by the different resolutions between
zl and yh, and in order to simplify the overall recovery algorithm, it is as-
sumed hereafter that the image zl is scaled-up by a simple interpolation op-
erator Q : R

Nl → R
Nh (e.g. bicubic interpolation) that fills-in the missing

rows/columns, returning to the size of yh. This decision will not badly influ-
ence the computational complexity of the algorithm, and in fact, the eventual
scale-up algorithm proposed here is much faster than the one proposed in [1,2,16].
The scaled-up image shall be denoted by yl and it satisfies the relation

yl = Qzl = Q (SHyh + v) = QSHyh + Qv = Lallyh + ṽ. (2)

The goal is to process yl ∈ R
Nh and produce a result ŷh ∈ R

Nh , which will get
as close as possible to the original high-resolution image, yh ∈ R

Nh .
The algorithm we propose operates on patches extracted from yl, aiming to

estimate the corresponding patch from yh. Let pk
h = Rkyh ∈ R

n be a high-
resolution image patch of size

√
n×√

n, extracted by the operator Rk : R
Nh →

R
n from the image yh in location k. It is assumed that the locations to consider

{k} are only those centered around true pixels in the low-resolution image yl

(as opposed to filled-in pixels due to the interpolation). This set of samples is
referred to hereafter as the set Ω.

It is now time to invoke the Sparse-Land model: it shall be further assumed
that pk

h ∈ R
n can be represented sparsely by qk ∈ R

m over the dictionary
Ah ∈ R

n×m, namely:

pk
h = Ahqk, (3)

where ‖qk‖0 � n, where the �0-pseudo-norm counts the number of non-zeros
in the vector qk. The matrix Ah is the dictionary that characterizes the high-
resolution patches. Its construction will be discussed in details in Section 3.

Consider the corresponding low-resolution patch pk
l = Rkyl, extracted from

yl in the same location (the patches pk
l and pk

h are centered around the same
pixel k), such that its size is

√
n×√

n. Since the operator Lall = QSH transforms
the complete high-resolution image yh to the low-resolution one, yl, it can be
assumed that pk

l = Lpk
h + ṽk, where L is a local operator being a portion of Lall,
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and ṽk is the additive noise in this patch. Note that L is a spatially independent
operator, as only locations k ∈ Ω from yl are considered.3

Since it is assumed that pk
h = Ahqk, multiplication of this equation by L

gives

Lpk
h = LAhqk. (4)

Exploiting the relation between the low-resolution and the high-resolution
patches pk

l = Lpk
h + ṽk, we obtain

LAhqk = Lpk
h = pk

l − ṽk, (5)

implying that

‖pk
l − LAhqk‖2 ≤ ε, (6)

where ε is related to the noise power σ of v.
The key observation from the above derivations is that the low-resolution

patch pk
l can be represented by the same sparse vector qk over the effective

dictionary Al = LAh, with a controlled error ε. This implies that for a given
low-resolution patch pk

l , its sparse representation vector, qk, is found and then
pk

h can be recovered by simply multiplying this representation by the dictionary
Ah. This is the core idea behind the image scale-up algorithm as developed by
Yang et. al, [1,2], and we follow it as well, with important modifications.

We should comment that the above observation is fragile and may become
wrong for some image patches. Even if the dictionary Ah has low-coherence,
the multiplication by L is expected to cause a deterioration (i.e. increase) in the
mutual coherence of Al = LAh . This may lead to the detection of a wrong
sparse representation vector for a low-resolution patch, which does not fit the
high-resolution one [14].

Similar to the approach taken in [1,2], we disregard this problem, with the
hope that such errors are rarely encountered. To our aid come two possible forces:
(i) Even if there is a mistake in the sparse coding of a low-resolution patch, it
is unclear whether such a error reflects an error in the recovered high-resolution
patch (even though we rely on the wrong sparse representation vector) – this
matter calls for deeper theoretical study, which is beyond the scope of this work.
Furthermore, (ii) As we explain in the next section, we work with overlapping
patches that are averaged, and therefore visual artifacts in a high-resolution
recovered patch may be attenuated by nearby patches that get better treatment.
Naturally, the empirical results we show towards the end of this paper should
serve as the ultimate judge, whether our assumptions are justified.

3 The observant reader might be troubled by boundary issues because of the spatial
extent of the operator Lall, and the fact that we have chosen the low-resolution and
the high-resolution patches to be of the same size. However, the developed algorithm
will not make use of the operator L, and bypass this issue - more on this matter is
brought in the next section.
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3 The Proposed Single-Image Scale-Up Algorithm

The scale-up algorithm consists of a training phase (that can be done off-line)
as described in Figure 1 and a reconstruction phase, performing the scale-up on
the test image using the trained model from the previous phase, as described in
Figure 2.

1. Training set construction: A set of high-resolution training images {yj
h}j is

collected, Low-resolution images {yj
l }j are constructed using scale-down op-

erator Lall and pairs of matching patches that form the training database,
P = {pk

h,pk
l }k, are extracted.

2. Each of these patch-pairs undergoes a pre-processing stage that removes the
low-frequencies from pk

h and extracts features from pk
l .

3. Dimensionality reduction is applied on the features of the low-resolution
patches pk

l , making the dictionary training step much faster.
4. A dictionary Al is trained for the low-resolution patches, such that they can

be represented sparsely.
5. A corresponding dictionary Ah is constructed for the high-resolution patches,

such that it matches the low-resolution one.

Fig. 1. Proposed algorithm’s summary: training phase

1. Given a test low-resolution image zl to be scaled-up, it is interpolated to yl

of the destination size, and all that it requires is a spatial non-linear filtering
to sharpen it.

2. Pre-processed patches pk
l are extracted from each location k ∈ Ω, and then

sparse-coded using the trained dictionary Al.
3. The found representations {qk} are then used to recover the high-resolution

patches by multiplying them with Ah.
4. The recovered high-resolution patches {pk

h} are finally merged by averaging
in the overlap area to create the resulting image.

Fig. 2. Proposed algorithm’s summary: reconstruction phase

3.1 Training Set Construction

The training phase starts by collecting several images {yj
h}j, which are consid-

ered to be the high-resolution examples. Each of these images is blurred and
down-scaled by a factor of s. This leads to the formation of the corresponding
low-resolution images {zj

l }j , which are then scaled up back to the original size
using Q, resulting with the set {yj

l }j . Thus,

yj
l = Lally

j
h + ṽj . (7)
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It is important to note that the same operators S, H and Q should be used both
in the training and the reconstruction phases.

3.2 Preprocessing and Feature Extraction

The next step is pre-processing by high-pass filtering, similar to the approach
in [7,1,2,16]. Rather than extracting small image-patches and applying this step
on them, the desired pre-processing is employed directly on the full images, and
only then are the patches extracted. This order avoids boundary problems due
to the small patch size.4

The pre-processing applied to the high-resolution images consists of a re-
moval of their low-frequencies, which is done by computing the difference im-
ages ej

h = yj
h − yj

l . The reason for this step is the desire to focus the training
on characterizing the relation between the low-resolution patches and the edges
and texture content within the corresponding high-resolution ones.

As for the pre-processing of the low-resolution images, these are filtered using
R high-pass filters, in order to extract local features that correspond to their
high-frequency content. Thus, each low-resolution image yj

l results in a set of R

filtered images, {fr∗yj
l }r for r = 1, 2, . . . , R (where ∗ stands for a convolution).

Typical filters to be used may be gradient and Laplacian high-pass filters.
After the two pre-processing steps described above, local patches are extracted

forming the data-set P = {pk
h,pk

l }k. Considering only locations k ∈ Ω, pk
h

patches of size
√

n × √
n pixels are extracted from the high-resolution images

ej
h. The corresponding low-resolution pk

l patches are extracted from the same
locations in the filtered images fk ∗yj

l and using the same size (
√

n×√
n pixels).

Thus, every corresponding R such low-resolution patches are concatenated into
one vector p̃k

l of length nR. Note that the high-resolution patch size should be
at least of size s× s so as to cover the high-resolution image. A larger patch-size
results in overlaps between patches, which improves the reconstruction result
(by reducing errors and discontinuities between reconstructed patches).

3.3 Dimensionality Reduction

The formed low-resolution patches, started as
√

n/s×√
n/s = n/s2 pixel patches

(in the images zj
l ), are now represented as p̃k

l of nR dimensions after an interpo-
lation operator Q and set of R linear filters. As a result, the intrinsic dimension-
ality (n/s2) of the resulting patches should not increase and it is much smaller
than the representation dimension (nR), resulting in superfluous computations.
The advantage of performing a dimensionality reduction is saving computations
in the subsequent training and super-resolution algorithms. Therefore, the last
step before turning to the dictionary learning stage is reducing the dimension

4 A patch of size
√

n×√
n in yl should correspond to a larger patch in yh, because of the

spatial extent of the blur and the scale-up operations. Nevertheless, this additional
“band” of pixels can be disregarded, concentrating on predicting only the center
portions of the destination patch from yh.
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of the input low-resolution patches, {p̃k
l }k. The Principal Component Analysis

(PCA) algorithm is applied on these vectors, seeking a subspace on which these
patches could be projected while preserving 99.9% of their average energy. The
projection operator that transforms the patch p̃k

l ∈ R
nR to its reduced feature

vector, pk
l ∈ R

nl , is denoted by B ∈ R
nl×nR, pk

l = Bp̃k
l .

3.4 Dictionary Learning

The starting point of the dictionary learning stage are the low-resolution patches
{pk

l }k ⊆ R
nl . The K-SVD dictionary training procedure [20] is applied to these

patches, resulting in the dictionary Al ∈ R
nl×m:

Al, {qk} = argmin
Al,{qk}

∑
k

‖pk
l − Alqk‖2 s.t. ‖qk‖0 ≤ L ∀k. (8)

A side product of this training is the sparse representation coefficients vectors
{qk}k that correspond to the training patches {pk

l }k.
The next step is the high-resolution dictionary construction. Recall that our

intention is to recover the patch pk
h by approximating it as being pk

h ≈ Ahqk.
Effectively, the found sparse representation vector for the low-resolution patch
is multiplied by the high-resolution dictionary for recovering pk

l . The dictionary
Ah is therefore sought such that this approximation is as exact as possible. Thus,
this dictionary is defined to be the one that minimizes the mean approximation
error, i.e.,

Ah = argmin
Ah

∑
k

‖pk
h − Ahqk‖2

2 (9)

= argmin
Ah

‖Ph − AhQ‖2
F ,

where the matrix Ph is constructed with the high-resolution training patches
{pk

h}k as its columns, and similarly, Q contains {qk}k as its columns. We note
that this is also the approach taken in [16]. The solution of the problem is given
by the following Pseudo-Inverse expression (given that Q has full row rank):

Ah = PhQ+ = PhQT (QQT )−1. (10)

Note that the above approach disregards the fact that the high-resolution patches
overlap. Thus, a better (and more complex) training procedure can be envisioned
for computing Ah. Since the eventual high-resolution image (in the reconstruc-
tion stage) is constructed by positioning high-resolution patches and averaging
them, Ah should be optimized such that the resulting image is as close as possible
to the original one.

Define the operator Rk, which extracts a patch of size n × n from the high
resolution image in location k. The image ŷh should be constructed by the
following formula [12,13]:

ŷh = yl +

[∑
k∈Ω

RT
k Rk

]−1 [∑
k∈Ω

RT
k Ahqk

]
. (11)
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The term RT
k Ahqk builds the high-resolution patch, Ahqk, and then positions

it in the k-th location in the high-resolution image. The term W =
∑

k RT
k Rk ∈

R
Nh×Nh is a diagonal matrix that weights every pixel in the high-resolution

outcome, based on the number of contributions it gets form the overlapped
patches. Note that yl appears in the error computation, due to the fact that
the patches in Ph are constructed from the difference images eh = yh − yl, and
this means that for the image ŷh to be constructed, the algorithm should return
these low-frequencies.

Based on the above, it is natural to define the best dictionary Ah as the
solution of the optimization task:

Ah = argmin
Ah

‖yh − ŷh‖2
2 (12)

= argmin
Ah

∥∥∥∥∥∥yh − yl −
[∑

k∈Ω

RT
k Rk

]−1 [∑
k∈Ω

RT
k Ahqk

]∥∥∥∥∥∥
2

2

.

Denote Wk = RkW−1 ∈ R
n×Nh and write ŷh = yl +

∑
k WT

k Ahqk. The goal
is to minimize ‖yh − ŷh‖2

2 with respect to Ah. Denote eh = yh − yl, and Ah is
obtained by the minimization of

Ah = argmin
Ah

‖yh − yl −
∑

k

WT
k Ahqk‖2

2 = arg min
Ah

‖eh −
∑

k

WT
k Ahqk‖2

2.(13)

Given X ∈ R
n×m, define x ≡ cs(X) to be the column-stack version of X (us-

ing xi+nj = Xij). Now using the Kronecker product property: cs(BAC) =(
CT ⊗ B

)
cs(A) =

(
C⊗ BT

)T
cs(A), we obtain

cs(eh) = eh =
∑

k

WT
k Ahqk =

(∑
k

qk ⊗ Wk

)T

cs(Ah) = M · cs(Ah),(14)

where M ∈ R
Nh×mn is defined as MT =

∑
k qk ⊗ Wk. Therefore, one way to

get the optimal Ah is by the direct formula, M†eh.
Since the matrices involved may be too large, we present an alternative, it-

erative, approach. Note that the gradient of f(Ah) = 1
2‖eh −∑k WT

k Ahqk‖2
2

with respect to Ah, can be written as

∇Ah
f =

∑
k

Wk

(
eh −

∑
k

WT
k Ahqk

)(
qk
)T

. (15)

An iterative scheme (such as the Conjugate Gradient method) can be used to
find the optimal Ah, using the gradient expression above.

The dictionary resulting from the training process is expected to better re-
construct the output result. In the experiments given below, both ways to derive
Ah are adopted.

The two corresponding dictionaries {Al,Ah} conclude the training phase of
the super-resolution algorithm, that started with the high-resolution training set
{yj

h}j.
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3.5 Reconstruction Phase

The reconstruction phase attempts to magnify a low-resolution image zl. This
image is assumed to have been generated from a high-resolution image yh by
the same blur and scale-down operations as used in the training. The following
steps are performed:

1. The image is scaled up by a factor of s using bicubic interpolation Q, result-
ing with yl ∈ R

nl .
2. The image yl is filtered using the same R high-pass filters that were used

for feature extraction in the training, obtaining fk ∗ yl.
3. Patches are extracted from these R images, each of size

√
n × √

n from
locations k ∈ Ω. Every R such patches that correspond to the same location
are concatenated to form a patch vector p̃k

l . This collection of patches forms
the set {p̃k

l }k.
4. The patches {p̃k

l }k are multiplied by the projection operator B for dimen-
sionality reduction, resulting with the set {pk

l }k, each patch of length nl (for
n = 81 and a scale factor s = 3, our tests lead to nl ≈ 30).

5. The OMP algorithm is applied to {pk
l }k, allocating L atoms to their repre-

sentation, and finding the sparse representation vectors {qk}k.
6. The representation vectors {qk}k are multiplied by the high-resolution dic-

tionary Ah, and the approximated high-resolution patches, {Ahqk}k =
{p̂k

h}k are obtained.
7. The final super-resolved image ŷh is constructed from p̂k

h by solving the
following minimization problem with respect to ŷh:

ŷh = argmin
ŷh

∑
k

∥∥Rk(ŷh − yl) − p̂k
h

∥∥2

2
. (16)

This problem states that extracted patches from the resulting difference
image, ŷh − yl, should be as close as possible to the approximated patches,
p̂k

h. This problem has a closed-form Least-Squares solution, given by

ŷh = yl +

[∑
k

RT
k Rk

]−1∑
k

RT
k p̂k

h, (17)

which was already mentioned above. This seemingly complex term is actu-
ally very simple – it is equivalent to putting p̂k

h in their proper locations,
averaging in overlap regions, and adding yl to get the final image ŷh.

3.6 Bootstrapping Approach

If the training process has no access to an external set of images, the algorithm
may be adapted to train and “bootstrap” itself from a single test image, as pro-
posed by [22]. Note that in order to train the dictionaries {Al,Ah}, the proposed
algorithm needs only access to pairs of low-resolution and high-resolution im-
ages. Using the test image zl as the “high-resolution” image and its scaled-down
version zll (by an appropriate choice of S and H), the algorithm can be easily
extended to perform “bootstrapping” from a single image:
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– The training phase is applied to zl (as high-resolution image), zll (as low-
resolution image).

– The trained dictionaries are used to enable reconstruction phase, which scales
up zl into yh.

Thus, it is possible to scale-up a single image by learning the Sparse-Land model
directly from the test image itself, provided that the training process has enough
training data to build a valid Sparse-Land model from.

4 Results

In this section we provide series of tests of the proposed algorithm, and com-
parisons to the results obtained in [1,2]. In all experiments, the dictionary Ah is
trained using the simpler method (that does not take the overlaps into account),
unless mentioned differently.

4.1 Text Scale-Up

The first test contains images showing a printed text. The training image (screen-
grabbed) is shown in Figure 3. Only this image is used for the training, and we
expect that adding more images would lead to improved results. The global oper-
ator Lall in this experiment is implemented by first blurring the high-resolution
images yj

h with a 1D filter [1, 3, 4, 3, 1]/12 both horizontally and vertically, and
then down-sampling it by a factor of s = 3, i.e., the scaled-down image zl is one-
ninth of the original image size. The image yl is created by bicubic interpolation
of zl, returning to the original size.

Extraction of features from the low-resolution images is done exactly as pro-
posed in [1,2] using 4 filters that perform 1-st and 2-nd horizontal and vertical
derivatives: f1 = [1,−1] = fT

2 and f3 = [1,−2, 1] = fT
4 . These filters are applied

such that only sampled pixels are used in the filtering computation5. The patch
size used is n = 81, and the PCA results with a reduction from 4 · 81 = 324
dimensions to nl = 30 dimensions. The dictionary training procedure applied
40 iterations of the K-SVD algorithm, with m = 1, 000 atoms in the dictionary,
and allocating L = 3 atoms for each representation vector.

The test image (a different image, grabbed from a different page, but having
the same scale) is shown in Figure 4. This figure shows the original test image,
and the scaled-down version that should be scaled-up. The scaling-up results are
also shown in Figure 4, and it is evident that the outcome is far better, com-
pared to the bicubic interpolation6, showing Peak-SNR (PSNR) improvement of
5 This means that either zl is filtered and then interpolated, or yl is filtered with zero-

padded filters of the form f1 = [0, 0, 1, 0, 0,−1] = fT
2 and f3 = [1, 0, 0,−2, 0, 0, 1] =

fT
4 .

6 Since bicubic interpolation does not include a deblurring capability, it seems that
comparing our results to it is unfair. However, when trying to deblur the bicubic
interpolation result (using TV-deblurring), we found out that the quality deterio-
rates. This could be explained by the non-homogeneous nature of the noise that is
magnified in an uncontrolled way by the deblurring.
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Fig. 3. Text experiment: The training image for the image scaling-up algorithm. This
image is of size 717 × 717 pixels, and it provides a set of 54, 289 training patch-pairs.

2.27dB, with PSNR computed by

PSNR = 10 log10

(
2552 · N∑
i(ŷi − yi)2

)
, (18)

with y, ŷ ∈ [0, 255]N ⊆ R
N .

4.2 PSNR Comparison with Yang et. al. [1,2]

The second experiment aims to give a comprehensive comparison between the
results of our algorithm and the one in [1,2]. The proposed algorithm is im-
plemented in MATLAB using optimized implementation for K-SVD and OMP
algorithms [21], on Intel Core 2 Duo P8600 at 2.4GHz with 4GB of RAM. It is
trained on the same training set used in [1,2], using s = 3 scale-up configuration.
Each training image is blurred using a bicubic filter and decimated by a factor
of s; feature extraction is done as before (using gradient and laplacian filters).

Around 130,000 training patch-pairs are collected and PCA is applied to re-
duce feature dimensions to nl = 30. Low-resolution dictionary learning takes
approximately 12 minutes for 40 iterations of the K-SVD algorithm, with m =
1, 000 atoms in the dictionary, and allocating L = 3 atoms per patch-representa-
tion. Moreover, the high-resolution dictionary training takes just a few seconds,
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Test image zl to be scaled-up Original high-resolution version yh

Bicubic interpolation yl(RMSE=47.06) Proposed algorithm ŷh(RMSE=36.22)

Fig. 4. Text experiment: The image zl is of size 120× 120 pixels, and it provides a set

of 12, 996 patches to operate on. RMSE is computed using 1
N

√∑N
i=1 |yi − ŷi|2 where

y, ŷ ∈ [0, 255]N .

using the pseudo-inverse expression Ah = PhQ+. The proposed training algo-
rithm is much faster than the one used by Yang et. al. [1,2] (taking several hours
to run on the same settings). The reconstruction algorithm is tested on 14 test
images (taking a few seconds on each image, using fully overlapping 3×3 patches
in low-resolution scale) and its results are compared versus bicubic interpolation
and the reconstruction algorithm proposed by Yang et. al. [1,2]. The result-
ing images’ boundary is cropped (to ignore boundary effects of overlap-and-add
method) and Peak-SNR is computed.

The results are summarized in Table 1. A few 100×100 representative windows
from different images are compared at Figure 5. On the left is the original image,
followed by bicubic interpolation, Yang et. al. [1,2] and the proposed algorithm’s
results on the right, at the last column.
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Table 1. PSNR comparison results. (i) corresponds to the simpler high-resolution
dictionary training method, using Pseudo-Inverse expression (see Equation 10). (ii)
corresponds to the more complex method that takes care for overlapping patches.

Name Bicubic Yang et. al [1,2] Proposed (i) Proposed (ii)

baboon 23.2 23.5 23.5 23.5
barbara 26.2 26.4 26.8 26.7
bridge 24.4 24.8 25.0 25.0
coastguard 26.6 27.0 27.1 27.2
comic 23.1 23.9 24.0 24.1
face 32.8 33.1 33.5 33.6
flowers 27.2 28.2 28.4 28.6
foreman 31.2 32.0 33.2 33.6
lenna 31.7 32.6 33.0 33.1
man 27.0 27.8 27.9 28.0
monarch 29.4 30.7 31.1 31.4
pepper 32.4 33.3 34.1 34.2
ppt3 23.7 25.0 25.2 25.6
zebra 26.6 28.0 28.5 28.6

Average 27.5 28.3 28.7 28.8

The proposed algorithm performs visually much better than bicubic interpo-
lation, and on some images considerably better than Yang et. al. [1,2] algorithm,
having less visual artifacts and producing sharper results with improved PSNR.
Moreover, the implementation of the proposed algorithm is much faster (by an
order of magnitude) than Yang et. al. [1,2] implementation, using optimized
K-SVD and OMP implementations by [21].

4.3 Bootstrapping Approach for Single Image Scale-Up

The third experiment is the image Building. Starting from the original image
yh of size 800×800 pixels, the image is filtered with the separable filter [1, 2, 1]/4
(horizontally and vertically), and down-scaled by a factor of s = 2 to obtain zl

of size 400 × 400.
In this experiment, the dictionaries are trained using the very same image,

by further scaling it down by a factor s = 2, resulting with the image zll of
size 200 × 200. The image pair {zl, zll} is used for the training, based on the
expectation that the relation between these two images reflects also the relation
that should be used to up-scale from zl to yh.

Extraction of features from the low-resolution images is done using the same 4
filters, and the dimensionality reduction leads this time from n = 81 to nl = 42.
The training data contains 37, 636 pairs of low- and high-resolution patches to
be modeled. The parameters of the dictionary training all remain the same (40
iterations of the K-SVD algorithm, m = 1000 atoms in the dictionary, and L = 3
atoms per representation).

Figure 6 shows the original image yh, the bicubic scaled-up image yl, and the
result of the scaling up algorithm, ŷh. The difference between the two images is



724 R. Zeyde, M. Elad, and M. Protter

Original image Bicubic interpolation Yang et. al. [1,2] Proposed algorithm

Fig. 5. Visual comparison: Portions from various images (from top to bottom: barbara,
comic, face, pepper, zebra). Left to right: the original image, bicubic interpolation,
Yang et. al [1,2] and the proposed algorithm (using the more complex method for
dictionary update). Note that the proposed algorithm produces sharper results, pre-
serves the small details of the image and has less visual artifacts compared with bicubic
interpolation and Yang et. al. [1,2].



On Single Image Scale-Up Using Sparse-Representations 725

The original Building image yh The difference image |ŷh − yh| magnified
by 5

Bicubic interpolated image yl

(RMSE= 12.78)
Proposed algorithm’s result ŷh

(RMSE= 8.72)

Fig. 6. Bootstrapping experiment

3.32dB, and in order to see where these differences reside, the figure also shows
the difference image |ŷh − yh|. Figure 7 shows two 100× 100 portions extracted
from yh, yl, and ŷh, to better demonstrate the visual gain achieved by the
scaling-up algorithm.

This approach has been tested on several images using various dictionary
sizes, and in many cases the bootstrapped results are visually comparable and
even better, compared to a separate off-line training.

The proposed algorithm results are visually comparable to [22], as demon-
strated in Figure 8. Since [22] provides no “ground-truth” images, it is not pos-
sible to provide PSNR results. It should be noted that the algorithm of [22] is



726 R. Zeyde, M. Elad, and M. Protter

Original image Bicubic interpolation Proposed algorithm

Fig. 7. Bootstrapping experiment: Portions from the Building image. Notice that the
original portions show some compression artifacts, which do not appear in the scaled-up
results

also much more computationally demanding than the proposed one (requiring
the solution of many nearest-neighbor problems for the reconstruction phase)
and relies heavily on patch recurrence property. Nevertheless, it does performs
quite well on the testing set of images described in [22], assumably due to the
“coarse-to-fine” approach (where the image is scaled-up n times, each time by
n
√

s factor), especially for large scaling factor s.
When compared to the algorithms [1, 2] and [16], the proposed algorithm uses

the same idea of training phase and reconstruction phase, Sparse-land modeling
of the desired image patches, and a pair of dictionaries that are used to migrate
from the low-resolution domain to the high-resolution one. However, different al-
gorithms are used for the dictionary training: K-SVD for the low-resolution dic-
tionary, and pseudo-inverse for the high-resolution dictionary. Moreover, OMP
is used for sparse-coding, instead of LASSO optimization methods. Other im-
portant modifications in our algorithm are (i) the ability to train on the given
image, (ii) the initial interpolation by Q that simplifies much of the subsequent
work without a computational cost, (iii) the definition of the high-resolution
patches based on the difference yh − yl, and (iv) the dimensionality reduction
we apply on the low-resolution patches.
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It should be noted that the sparsity constraint L = 3 is used, which is much
smaller than the sparsity achieved by [1, 2], while the proposed algorithm’s PSNR
results are better. This may be explained by the better generalization ability
of the proposed model, requiring much less atoms per patch. Moreover, while
[1, 2] suggests training high-resolution and low-resolution dictionaries together
(by concatenating high-resolution and low-resolution patches together into one
vector), the proposed process is split as described above - thus achieving a more
stable reconstruction process having less visual artifacts.

In [1,2] and in [22] it was observed that the result ŷh does not necessarily
conform with the requirement Lallŷh = yl. A back-projection procedure was
suggested in which the result ŷh is projected onto this constraint, by solving the
following optimization problem:

ŷh = argmin
ŷh

‖ŷh − yh‖2 s.t. Lallŷh = yl. (19)

However, our tests show that such a projection procedure is not needed, and in
fact, it may add some artifacts to the image. Thus, our algorithm does not use
this post-processing stage.

5 Summary

There are various ways to scale-up an image while preserving edges and small de-
tails. In this paper we introduced one such algorithm that illustrates how sparse
representation modeling and dictionary learning can be used for this goal. The
algorithm operates by training a pair of low- and high-resolution dictionaries,
using either training images or exploiting a lower-resolution version of the same
image to be handled. The presented algorithm is based on the method proposed
by Yang et. al. [1,2], with several important modifications:

– Numerical shortcuts bring the proposed algorithm to be highly efficient and
much faster (using interpolation of the low-resolution image and dimension-
ality reduction via PCA).

– A different training approach is used for the dictionary-pair: K-SVD for
learning Al from extracted features, and direct-approach (using pseudo-
inverse) for Ah from error patches.

– The OMP algorithm is used as sparse coding algorithm, which is much faster
than �1-optimization-based methods.

– The proposed algorithm is much simplified by removing redundant steps
(e.g. back-projection during post-processing stage).

– The algorithm can operate without a training-set, by boot-strapping the
scale-up task from the given low-resolution image. This idea is similar in
spirit to the concept posed in [22], but the proposed solution is simpler and
yet very effective.

This method is relatively simple, and yet produces a substantial improvement
over bicubic interpolation.

Various further improvements can be considered, and these are likely to im-
prove the algorithm’s output quality:
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Glasner et. al. [22] Proposed algorithm

Fig. 8. Visual comparison of the results. First row: Scale-Up by ×4; Second row: Scale-
Up by ×3

– It is possible to force the overlapping patches p̂k
h to better align with each

other. This can be done by operating sequentially on the incoming patches
pk

l , and when applying the sparse coding stage (to produce qk), a penalty
can be added on the distance between the newly constructed patch, p̂k

h, and
the ones already computed. This has been done in [1,2] and quantifying the
benefit of this idea should be done.
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– Optimization of the feature extraction and dimensionality reduction opera-
tors. Various high-pass filters and thresholds have been tested for the PCA
stage, however there must be more options to investigate and perhaps even
automatically learned.

– The training set can be extended by adding more examples, by applying
simple operators on the input images, e.g. rotation by 90◦, reflection, etc..

– It should be noted that it is assumed that the blur operator H is known for
all the experiments that have been performed. In the case it is not known
(i.e. while bootstrapping from a single image) there is a significant degree of
freedom in choosing H, which obviously will affect the results.

– It is possible to combine the off-line training with the bootstrapping approach
by training a general dictionary pair {Al,Ah} and applying several more
iterations on each new test low-resolution image and its down-scaled version
{zl, zll}. This two stage process will allow the dictionary to “adapt” the
reconstruction process to the specific image to be reconstructed.

– Using more than two scales (the “low” and the “high” ones) in a “coarse-to-
fine” framework, as practiced in [22] may help improve the scale-up process
by building multi-scale sparse-representation for the image.
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