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Example-Based Image Synthesis via
Randomized Patch-Matching

Yi Ren, Yaniv Romano, and Michael Elad, Fellow, IEEE

Abstract— Image and texture synthesis is a challenging task
that has long been drawing attention in the fields of image
processing, graphics, and machine learning. This problem con-
sists of modeling the desired type of images, either through
training examples or via a parametric modeling, and then
generating images that belong to the same statistical origin.
This paper addresses the image synthesis task, focusing on two
specific families of images—handwritten digits and face images.
This paper offers two main contributions. First, we suggest a
simple and intuitive algorithm capable of generating such images
in a unified way. The proposed approach taken is pyramidal,
consisting of upscaling and refining the estimated image several
times. For each upscaling stage, the algorithm randomly draws
small patches from a patch database and merges these to form
a coherent and novel image with high visual quality. The second
contribution is a general framework for the evaluation of the
generation performance, which combines three aspects: the
likelihood, the originality, and the spread of the synthesized
images. We assess the proposed synthesis scheme and show that
the results are similar in nature, and yet different from the ones
found in the training set, suggesting that true synthesis effect has
been obtained.

Index Terms— Image synthesis, patch-matching, hallucination,
t-SNE, MNIST, face images.

I. INTRODUCTION

THE task of image synthesis is central in the fields
of image processing, graphics, and machine learning.

The motivation to study this topic has several origins. First,
the availability of a technique for generating images that obey
a given patch-based image model establishes an ultimate way
for testing local models and their suitability to treat images.
Second, a successful synthesis algorithm may improve the
performance of image restoration tasks, e.g. denoising [1]–[3],
demosaicking [3], inpainting [4], super-resolution [5], and
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other ill-posed inverse problems [6], as well as related image
processing tasks, such as image analogies [7], [8] or style
transfer [9]. Moreover, in case of severe corruption, the con-
ventional image restoration algorithms do not achieve clear
and sharp images, while such synthesis methods could be used
to provide a plausible solution, out of infinitely many possible
ones. Put differently, rather than considering a solution as a
direct recovery task, armed with a good synthesis method one
may migrate the treatment to have a randomized hallucination
flavor. Third, the generated images themselves are interesting,
since they are created out of “thin air”, and may be considered
as an appealing art. Indeed, this is the effect of the recently
introduced synthesized images [9]–[16]. Finally, the synthesis
methods can be converted to handle other data sources such
as music, thereby enriching the scope of this field of research
far beyond its original objectives.

When addressing the general image synthesis problem, one
may narrow down the scope to a more specific task to ease
the otherwise quite complicated general objective. Indeed, over
the years many works focus on texture synthesis [17]–[22],
handwritten digits [13]–[15], [23]–[25], and human faces [13],
[25]–[28]. These cases are all appealing as test cases for
synthesis algorithms, and as a stepping stone towards the
ultimate problem of general content image generation. This
is also the path we shall take in this work.

Traditionally, in the case of texture synthesis, the genera-
tion is regularly done using example-based models [17], [18],
[20]–[22]. Newly emerging methods in the field of image
synthesis commonly model the probability distribution of the
images by neural networks, then randomly sample from it to
generate new content [10], [11], [13]–[15], [19], [23]–[26],
[29], [30]. These methods have been shown to lead to inter-
esting results for generating digits, faces, textures, and even
natural scenes. However, a fundamental drawback of these
methods is their tendency to be difficult to train and interpret.

Interestingly, in the realm of image synthesis, little exist-
ing work has relied on patch-based image models, despite
the demonstrated effectiveness of such techniques in image
restoration [1]–[6], image completion and interactive image
editing [8], [31]–[34], texture-synthesis [18], and many
other tasks [35]. More specifically, modeling of patches,
either directly using examples [4], [8], [17], [18], [20]–[22],
[31]–[36], or via a parametric form [1]–[3], [5], [6], [37], [38],
has been shown to be highly expressive and rich. Perhaps the
reason of avoiding such localized methods in image synthesis
is the inevitable need to quilt or otherwise aggregate these
patches to form the final created image in a way that is globally
faithful.
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A successful patch-based image restoration algorithm that
tackles the above concern to some extent is the EPLL [6],
which builds upon a parametric local Gaussian Mixture
Model (GMM). Concretely, EPLL promotes the patches of
the final restored image to comply with the local model,
by alternating between (1) restoring each patch taken from the
previous estimate according to the local prior, and (2) recon-
structing the image by applying a patch-averaging step. This
iterative process results in a significant reduction of artifacts,
leading to state-of-the-art restoration. Incidentally, a similar
concept to EPLL has been presented in [18], in the context of
texture synthesis. More specifically, while [18] relies directly
on example patches from a given texture image (rather than
a parametric model), its main objective and way to achieve it
are the same as in the EPLL: The goal is getting a synthesized
image in which every patch has a close match to the example
set, and the way to get this is by a similar iterative process.

In this paper we propose to leverage the example-based
model and the EPLL framework, putting forward a multi-scale
image generation algorithm, which is intuitive and competitive
with the state-of-the-art, while being fully interpretable. Given
a very small seed image (e.g. 4 × 4 pixels) as an input,
we first upscale it by factor of 2 in each axis using a simple
interpolation method (e.g. bilinear). Then, new content is hal-
lucinated via an example-based spatially varying local priors,
which are plugged to the EPLL scheme. Clearly, this process
can be repeated several times, until the image reaches the
desired size. Following previous work [13]–[15], [23]–[27],
we test the ability of the proposed algorithm to synthesize
images of both handwritten digits (based on MNIST [39])
and human faces, showing that we achieve results comparable
to the state-of-the-art. Our proposed algorithm bears some
similarities to the texture-synthesis work reported in [18].
We map clearly the differences between [18] and our algorithm
in Section III-E. Furthermore, the similarities between our
work and PatchMatch [31] and Visio-lization [28] are also
explained in detail in Sections III-F and III-G, respectively.

Our second contribution is a framework for assessing the
performance of an arbitrary synthesis machine. Previous work
has evaluated the performance of the synthesis algorithm by
computing the Log-Likelihood (LL) of the test images in the
probability distribution associated with their parametric syn-
thesizer [14], [15], [23]–[25]. This measure indeed indicates
the generalization power of the trained model. However, since
the test set contains only real images, the measure does not
necessarily assign low probabilities to undesired images (such
as the blank image and ones containing artifacts). Thus, the LL
value obtained on the test images does not indicate whether
such failed images may be generated. Therefore to evaluate
the visual quality of the synthesis outcome, it is indispensable
to assess the LL directly on the generated images, inde-
pendently from the synthesis model or in a non-parametric
manner.

However, moving from LL evaluation of the test images to
the LL of synthesized ones is not sufficient, as this measure
does not reveal the whole picture. Suppose we have a trivial
synthesis machine that memorized training images and provide
them as its output. In this case, the generated images are of

high LL measure, and they are spread evenly over the training
images, but without introducing any new content. Furthermore,
consider another machine producing always the same image
which is both novel and of high quality. Here the synthesized
images have better originality, but are concentrated on a single
point, ignoring the distribution of the training images. In these
two cases the LL will indicate an excellent performance while
the synthesis is both deterministic and degenerated. Moti-
vated by this observation, we propose a complete assessment
framework combining three aspects of the performance: the
likelihood, the originality and the spread of the synthesized
images. Both numerical measures and visualization tools are
presented to evaluate these three aspects. Our experiments
show that the proposed synthesis algorithm results in high
quality images with good likelihood and originality, along with
a reasonable spread.

This paper is organized as follows: In Section II we review
the EPLL algorithm as we will rely on it in the proposed
synthesis scheme, which is described in Section III with all its
ingredients. Then, in Section IV we provide various synthesis
results of digits and faces that demonstrate the effectiveness of
the proposed scheme. Section V presents our way for assessing
the goodness of the results, and provides the assessment results
of our synthesis outcome, compared to the state-of-the-art.
In Section VI we summarize the paper and outline future
research directions.

II. BACKGROUND: EPLL VIA ADMM

In this section we present the EPLL with a slightly changed
form — rather than relying on the quadratic half-splitting
strategy used in [6], we base our derivations on the more accu-
rate Alternating Directions Methods of Multipliers (ADMM)
method [40] which has been shown to be very effective in
numerous applications.

The core idea behind the EPLL is to regularize the given
inverse problem by specifying a prior on patches only. The
regularization term averages over the individual patch priors
in a form of an expectation, explaining the name given to this
method. The restoration problem suggested by EPLL can be
formulated as follows:

min
X

{
λ

2
‖HX − Y‖2

2 −
∑
i∈I

log Pi (Ri X)

}
(1)

where

• H is the matrix representing the degradation operator.
• Y is the input image, which is assumed to be corrupted

by H.
• X is the output restored image of size w × h.
• I is the set of locations of the fully overlapped patches

of size n × n in image X .
• Ri ∈ R

n2× (w·h) is a patch extraction operator for each
patch location i , e.g. Ri X is the n2-dimensional patch of
X at location i (being reordered as a vector).

• Pi (z) : R
n2 → [0, 1] represents the prior probability

function of a patch z located at position i . As we use
local patch models, this prior may be space- (and scale-)
dependent.
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The optimization problem in Equation (1) is equivalent to

min
X ,z

{
λ

2
‖HX − Y‖2

2 −
∑
i∈I

log Pi (zi )

}

s.t. Ri X − zi = 0 (∀i ∈ I ), (2)

where z = {zi }i∈I are the auxiliary variables representing
the restored patches. Using the scaled form of ADMM [40],
the Lagrangian of the above problem can be written as

L(X , z, {ui }i∈I ) = λ

2
‖HX − Y‖2

2

−
∑
i∈I

log Pi (zi )

+ρ

2

∑
i∈I

‖Ri X + ui − zi‖2
2 (3)

in which ui plays the role of a Lagrange multiplier for the
i th constraint (i.e. Ri X − zi = 0), and ρ is the weight of
the corresponding penalties. This problem can be solved by
the following iterative and alternating steps:

• z-step:

zk+1
i = arg min

z

{ρ

2
‖Ri X k + uk

i − z‖2
2 − log Pi (z)

}
(4)

for all i ∈ I . This local step is formulated as a MAP
estimation of zi given the measurement vector Ri X k +uk

i .
• X-step:

X k+1 = arg min
X

{
λ

2
‖HX − Y‖2

2

+ ρ

2

∑
i∈I

‖Ri X − zk+1
i + uk

i ‖2
2

}

=
(
λHT H + ρ

∑
i∈I

RT
i Ri

)−1

·
(
λHT Y + ρ

∑
i∈I

RT
i (zk+1

i − uk
i )

)
. (5)

This step merges the estimated patches together to form
the global image, while taking into consideration the
corrupted image Y and the degradation operator H. This
step is essentially built upon a patch averaging procedure,
coupled with a Wiener restoration [6].

• u-step:

∀i ∈ I, uk+1
i = uk

i + (Ri X k+1 − zk+1
i ), (6)

which updates the Lagrange multipliers vectors according
to the Augmented Lagrange method [40].

We should note that [6] chose to apply GMM for the patch
prior Pi at all locations i ∈ I , while in this work we will use
an example-based prior — see Section III-B for more details.

III. PATCH-BASED IMAGE SYNTHESIS ALGORITHM

The core challenge of applying directly an existing image
restoration scheme for synthesis is the lack of randomness
in the output, which we overcome by a multi-scale synthe-
sis scheme described in Section III-A, in which we itera-
tively upscale a given small image via randomized EPLL.

Fig. 1. Block diagram of the Layer-Synthesis process, consisting of 3 iterative
steps: (a) Randomly sample high-resolution patches from an example-based
patch prior (as detailed in Section III-B) based on the low-resolution (LR)
input and the current estimate of the high-resolution (HR) output. The
sampling is described in Section III-A. (b) Given the sampled patches,
reconstruct the image according to the X-step in Equation (5), leading to a
new estimate of the HR result. (c) Update the Lagrangian multipliers {ui }i∈I
according to Equation (6). Once a Layer-Synthesis is accomplished, the HR
output serves as the LR input of the Layer-Synthesis of the next scale, until we
obtain a full-sized image. Notice that the initial HR estimate can be obtained
by a simple interpolation.

Moreover, it is crucial to choose a traceable patch prior
in the EPLL in order to sample sharp and likely patches.
We propose for this need a non-parametric example-based
prior in Section III-B. In Section III-D we describe several
key improvements on our scheme, such as handling the patch
overlaps and utilizing patch context.

A. From Restoration to Synthesis

In this subsection we turn to develop the proposed synthesis
algorithm. The approach taken is pyramidal, where we suggest
repeating the following process: Given a low-resolution (LR)
image Y , we first upscale it by factor 2 in each axis using a
simple interpolation method, leading to the image X . Then,
the randomized EPLL is utilized to refine the estimation X by
promoting its patches to comply with a local spatially varying
patch-prior, while being close to the LR image Y . Meanwhile,
randomness force is injected into the EPLL (as described
below) in order to avoid deterministic results, in contrast to the
conventional upscaling/super-resolution methods [36], [41].
The above upscaling process, termed Layer-Synthesis, can be
repeated several times, starting from an extremely small image
containing almost no information (such an image is referred
to hereafter as the seed), and leading to an image of any
desired size, as long as we have adequate local priors to drive
the process. This Layer-Synthesis procedure is summarized
in Figure 1.

We now consider the question of how to convert a super-
resolver into a synthesis algorithm with randomness. Given a
LR image Y and a downsampling operator H,1 the goal of

1For simplicity, we assume that H halves the size of the input image in
each axis throughout the paper.
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Algorithm 1 X = Layer-Synthesis(Y , {Pi }i∈I )

both patch-based super-resolution and synthesis is to obtain
a high-resolution (HR) image X such that HX is close to
the input Y and each patch from X is likely under a local
patch model. Oftentimes, this process is formulated as an
optimization problem, as described in Equation (1), which can
be solved efficiently using the EPLL. However, in contrast
to the deterministic outcome of a super-resolver, a synthesis
method is also expected to generate many different HR images,
all being plausible HR versions of Y . Thus, we should allow
randomness in our synthesis algorithm in order to diversify the
output possibilities. To this end, we change the patch estima-
tion stage in the EPLL (refer to Equation (4) in Section II –
the z-step), so that instead of minimizing the function
ρ
2 ‖Ri Xk + uk

i − z‖2
2 − log Pi (z) we randomly draw a patch

from the posterior distribution of z, whose density is given by

T (z|i, X k, uk
i )=

1

Gi
· exp

{
log Pi (z) − ρ

2
‖Ri Xk +uk

i − z‖2
2

}
,

(7)

where Gi is the partition function, Pi is our example-based
patch prior which is described in detail in Section III-B, and
uk

i is a scaled dual variable being a by-product of the ADMM.
The first term in the exponent encourages the generated patch z
to align with the local prior by preferring higher Pi (z) values.
The second term enforces z to fit to the current estimate of
the patch being refined Ri Xk + uk

i .
Plugging this randomness force to the EPLL scheme leads to

the proposed Layer-Synthesis algorithm, which is summarized
in Algorithm 1. Armed with this single scale generation step,
a seed image can be gradually upscaled by invoking the Layer-
Synthesis several times, formulating our multi-scale approach
as described in Algorithm 2.

Algorithm 2 Multi-scale Synthesis Algorithm

Notice that the proposed method does not create totally
arbitrary images as all emerge from a given seed image Y .
Using a fixed seed for different synthesis runs, we aim to
show the randomness power of our method. Furthermore,
as the seed images are very small (4 × 4 for digits, 8 × 8 for
faces), the images created are expected to be quite diverse.
In the experiments, we choose to use seeds taken from known
test images, in order to be able to compare the outcomes to
the original test image they correspond to. This implies a
huge but finite number of possible output images. To break
this limit, we can instead use random seeds drawn from a
Gaussian or GMM fit to the existing seeds from the dataset.
Interestingly, the resulting images are a bit more diverse
compared to the ones generated from existing seeds, with the
cost of slightly more artifacts.

B. Local Nearest-Neighbor Patch Prior

We now turn to construct the proposed spatially varying
example-based synthesis priors, which are plugged to Equa-
tion (7). These are formulated as a collection of LR-HR
example patch pairs, assembled in dictionaries Di,l

L R and Di,l
H R

for each patch location i and each layer l. The construction of
these is elucidated in Section III-B.1. Next, in Section III-B.2
we describe the sampling process from the prior using
Di,l

L R and Di,l
H R .

1) Building Example Dictionaries: In order to construct the
LR-HR patch pair dictionaries Di,l

L R and Di,l
H R , we decompose

the training images {Vj }N
j=1 (Vj ∈ R

r×c) into Gaussian
pyramids [42] (see Figure 2), thereby creating a sequence of
layers V 0

j , V 1
j , . . . V L

j where

V 0
j = V j (original image)

and

V l
j = Hl−1V l−1

j , l = 1, . . . L .
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Fig. 2. The building process of the Gaussian pyramid for the image Vj from
the set of training images.

The matrices H0, . . . , HL−1 are downsampling opera-
tors (which apply blur and 2:1 decimation in each axis),
as such, each layer V l

j ∈ R
(r/2l)× (c/2l ) is twice smaller than

the previous one V l−1
j ∈ R

(r/2l−1)× (c/2l−1). Following this

rationale, the image V L
j ∈ R

(r/2L)× (c/2L) is the smallest one,
corresponding to the seed size.

Next, Di,l
L R for layer l and location i is the set of LR patches

originating from the lower resolution images {V l+1
j }N

j=1, given
by

Di,l
L R = {Q i

2 ,l+1V l+1
j }N

j=1,

where, following Figure 3, Q i
2 ,l+1 extracts the patch of size

(n/2) × (n/2) from location i
2 of the images {V l+1

j }N
j=1.

Similarly, the set Di,l
H R contains the HR patches correspond-

ing to the elements in Di,l
L R , which are extracted from the

larger (higher resolution) images {V l
j }N

j=1. This can be formu-
lated by

Di,l
H R = {Ri,l V

l
j }N

j=1,

where Ri,l extracts the i -th patch of size n × n from {V l
j }N

j=1,
as depicted in Figure 3. Notice that the location i

2 is mean-
ingful only for even i ’s. Therefore, in synthesis we only treat
every other HR patch, instead of all of them.

2) Sampling Process in Synthesis: Next, we describe the
definition of the patch priors based on Di,l

L R and Di,l
H R , and

show how these are used in the sampling process leading to the
randomized synthesis effect. Our multi-scale algorithm gener-
ates an image by inferring a Gaussian pyramid in the reversed
order X L , . . . , X0, from the seed X L to the full image X0.
In particular, to generate Xl (larger image) from Xl+1 (smaller
one), the process Xl = Layer-Synthesis(Xl+1, {Pi,l }i ) is
invoked, where we design the example-based prior Pi,l (using
Di,l

L R and Di,l
H R as defined above) to prefer HR patches that fit

well to the LR content in Xl+1. Formally, Pi,l is defined only
on existing patches from Di,l

H R , and the probability assigned
to the HR patch Di,l

H R( j) is dictated by the proximity between
its LR version Di,l

L R( j) and the LR patch found at location i
2

Fig. 3. The building process of the prior Pi,l for scale l and for each patch
location i ∈ Il . In the figure i = (x, y) means (x, y) is the central pixel of
the HR patch at location i , and i

2 = ( x
2 ,

y
2 ) means ( x

2 ,
y
2 ) is the central pixel

of the corresponding LR patch at location i
2 .

in Xl+1, for all j = 1, . . . , N :

Pi,l (Di,l
H R( j)|Xl+1)

= 1

Gi,l
· exp

{
− 1

h
‖Q i

2 ,l+1 Xl+1 − Di,l
L R( j)‖2

2

}
, (8)

where Gi,l is the partition function. Note that we do not sample
patches directly from the above prior. Instead, we shall plug
it into Equation (7) and draw from the resulting posterior
distribution:

T (Di,l
H R( j)|i, Xk

l , uk
i )

= 1

Gi
· exp

{
− 1

h
‖Q i

2 ,l+1 Xl+1 − Di,l
L R( j)‖2

2

− ρ

2
‖Ri X k

l + uk
i − Di,l

H R( j)‖2
2

}
, (9)

where X k
l is the estimation of the final synthesized image at

layer l (denoted Xl ) after iteration k. Now we simply draw
one of the patches from Di,l

H R to be used in location i , where
the probability of each patch is determined by the above
posterior. In fact, both the LR and HR measurements are taken
into account simultaneously in Equation (9), as illustrated
in Figure 4. This corresponds to a patch-matching process
where the LR measurement is matched with Di,l

L R , and the
estimated HR content is matched with Di,l

H R .
Notice that the positive parameter h in Equation (9) controls

the randomness of the prior: if h → 0, then the HR version of
the nearest neighbor of Q i

2 ,l+1 Xl+1 from Di,l
L R will be chosen

with probability 1, while h → +∞ makes the prior uniform
over all the patches in Di,l

H R . Through the iterations of the
Layer-Synthesis, we can change the parameter h from a large
initial value towards a smaller one (see Equation (9)), so as
to first allow new information to emerge and then, in later
iterations, to make the HR image Xk+1

l comply with both the
previous estimate Xk

l and the LR version Xl+1.
In order to obtain more relevant patches and speed up the

algorithm, we sample from the patches corresponding to the
nearest neighbors of Q i

2 ,l+1 Xl+1 (instead of from the whole

candidate set Di,l
H R ), according to the probability assigned
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Fig. 4. (a) The computation of the posterior distribution in Equation (9), from
which a patch will be drawn for the refinement of Xl . (b) Example candidates
of sampling from the distribution shown in Figure (a). Rightmost are the
LR and HR measurements in patch-matching. Notice that the HR candidates
are sharper than the current HR measurement, therefore improving the visual
quality of the HR image at location i . In addition, as can be seen, the value
of log(T (z)) is correlated with the relevance of the match.

by Equation (9). The nearest-neighbor searching functionality
required here is provided by the efficient FLANN library [43].

C. Theoretical Issues

In this subsection, we discuss briefly two theoretical issues
raised by our algorithm: the distribution of the output and
convergence.

Regarding the distribution of the created images, clearly,
our goal is to reproduce the true high-dimensional distribution
of the images in question, as manifested by the training set.
Since this by itself is a daunting task, our algorithm is designed
with the hope to get a sampling close to the posterior of the
global image statistics we operate on in each scale, while
operating locally. Towards this, we replace the full posterior
by the expected patch-log-likelihood, which is the core idea
behind the EPLL. Therefore, we cannot make theoretical
claims regarding the actual distribution created, and thus we
offer various empirical evidence in later sections. We note that
other work tackling this synthesis goal (e.g. [14], [28]) take
the same route and do not give supporting theoretical claims
for the sampling obtained.

Regarding the convergence to a fixed point, a simple strategy
to guarantee this is to increase the parameter ρ as a function
of the ADMM iterations (e.g. as done in [44], and in the EPLL

Fig. 5. Illustration of cycle-spinning through iterations for Layer-Synthesis.
Ik is the set of patches being refined in the k-th iteration. The light-blue
patches are not taken into account as they go outside the image support, for
simplicity.

work in the context of the variable splitting). However, such
a strategy does not guarantee convergence in our case: Once
ρ → ∞ we in fact seek for a patch z = Ri X k + uk

i (See
Equation (4)). Following Equation (9), this will not be satisfied
unless we will find a HR example in Di,l

H R exactly equal to
Ri X k+uk

i , which is a direct drawback of using a discrete patch
prior. As a future work we aim to overcome the convergence
problem by replacing the discrete prior with the continuous
local GMM while preserving the sharpness of the patches
somehow.

D. Extensions

In what follows we present three extensions to the above
synthesis scheme so as to improve its outcome.

1) Cycle-Spinning: We observe a trade-off between the
visual quality and the richness of the generation result when
choosing the overlap between patches. Concretely, fully over-
lapping patches (as in Algorithm 1) avoid artifacts due to
the averaging of many samples, while leading to blurry
synthesized results which are similar to each other. On the
other hand, with small overlaps we obtain sharp and diverse
images, with the cost of artifacts that appear especially along
the patch-borders. To bypass this trade-off, we suggest using
the “cycle-spinning” technique [45] as follows. According to
Figure 5, the leftmost image (corresponding to iteration 0)
is reconstructed from the patches at locations i ∈ I0 = I
having small overlaps with each other (meaning that I no
longer contains all the patch locations). Then in the next
iteration, as appears in the central part of Figure 5, we refine
the previous estimate, this time by (randomly) restoring the
patches at locations i ∈ I shifted by offset1 (the set of the
shifted locations is denoted by I1). Clearly, one can repeat
this process with different offsets, thereby improving the visual
quality due to the iterated refinement steps, while preserving
the sharpness and richness of the result thanks to the small
overlaps. Examples of images generated with and without
cycle-spinning are shown in Figure 6 to depict the necessity
of this step. A down side to this process is the need to hold
local priors to all the candidate locations and invoke them in
the restoration appropriately.

2) Neighbor Search Window: As the training images may be
slightly unaligned (e.g. digits and faces), in order to achieve
more diverse results, the matching process should seek for
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Fig. 6. Examples of synthesized digit images with and without cycle-
spinning. The images created with cycle-spinning are in general of better
quality and contain less artifacts.

similar patches in the database that are not only located
in the same coordinates, but also in a small neighborhood
around it. Formally, we propose to enlarge the dictionaries
Di,l

H R and Di,l
L R built in Section III-B.1 to contain patches

at location i (as before), as well as from the neighboring
locations:

Di,l
H R =

⋃
i ′ neighbor of i

{Ri ′,l V
l
j }N

j=1,

Di,l
L R =

⋃
i ′ neighbor of i

2

{Qi ′,l+1V l+1
j }N

j=1,

where i ′ is a neighboring position of i if the offset between
i and i ′ is less than a given number of pixels in both
x- and y-axes. This number is denoted as the neighbor-
window-sizel for layer l. Naturally, since digit and face images
tend to be more “aligned” in lower resolution, the window
is increased together with the image size (see the tables of
parameters in the supplementary material).

In the extreme case, one could use all the patches in the
images Xl (larger) and Xl+1 (smaller) to form the dictionaries
Di,l

H R and Di,l
L R , respectively. This leads to a spatially invariant

local model (in contrast to the spatially varying one that is
defined above), which gives no influence to the locations of
the patches. In coherent set of images as treated in this work,
this approach is necessarily inferior.

3) Patch With Context: When choosing the patch size to
work with, the trade-off between image quality and originality
arises: larger patch size leads to better visual quality, while
limiting the richness of the generated images, and vice versa.
The reason of this tendency is the limited size of the training
set from which we can draw examples, along with the curse
of dimensionality which implies that as patches get larger,
relevant neighbors are becoming scarce. To cope with this,
the definition of distance between patches can be extended to
take the surrounding area into account, as depicted in Figure 7.
Intuitively, as the patch associated with its context contains
wider-range information, it will ensure that the high-level
structure of the generated images will be more realistic,
without sacrificing its originality. This approach is inspired by
the recent work of Con-Patch [46], which is shown to lead to
better patch models. We stress here that this is not equivalent
to working with bigger patches.

Later in the experiments, we use two kinds of contexts:
the square context and the horizontal one, as illustrated in
Figure 7. The square context is used for both digit and face
synthesis, while the horizontal context is used for faces to
improve their symmetry.

Fig. 7. The square context and the horizontal context of an image patch.

E. Comparison to [18]

While the work reported in [18] addressed a different task
of texture-synthesis, it bears some similarities to the above
described algorithm, due to the reliance on patch-matching,
the operation in multi-scale and more. Here are the key
differences between the two works:

• This work deals with image synthesis in a more general
way. As such, our treatment relies on local priors that are
richer than the representation practiced in [18].

• While in [18] randomness and originality of the result
are not the prime goals, they are central in our scheme.
In [18] only the initialization stage is random, while in
our work the randomness is used in every patch-matching
stage.

• The energy functional and minimization method in [18]
are similar to the one posed by the EPLL (half-quadratic
splitting), and therefore similar to ours as well. However,
we introduce the ADMM, making the formulation more
“well-formed”.

• Both methods use multi-scale pyramids, but [18] practices
also a sweep over the patch sizes. We chose to avoid such
feature in our algorithm, due to the anticipated problem
of losing relevant neighbors in the consequent search, and
the fear of getting large portions of trained images copied
to the synthesized image.

• Both these works use small overlap between the patches
and for the same reasons. our algorithm adds to this a
cycle-spinning shift of the patch positions to avoid border
artifacts. Perhaps [18] overcomes these artifacts due to the
use of different patch-sizes.

• Last but not least, we accompany our algorithm with a
framework for assessing the performance of whole image
synthesis, as we will outline in Section V.

As a side note, the above similarities shared by our work
and [18] indicate the potential capability of our method in
texture-synthesis, which should be further validated by more
experiments.

F. Comparision to PatchMatch [31] and PatchTable [8]

Our method also shares some apparent similarities with
PatchMatch, in that both deal with patches and randomized
selection. However, they are fundamentally different in the
following ways:

• The goal of PatchMatch is to approximate the nearest
neighbor search between a database image and a query



REN et al.: EXAMPLE-BASED IMAGE SYNTHESIS VIA RANDOMIZED PATCH-MATCHING 227

image, demonstrated on tasks like retargeting, inpainting
and reshuffling; On the other hand, our work aims to
leverage existing patch (i.e. local) models in order to
synthesize different images from “thin air”.

• In PatchMatch, the randomness is used in initialization
and the random search step merely to reduce computa-
tional cost, whereas in our work the randomness is used
to draw a patch from a posterior distribution, which is
at the very core of our interest of generating different
images.

PatchTable is a follow-up of PatchMatch, which pre-computes
some data structures for the database image, so that the nearest
neighbor search for each individual query image is even faster
than PatchMatch. As such, it is able to perform more computa-
tionally intensive tasks such as artistic video stylization, light-
field super-resolution and multi-image editing. An interesting
future work is to use PatchTable as our nearest-neighbor search
engine (by stitching all the training images together as a
huge database image) in the local patch prior described in
Section III-B. This should result in a significant speed up of
our image generation process.

G. Comparison to Visio-Lization [28]

The work reported in Visio-lization tackles the prob-
lem of human face synthesis, and is highly related to our
approach. The main common points and differences of these
methods are as follows:

• Both methods use datasets of face images aligned by key
points (eyes, mouth etc.).

• Both methods create images in a coarse-to-fine manner to
ensure the global consistency of the faces. Our algorithm
achieves this by generating a Gaussian pyramid from top
to bottom, whereas [28] first draws a blurry face image
from a GMM model, then add fine details to it.

• Both approaches use a spatially varying (non-stationary)
local patch model for the generation. However, our
method draws the patches at each location simultaneously
and merges them by EPLL and ADMM (so that all
patches are treated equally), while [28] draws the patches
sequentially (similarly to [36]) and merges them via
Poisson image editing [47].

• Our method may produce asymmetric faces (see
Figure 12 for example), while [28] enforces the patches
at symmetric locations of the face to come from the same
source image, in order to completely avoid this.

IV. SYNTHESIS EXPERIMENTS

We now turn to present the results obtained by the described
algorithm, synthesizing digits and face images.

A. MNIST Digits

Following the previous work in handwritten digit synthe-
sis [13]–[15], [23]–[25], we use the MNIST [39] dataset in
our experiments, which includes 60000 training images and
10000 test ones of size 28 × 28 pixels, padded to 32 × 32
before synthesis. The test images are downsampled to 4 × 4,

Fig. 8. Downsampling of one original MNIST test image to the size of a
seed.

Fig. 9. (a) Example of MNIST synthesis using a patch model built with all
digits together. The result is not a digit, and looks like the upper half of a
digit “3” merged with the lower half of a digit “8”. Notice that the LR seed
image is indistinguishable from “8”. (b) Examples of “non-digit” synthesized
by DRAW [15], which also models all digits together.

which serve as the seed images (see Figure 8). It is worth
noting that we choose to synthesize each type of digit using
only the training images of the same digit (with the very same
set of parameters), while existing work commonly builds the
synthesis model with all kinds of digits together. Since the
classification of MNIST digits is a very well studied problem
for which highly accurate classifiers are available, we consider
the classification as a simple preprocessing step. When we
ignore the class-specific construction of the example set and
use all the different digits together, images of “non-digit”
might be produced as shown in Figure 9. A similar behavior,
presented in the same figure, is observed when generating
images by DRAW [15].2

The synthesis consists of a pyramid of 4 layers: 4 ×
4 (seed) → 8 × 8 → 16 × 16 → 32 × 32. At each
layer, our local example based patch prior (see Section III-B)
is used, along with the proposed extensions (as detailed in
Section III-D).

The parameters (provided in the supplementary material) are
chosen to achieve a good balance between the visual quality
and the richness of the generated images. Although there
seems to be a lot of parameters to select, each parameter has
a clear meaning, and thus its influence is explicit and easy to
follow. Moreover, some basic principles are followed, making
the overall scheme simple to tune:

• Each of the offsets are used once in a somewhat arbitrary
order;

• Most of the parameters (h, λ and ρ) are monotonic
through the iterations of the same layer;

• The value of ρ increases through the iterations, so that
the high resolution patches conform with the current
synthesized image more and more, and finally stabilize.

All these imply that tuning these parameters is a relatively easy
and straight-forward task. On the other hand, we do note that
a possible future direction would be to tune these parameters
automatically (e.g. by evaluating the quality of the generation

2We used an unofficial implementation of DRAW, given in [48].
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Fig. 10. Example MNIST digits synthesis results produced by the suggested
method. Green frame: original test image used to create the seed. Blue
frame: different generation results with the seed in the same row. Red frame:
the nearest neighbor of the synthesized image on its left from the training
set. The distance between each generated image (blue frame) and its nearest
neighbor (red frame on its right) is indicated below the blue frame, and the
distance between this neighbor and its own nearest neighbor from the training
set is indicated under the red frame for comparison. More generated digits
are shown in the supplementary material.

result at each layer using our assessment framework), in order
to be able to apply this method more easily to other datasets,
while gaining a deeper understanding of the roles played by
these parameters.

Figure 10 illustrates various generation results of all kinds
of digits. As can be seen, the generated images have high
visual quality. In addition, the results are different both from
their nearest neighbor in the set of training images and the
HR version of the seed image, i.e. our method successfully
generated new images that are non-existing in the train-
ing set (good originality). Furthermore, as can be observed,
we synthesize very diverse digits that originate from the same
seed thanks to the randomness force, showing the effectiveness
of our synthesis algorithm, and the good spread obtained over
the training images. Given a seed image, a diagram of the
synthesis process is depicted in Figure 11, showing how three
different generations evolve throughout the layers.

As observed in Figure 10, there are no visible artifacts in
the generated images. Nevertheless, we encountered several
synthesis failures, which occur rarely, as shown in Figure 15
(second row). It is important to note that such failures can

Fig. 11. Different runs of synthesis of the digit “5” using the same seed
image.

be discovered and explained by the LL measure, as described
later in Section V-D.

B. Faces

Compared to digits, images of human faces are much more
challenging to model and synthesize, as they contain richer
details and very long range structures (e.g. the two ears should
be consistent). Furthermore, humans are extremely sensitive
to small unnaturalness of faces, making the generation task
even more demanding. We emphasize that the goal of this
experiment is to demonstrate the generality of our method
by applying it to a completely different category of images
with few adaptations, rather than creating perfect and realistic
synthetic face images.

In this experiment, we generate faces using a dataset of
grayscale human faces from passport photos [49]. This dataset
consists of 4500 example images and 500 test ones, all aligned
by feature points (e.g. eyes and tip of nose). The alignment
is done as in [49], where the feature points of each face
are first located automatically, and then moved to the aligned
locations by warping the triangles formed by these points using
affine transformations. All the images (of size 221 × 179) are
cropped to 179 × 179 and then resized to 128 × 128. The
synthesis consists of a pyramid of 5 layers: 8 × 8 (seed) →
16×16 → 32×32 → 64×64 → 128×128. We use the very
same algorithm as in the digit synthesis, but with different
parameters (see the tables of parameters in the supplementary
material) due to the disparity between these two classes of
images.

Example of generated faces are depicted in Figure 12.
Visually, these synthesized images are realistic, containing
fine details, and do not have severe artifacts. Furthermore,
the ability of the proposed method to generate different faces
from the same seed image is demonstrated in Figure 13. This
serves as an indication to effective randomness, leading to
both rich and high quality results. As can be seen, despite
the local nature of the proposed method, we obtain pleasant
and realistic results. The symmetric property that is unique
to faces is achieved by leveraging the horizontal context.
As demonstrated, the eyes and ears in the generated images are
aligned and have similar shape per instance. Minor asymmetry
in some generated faces is still observed, marked by the
symbol � in Figure 12.

Differently from digit synthesis, in the case of faces,
patches from the same training image tend to appear together
in the generated result, forming coherent parts of a face
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Fig. 12. Example results of aligned faces synthesis. Refer to the caption
of Figure 10 for the meaning of the color frames and the numbers. The
distance used for searching the nearest neighbor takes only the central pixels
into account, as they are the most informative part in the face, while the
boundary (e.g. the hair and the clothes) has large variation. The symbol �
marks the faces that are slightly asymmetric.

(e.g. eye, nose; see Figure 14 for example). This behavior
is similar to irregular patch stitching [17] in texture synthesis.
This phenomenon leads to appealing results, but may indicate
that more training examples are necessary, as we do not have
enough freedom in combining the patches. On the down side,
the patch stitching might deteriorate the originality of the
generated images. However, we will show that the proposed
algorithm does not suffer from this limitation in the assessment

Fig. 13. Different runs of aligned face synthesis using the same seed image.

Fig. 14. The result of one aligned face generation, shown as the stitching
of patches from different images. First row: The first five training images
contributing the most patches in the generated image. Second row: The patches
these five images provide, and how they sum up to the synthesized image (with
other patches). Notice that the new face is visually very different from the
five faces on the left.

of the synthesized faces (see the supplementary material).
Notice that it is also possible to add a penalty term in the
posterior distribution (Equation (9)) in order to discourage
patches from the same source image to be drawn (therefore an
order must be specified for the patches). However, we decide
not to do so for two reasons: (1) simplicity; (2) we hope to
treat all the patches as equally as possible.

V. ASSESSMENT OF SYNTHESIS PERFORMANCE

As we have seen in Section IV, our synthesis algorithm
generates visually appealing and realistic digits and human
faces. However, to assess the performance of our synthesis
machine in a complete fashion, it is necessary to test if the
generated images and the training ones represent the same
probability distribution. As mentioned in Section I, evaluating
the LL for either the test images or the generated images is
insufficient for this task, and we suggest a complete assessment
framework combining the following three indispensable com-
ponents: the LL (Section V-A), the originality (Section V-B),
and the spread (Section V-C). Then, we apply this framework
to our digits synthesis results in Section V-D, showing the
strength and effectiveness of the proposed synthesis algorithm.
The very same assessment is also applied to the synthesized
faces, of which the results are shown in the supplementary
material.

When comparing the scores of different generation meth-
ods, we believe that the three measures have the following
importance order:

LL → originality → spread.

In words, if the LL of the generated images is exceedingly
low, then they are of low visual quality or even meaningless,



230 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

therefore the synthesis does not produce “valid” images,
and there is no point to evaluate the originality and spread.
Similarly, if the generated images are too similar to the training
ones (low originality), then the synthesis power is not effective,
failing to fulfil one of the principal objectives of the process.
In this case, a good spread score is misleading without high
originality, as the generation results may be mostly replicated
from the training set.

A. Log-Likelihood

The goal of the LL measure is multiple: (1) to show
that the synthesis algorithm minimizes the EPLL objective
function (up to some extent due to the randomness force);
(2) to ensure the generated images have good visual quality,
and detect the failure cases; (3) to have a performance value
which is comparable to previous work, for completeness.

We define the likelihood of an image X to be similar to the
EPLL objective function as introduced in Equation (1), which
we aim to minimize during the synthesis process. Formally,
we start by defining the following:

L L pixel (X) = 1

Tr(
∑

i∈I RT
i Ri )

∑
i∈I

log Pi (Ri X), (10)

where Pi is the patch prior used in synthesis, and
∑

i∈I RT
i Ri

is a diagonal matrix that counts for each pixel the number
of different estimates emerging from the overlapping patches
in I . As such, the term 1/ Tr(

∑
i∈I RT

i Ri ) translates the sum
over the LL of the patches Ri X to the expected LL per pixel,
denoted by L L pixel (X). Thus, the estimate of the LL of the
whole image is given by

L L(X) = |X | · L L pixel (X), (11)

where |X | denotes the number of pixels in X . Notice that
this formulation is based on the EPLL assumption that all the
patches Ri X in the image X are independent (even though
they may be overlapping). As such, we sum their LL without
conditioning.

While we aim at evaluating the LL of patches Ri X
that might not exist in the example patch database (as in
Equation (10)), our discrete priors are defined only on the
existing patches in a dictionary (see Section III-B and Equa-
tion (8) therein). Therefore, we suggest a continuous variant
of the proposed discrete priors, formulated as a Parzen win-
dow [50] with Gaussian kernel:

Pi (x) = 1

|Di,0
H R |

∑
y

j
∈Di,0

H R

1

(2πσ 2)n2/2
exp

{−‖x − y
j
‖2

2

2σ 2

}

(12)

where Di,0
H R is the set of HR example patches, σ 2 stands

for the window width, and n2 denotes the number of pixels
in a patch. Notice that we assume the covariance matrix of
each Gaussian has full rank (i.e. equal to σ 2 I ). Nevertheless,
this full rank assumption is not valid in general, especially
when considering background patches in both digits and faces.
Specifically, all the patches in the background of the digits are

TABLE I

AVERAGE LL VALUES OF Test IMAGES OF THE MNIST DATASET (THE
LL VALUES OF THE Generated IMAGES ARE PROVIDED LATER IN

SECTION V-D). LARGER (CLOSER TO ZERO) IS BETTER. NOTE

THAT THE OTHER METHODS USE THE SAME LL FUNCTION FOR

ALL DIGITS, WHEREAS OUR MEASURE USES DIFFERENT
PRIORS FOR EACH TYPE OF DIGIT. THE SUGGESTED

MEASURE IS COMPARED WITH VARIOUS OTHER

METHODS IN THE SUPPLEMENTARY MATERIAL

totally flat, i.e. the term ‖x − y
j
‖2 is zero for all j and for

the totally flat x , leading to Pi (x) = 1/(2πσ 2)n2/2. Clearly,
in this special case we expect to obtain Pi (x) = 1. This
is a direct consequence of the full-rank assumption, which is
invalid for all σ values different than 1/

√
2π . To cope with

this singularity, one can suggest to estimate the rank of each
covariance matrix (in the example above the rank should be 0),
however this approach raises various other difficulties. Another
possible solution is to simply choose σ = 1/

√
2π so that the

actual rank of the local covariance has no importance since
2πσ 2 = 1. As a simple justification, we can view this σ
as representing a Gaussian noise level. In fact, σ = 1/

√
2π

corresponds to a noise level of 17/255 per pixel for 6 × 6
patches (digit) and 13/255 for 8 × 8 patches (face), which is
reasonable. In the supplementary material we provide more
justifications for this value of σ .

Table I provides the average LL value computed using
Equations (10), (11) and (12) on the test images of MNIST
dataset. This table also lists the LL measure obtained by
previous works. As can be inferred, our LL value is close
to the state-of-the-art, indicating that the MNIST images are
modeled well by our example-based local priors. Surprisingly,
despite the simplicity and traceability of our approach, it is
comparable to previous work which tends to be more complex.

As a closing remark, we emphasize that the above LL
measure is utilized to evaluate the quality of the generated
images (see Section V-D), instead of the test ones as done
in Table I, which merely serves to align our modeling of the
LL with the previous work.

B. Originality

In this subsection we propose a score that measures the orig-
inality/novelty of the generated images, which, in particular,
ensures that the generated images are not simple replications
of the training set. Intuitively, we can measure the distance of
a generated image X to the training images used for synthesis,
denoted by the set XT = {Xi |i ∈ T }. One can conclude that
if this distance is very small, the originality of the image X
is limited. Formally, this distance is defined by

DG(X, XT ) ≡ min
Xi ∈XT

‖X − Xi‖2.
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Consequently, the nearest neighbor is denoted by

X N N = NN(X; XT ) ≡ arg min
Xi ∈XT

‖X − Xi‖2

Clearly, if the distance is extremely small the generated image
is not novel as it is exceedingly similar to an existing example.
However, a natural question that arises is how large this
distance should be so one can truly consider this image as
a new one. The answer we suggest is to compare DG (X, XT )
with the following distance:

DT (X, XT ) ≡ min
Xi ∈XT \{X N N } ‖X N N − Xi‖2,

where A\B denotes the set subtraction operation, and X N N =
NN(X; XT ). The above measures how close the training image
X N N is to its own nearest neighbor in the database XT

(which is different from itself). If DG (X, XT ) ≥ DT (X, XT )
we conclude that the generated image X is indeed novel.
On the other hand, DG (X, XT ) � DT (X, XT ) implies that
the synthesis algorithm does not hallucinate new data. This
brings us to the definition of originality measure, given by

Originali ty(X; XT ) = DG (X, XT )

DT (X, XT )
.

Thus, to quantify the overall originality of the whole set of
generated images XG = {Xi |i ∈ G}, we simply average the
originality of all the individual generated images Xi :

Originality(XG; XT ) = 1

|XG |
∑
i∈G

Originali ty(Xi; XT ).

We also propose a visual illustration of this mea-
sure, in which the 2-dimensional points (DG (Xi , XT ),
DT (Xi , XT )) are plotted for each image Xi ∈ XG (refer to
Figure 17 as an example to such visualization that compares
our generation to the results of DRAW).

C. Spread

Consider a scenario in which a synthesis algorithm produces
one single image that has high LL and originality. In this case,
the overall performance is poor due to the lack of richness
and diversity of the results. Motivated by this, we suggest a
measure of spread to ensure that the generated images are as
“spread out” as the training ones.

We suggest to assess the spread of the generated images
mainly based on the t-SNE [51] unsupervised non-linear
embedding. The motivation is that t-SNE is widely used
and produces state-of-the-art result in MNIST visualization,
in which the different types of digits are visually separated
into different clusters (while other popular embedding tech-
niques such as Isomap [52] and LLE [53] do not). Therefore,
we believe that t-SNE is also able to reveal considerable
inconsistencies between the training images and the generated
ones, if any.

Next, we review briefly the main principle of the t-SNE
applied on an image set X D = {Xi |i ∈ D}. In this technique,
the probability of the image X j ∈ X D being the neighbor of
Xi ∈ X D , denoted by p j |i , is defined as:

p j |i = exp(−‖Xi − X j‖2
2/2σ 2

i )∑
k∈D,k =i exp(−‖Xi − Xk‖2

2/2σ 2
i )

(13)

where σi is chosen such that

H (Pi) = −
∑

k

pk|i log pk|i

has a given fixed value for all i ∈ D. In fact, p j |i defines
a weighted neighborhood of the point Xi , i.e. any image
X j ∈ X D is neighbor of Xi with weight p j |i . Next, for
the actual embedding task, denote by yi the 2-dimensional
embedded point of Xi , and q j |i the neighborhood probability
for the embedded points, similarly to p j |i :

q j |i = exp(−‖yi − y j‖2
2)∑

k∈D,k =i exp(−‖yi − yk‖2
2)

As such, the objective function to minimize with regard to the
embedded points yi is given by

C =
∑

i

K L(Pi ||Qi ) =
∑

i

∑
j

p j |i log(
p j |i
q j |i

).

After minimizing C , the points yi represent the two most
significant components of the geometry of the set X D , which
can be plotted on a 2-dimensional plan for visualization (see
the embedding result in Figure 18, for example. Notice that
the points are visually separated into 10 clusters, as there are
10 types of digits).

The success of t-SNE shows that p j |i preserves important
information of the manifold of images, which should be
beneficial for the measure of spread in the context of image
synthesis. Denoting by XT = {Xi |i ∈ T } the set of training
images and by XG = {Xi |i ∈ G} the set of generated
ones,3 the proposed spread measure around one training image
Xi ∈ XT is defined to be the ratio between the density of the
neighbors of Xi from XG and its neighbors from XT :

Spread(i ; XT , XG) = log

(∑
j∈G p j |i‖X j − Xi‖2

2∑
j∈T p j |i‖X j − Xi‖2

2

)
,

where p j |i is defined as in Equation (13) by merging the
training set with the set of generated images, i.e. D = T ∪G.4

The sum
∑

j∈G p j |i‖X j −Xi‖2
2+∑

j∈T p j |i‖X j −Xi‖2
2 can be

seen as the trace of the covariance matrix of all the neighbors
of Xi from XG and XT .5 The term

∑
j∈G p j |i‖X j − Xi‖2

2 is
the contribution of XG to this trace, and

∑
j∈T p j |i‖X j −Xi‖2

2
is the contribution of XT to it. Intuitively, as |XT | ≈ |XG |,
Spread(i ; XT , XG ) ≈ 0 indicates that Xi has about the same
number of neighbors from XT and XG within the radius σi ,
so there is little bias in synthesis from the “point of view”
of Xi . If Spread(i ; XT , XG ) � 0, then XG has a much larger
density of points around Xi compared to XT , and vice versa
for the case Spread(i ; XT , XG ) � 0.

Having the spread measure for each training image defined,
we can score the overall performance simply by the average

3For a fair comparison between the two sets, we assume that they have
about the same number of elements: |XT | ≈ |XG |.

4We stress on the fact that this spread measure does not use the directly the
embedding result of t-SNE {yi }i∈D Instead, it is merely based on the pairwise
distances of images and the probabilities {p j |i }i, j .

5The neighbor X j is weighted by p j |i . The mean of the neighbors is
assumed to be Xi .
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TABLE II

SCORES OF THE ASSESSMENT FRAMEWORK ON Generated (FIRST TWO
ROWS) AND Test (THIRD ROW) MNIST DIGITS. THE SCORES OF

IMAGES OF DIFFERENT DIGITS ARE AVERAGED TOGETHER.
BOLD INDICATES THE BEST PERFORMANCE IN

SYNTHESIS. NOTICE THAT THE FIRST TWO
LL VALUES ARE COMPUTED ON Generated

IMAGES, IN CONTRAST TO THE VALUES

SHOWN IN TABLE I, WHICH ARE
EVALUATED ON Test IMAGES

of the the spread of all training images:

Spread(XG; XT ) = 1

|XT |
∑
i∈T

|Spread(i ; XT , XG )|,

which is expected to be as small as possible.
Finally, to visualize how the synthesized images spread

out over the training ones, we simply apply t-SNE on the
training images XT and generated ones XG altogether, and
plot the 2-dimensional embedding result, using different colors
for images from XT and XG (see Figure 18 for example). This
way, one can directly observe if the elements of XT and XG

overlap well in the embedded space.

D. Assessment of MNIST Synthesis

In this section we apply the assessment framework described
above to compare our generated MNIST digits to the ones of
state-of-the-art DRAW [15]. Table II shows these scores for the
synthesized- and the test-images as a reference performance.

For the LL (the higher the better), our average value is
much higher than DRAW and the one obtained on the test
images, implying that the generated images are of high visual
quality with regard to the training set. This is not surprising,
as our method targets the minimization of the sum of the LL
of the patches. Notice that the test images have smaller LL
than both synthesis methods, for which a possible explanation
is that patches of the test images might not exist in the training
set, resulting in a lower patch LL.

Notice that low LL score indicates that the image is unique,
however, it cannot distinguish whether this unique result is a
failure or a truly novel and realistic generated image. This
explains why the LL of the test images is lower than the
generated ones. On the other hand, we empirically observe that
low LL measure is correlated with badly generated images,
but not with bad training/test ones, as depicted in Figure 15.

As such, we use the LL measure to detect and understand
the failed generations. In fact, we observe that the failure is
mostly related to the seeds: Digits of high quality are generated
from most seeds, while some seeds lead more frequently to
failures. To explain this difference, we can compute the LL
of these two kinds of seeds,6 and compare their synthesis
results. Figure 16 shows two example seeds of the digit “8”

6We model the probability of the 4×4 seeds by the Parzen window defined
by the seed images created from the whole training set, using Gaussian kernel.

Fig. 15. Examples of MNIST images with low LL values. The LL of each
image is indicated above it. From up to down, The images are generated by
DRAW, the proposed method and taken from the test set, respectively.

Fig. 16. Two seeds of digit the “8” with different LL and their generation
results. The images are sorted by decreasing LL. The LL of a seed image
is evaluated under the Parzen window defined with the seeds created by
downsampling all the training images. The average of LL of all the seeds
of “8” is -0.279.

and different generation runs from them, with the LL of each
image. The first seed has a high LL, and its results have
good visual quality and contain no visible failures; On the
other hand, the second seed has a much lower LL, leading to
moderate failures. Intuitively, the LL of the seed indicates its
uniqueness, and the difficulty to create likely images from it.
Also notice that in the results of the second seed, the visual
quality decreases with the LL (from left to right), showing that
our LL definition is indeed meaningful.

As for the second assessment score – the originality (higher
is better) – our generated images have an originality value
close to 1, implying that the proposed method synthesizes rich
and novel images which are far from being replicated version
of the training images. As a comparison, the images of DRAW
have much smaller originality (equal to 0.622), as shown
in Table II. Visually, Figure 17 plots the points (DG , DT )
(as defined in Section V-B) for our results, the results of
DRAW and the test images. The points corresponding to
images with good originality are those close to the line
DG = DT or below it. As can be seen, our generated images
have high originality as the test images do, which is greater
than the originality of DRAW.

Now we turn to the last measure, the spread (lower is better).
Following Table II, DRAW has a better spread score than
our method, which is confirmed by the t-SNE visualizations
in Figure 18. As can be observed, the points corresponding to
the generated images of DRAW overlap well the points of the
training images (right figure), while the points corresponding
to our generated images are “biased” towards the regions more
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Fig. 17. Visualization of the originality of the MNIST digits synthesized
by the suggested method and DRAW, and the MNIST test images. The
supplementary material contains a different visualization of the originality.

Fig. 18. t-SNE visualization result of the MNIST digits generated by the
suggested method (red points on the left) and DRAW (red points on the right),
together with part of the training images (blue points). The x and y-axes
represent the two most significant geometry components found by t-SNE.

Fig. 19. Visualization of the LL of the MNIST digits generated by the
suggested method (left) and DRAW (right). The positions of the points are
the same as the red points in Figure 18. The colors of the points correspond
to the LL value of the images. More results of LL visualization are provided
in the supplementary material.

populated by the points of the training images (left figure).
The worse spread of our result can be explained by the LL
measure. As shown in Figure 19, the LL value of the images
in less populated regions have slightly lower LL values. Since
our method maximizes the LL to some extent, the images
are “dragged” towards more populated regions during the
synthesis process.

In conclusion, our synthesis algorithm produces high quality
MNIST images, outperforming DRAW in both LL and orig-
inality. Although DRAW has a better spread, it may be due

to its tendency to replicate training images (as its originality
score indicates).

VI. DISCUSSION

The synthesis scheme we propose generates high quality
MNIST images competitive to the state-of-the-art, and visu-
ally appealing face images. Furthermore, it is general since
various patch priors can be easily plugged into the generation
framework to create completely different kinds of images
(e.g. digits and faces). Finally, our proposed prior is non-
parametric and intuitive opposed to the majority of recent
works, which rely on neural networks as blackboxes, thus lose
traceability.

In addition, our evaluation framework makes the first step
towards a complete way to assess the synthesis performance,
by evaluating the LL, the originality and the spread of the
generated images. The framework borrows tools from the well
known t-SNE [51], which visualizes the MNIST digits in an
impressive way.

One can wonder how other patch priors work in synthesis
compared to the example-based one in Section III-B. In fact,
a natural alternative is GMM, which provides state-of-the-art
restoration results when used with EPLL [6], and has a natural
definition of patch LL. However, we believe that GMM tends
to prefer smooth patches as their probability is emphasized
in the Gaussian distribution, and this is a shortcoming if we
are to generate sharp images. On the other hand, our current
example-based model does not generate new patches, which
limits the novelty of the generated images in small range.
Therefore, it will be interesting to find a patch prior able to
generate new yet sharp and likely patches.

A promising future direction is to extend our algorithm to
work with more complex images, e.g. natural scenes. However,
we believe that simple adaptations are not enough, as natural
images have rich high-level structures, for example objects
and their relations, and these images have weaker locality
than digits and faces. Therefore, more delicate work may
be needed towards using the proposed scheme for getting
appealing natural image synthesis. One possibility is to model
the patches with better use of their context, or in a feature
space (e.g. as done in [7]).

Another future work direction consists of further improving
the proposed assessment framework. Recall that two of the
three measures (namely the originality and the spread) are
based on the L2-distance. This distance is a reasonable choice
for intrinsically low dimensional images with enough samples,
e.g. digits. However, when it comes to faces or even natural
images, L2-distance includes less information and the desired
properties of natural images (e.g. invariance to shift, rotation
and luminance) are largely missing in this metric. Therefore,
an appropriate metric is crucial for us to assess generated
complex images in a meaningful way. A recent work on
synthesis with neural networks [26] suggests trained metrics,
showing one possibility of achieving this goal.

REFERENCES

[1] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.



234 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
denoising by sparse 3-D transform-domain collaborative filtering,”
IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080–2095,
Aug. 2007.

[3] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image
restoration,” IEEE Trans. Image Process., vol. 17, no. 1, pp. 53–69,
Jan. 2008.

[4] A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting,” IEEE Trans. Image
Process., vol. 13, no. 9, pp. 1200–1212, 2004.

[5] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution
via sparse representation,” IEEE Trans. Image Process., vol. 19, no. 11,
pp. 2861–2873, Nov. 2010.

[6] D. Zoran and Y. Weiss, “From learning models of natural image
patches to whole image restoration,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Dec. 2011, pp. 479–486.

[7] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin,
“Image analogies,” in Proc. 28th Annu. Conf. Comput. Graph. Interac-
tion Techn., 2001, pp. 327–340.

[8] C. Barnes, F.-L. Zhang, L. Lou, X. Wu, and S.-M. Hu, “PatchTable:
efficient patch queries for large datasets and applications,” ACM Trans.
Graph. (TOG), vol. 34, no. 4, p. 97, 2015.

[9] J. E. Kyprianidis, J. Collomosse, T. Wang, and T. Isenberg, “State of
the ‘Art’: A taxonomy of artistic stylization techniques for images and
video,” IEEE Trans. Vis. Comput. Graphics, vol. 19, no. 5, pp. 866–885,
May 2013.

[10] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2016, pp. 2414–2423.

[11] J. Johnson, A. Alahi, and L. Fei-Fei. (2016). “Perceptual losses
for real-time style transfer and super-resolution.” [Online]. Available:
https://arxiv.org/abs/1603.08155

[12] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2015.

[13] A. Radford, L. Metz, and S. Chintala. (2015). “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks.”
[Online]. Available: https://arxiv.org/abs/1511.06434

[14] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu.
(2016). “Pixel recurrent neural networks.” [Online]. Available:
https://arxiv.org/abs/1601.06759

[15] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra,
“DRAW: A recurrent neural network for image generation,” in Proc.
32nd Int. Conf. Mach. Learn., 2015, pp. 1462–1471.

[16] G. Research. (2015). Inceptionism: Going Deeper Into Neural Networks.
Accessed: Aug. 6, 2015. [Online]. Available: http://googleresearch.
blogspot.ch/2015/06/inceptionism-going-deeper-into-neural.html

[17] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” in Proc. 28th Annu. Conf. Comput. Graph. Interaction
Techn., 2001, pp. 341–346.

[18] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization
for example-based synthesis,” ACM Trans. Graph., vol. 24, no. 3,
pp. 795–802, 2005.

[19] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convo-
lutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 262–270.

[20] M. Ashikhmin, “Synthesizing natural textures,” in Proc. Symp. Interac-
tion 3D Graph., 2001, pp. 217–226.

[21] S. Lefebvre and H. Hoppe, “Appearance-space texture synthesis,” ACM
Trans. Graph., vol. 25, no. 3, pp. 541–548, 2006.

[22] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Proc. IEEE Int. Conf. Comput. Vis., vol. 2. Sep. 1999,
pp. 1033–1038.

[23] T. Raiko, Y. Li, K. Cho, and Y. Bengio, “Iterative neural autoregressive
distribution estimator (NADE-k),” in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 325–333.

[24] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in
Proc. Int. Conf. Artif. Intell. Statist., 2009, pp. 448–455.

[25] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[26] A. B. L. Larsen, S. K. Sønderby, and O. Winther. (2015). “Autoencoding
beyond pixels using a learned similarity metric.” [Online]. Available:
https://arxiv.org/abs/1512.09300

[27] C. Liu, H.-Y. Shum, and W. T. Freeman, “Face hallucination: Theory
and practice,” Int. J. Comput. Vis., vol. 75, no. 1, pp. 115–134, 2007.

[28] U. Mohammed, S. J. Prince, and J. Kautz, “Visio-lization: Generating
novel facial images,” ACM Trans. Graph., vol. 28, no. 3, p. 57,
2009.

[29] C. Li and M. Wand, “Combining Markov random fields and convo-
lutional neural networks for image synthesis,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2479–2486.

[30] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. (2016). “Image-to-image
translation with conditional adversarial networks.” [Online]. Available:
https://arxiv.org/abs/1611.07004

[31] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, “PatchMatch:
A randomized correspondence algorithm for structural image editing,”
ACM Trans. Graph., vol. 28, no. 3, p. 24, 2009.

[32] S.-M. Hu, F.-L. Zhang, M. Wang, R. R. Martin, and J. Wang, “PatchNet:
A patch-based image representation for interactive library-driven image
editing,” ACM Trans. Graph., vol. 32, no. 6, p. 196, 2013.

[33] F.-L. Zhang, J. Wang, E. Shechtman, Z.-Y. Zhou, J.-X. Shi, and
S.-M. Hu, “PlenoPatch: Patch-based plenoptic image manipulation,”
IEEE Trans. Vis. Comput. Graphics, vol. 23, no. 5, pp. 1561–1573,
May 2017.

[34] J. Ho Lee, I. Choi, and M. H. Kim, “Laplacian patch-based image syn-
thesis,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016,
pp. 2727–2735.

[35] C. Barnes and F.-L. Zhang, “A survey of the state-of-the-art in patch-
based synthesis,” Comput. Vis. Media, vol. 3, no. 1, pp. 3–20, Mar. 2017.

[36] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based
super-resolution,” IEEE Comput. Graph. Appl., vol. 22, no. 2, pp. 56–65,
Mar./Apr. 2002.

[37] G. Yu, G. Sapiro, and S. Mallat, “Solving inverse problems with
piecewise linear estimators: From Gaussian mixture models to structured
sparsity,” IEEE Trans. Image Process., vol. 21, no. 5, pp. 2481–2499,
May 2012.

[38] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in Proc. IEEE 12th Int. Conf.
Comput. Vis., Oct. 2009, pp. 2272–2279.

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[40] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[41] V. Papyan and M. Elad, “Multi-scale patch-based image restora-
tion,” IEEE Trans. Image Process., vol. 25, no. 1, pp. 249–261,
Jan. 2016.

[42] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach
Always Learning. London, U.K.: Pearson, 2012. [Online]. Available:
https://books.google.com/books?id=gM63QQAACAAJ

[43] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” VISAPP, vol. 2, nos. 331–340, p. 2,
2009.

[44] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play
admm for image restoration: Fixed-point convergence and appli-
cations,” IEEE Trans. Comput. Imag., vol. 3, no. 1, pp. 84–98,
Jan. 2017.

[45] I. Ram, M. Elad, and I. Cohen, “Image processing using smooth
ordering of its patches,” IEEE Trans. Image Process., vol. 22, no. 7,
pp. 2764–2774, Jul. 2013.

[46] Y. Romano and M. Elad, “Con-patch: When a patch meets its context,”
IEEE Trans. Image Process., vol. 25, no. 9, pp. 3967–3978, Sep. 2016.

[47] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM
Trans. Graph., vol. 22, no. 3, pp. 313–318, 2003.

[48] E. Jang. (2016). TensorFlow Implementation of ‘DRAW: A Recur-
rent Neural Network for Image Generation. Accessed: Aug. 2, 2016.
[Online]. Available: https://github.com/ericjang/draw

[49] M. Elad, R. Goldenberg, and R. Kimmel, “Low bit-rate compres-
sion of facial images,” IEEE Trans. Image Process., vol. 16, no. 9,
pp. 2379–2383, Sep. 2007.

[50] E. Parzen, “On estimation of a probability density function and mode,”
Ann. Math. Statist., vol. 33, no. 3, pp. 1065–1076, Sep. 1962.

[51] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, nos. 2579–2605, p. 85, 2008.

[52] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, Dec. 2000.

[53] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
Dec. 2000.



REN et al.: EXAMPLE-BASED IMAGE SYNTHESIS VIA RANDOMIZED PATCH-MATCHING 235

Yi Ren received the B.Sc. degree from the Ecole
Polytechnique, France, in 2014, and the M.Sc.
degree from the Department of Computer Science,
Technion–Israel Institute of Technology, in 2017.
He is currently a deep learning Research Engineer.
His research interests include signal and image
processing, computer vision, machine learning, and
deep learning.

Yaniv Romano received the B.Sc. degree from
the Department of Electrical Engineering, Technion–
Israel Institute of Technology, in 2012, where he is
currently pursuing the Ph.D. degree. He received the
2015 Zeff Fellowship, the 2017 Andrew, and Erna
Finci Viterbi Fellowship, and the 2017 Irwin and
Joan Jacobs Fellowship.

Since 2011, he has been involved in the industry
as an Image Processing Algorithm Developer. His
research interests include sparse and redundant rep-
resentations, deep learning, signal and image mod-

eling, inverse problems, and machine learning.

Michael Elad (F’12) received the B.Sc., M.Sc.,
and D.Sc. degrees in electrical engineering from the
Technion–Israel Institute of Technology in 1986,
1988, and 1997, respectively. After several years
in industrial research, he served as a Research
Associate with Stanford University from 2001 to
2003, involved closely with Prof. G. Golub (CS),
Prof. P. Milanfar (EE-UCSC), and Prof
D. L. Donoho (Stat). Since 2003, he has
been holding a faculty position with the Computer-
Science Department, Technion–Israel Institute of
Technology.

He is currently involved in the field of signal and image processing,
specializing in particular on inverse problems and sparse representations.
He has authored hundreds of technical publications in leading venues, many
of which have led to exceptional impact. He has authored the book Sparse
and Redundant Representations: From Theory to Applications in Signal and
Image Processing, in 2010, which is a leading publication in this field.

Dr. Elad has served as an Associate Editor of the IEEE-TIP from 2007 to
2011, the IEEE-TIT from 2011 to 2014, ACHA from 2012 to 2015, and
the SIAM Imaging Sciences-SIIMS from 2010 to 2015. He held a Senior
Editorial role of the IEEE-SPL from 2012 to 2014. Since 2016, he has been
serving as the Editor-in-Chief of SIIMS.

Dr. Elad received numerous teaching and research awards and grants.
He received the ERC Advanced Grant in 2013. He was a recipient of
the 2008 and 2015 Henri Taub Prizes for Academic Excellence, and the
2010 Hershel-Rich Prize for innovation.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


