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Abstract—In this work we propose a new postprocessing
method for video sequences compressed using intra-frame coding
techniques. The suggested method extends our previously pub-
lished approach for handling compressed still-images. We rely on
the Plug-and-Play Prior framework, which shows that a general
inverse problem can be cast as a sequence of Gaussian denoising
steps. We formulate the video recovery task as such an inverse
problem, with a regularization that leverages on existing state-
of-the-art video denoising algorithms. Our method’s strength
emerges from two origins: (i) the flexibility of using the best
available video denoising algorithm; and (ii) the fact that, while
intra-coding is treated, an inter-frame force is introduced via
the denoising stage. As such, our scheme can be interpreted as
belonging to the distributed video coding paradigm with an ex-
tended decompression procedure coupled with a relatively simple
compression. A prominent part in our approach is a linearization
of the nonlinear compression-decompression operation, while
leveraging the intra-coding structure to obtain a block-diagonal
matrix form. We demonstrate significant quality improvements
for video sequences compressed using Motion-JPEG2000.

I. INTRODUCTION

Lossy compression is a widely used approach for represent-
ing a signal under bit-budget constraints while allowing some
errors in the reconstruction. Typically, artifacts are introduced
as part of the inaccurate recovery of the signal. The artifact
type stems from the compression architecture, e.g., block-
based image/video coding results in blockiness that becomes
more visible as the bit-rate reduces. Consequently, many
artifact-reduction techniques were proposed over the years,
usually considering specific signal and/or artifact types (e.g.,
image deblocking techniques [1], [2]).

In our previous work [3], we proposed a novel postpro-
cessing technique for compression artifact reduction by a
regularized restoration of the original (precompressed) signal.
Specifically, we formulated the compression postprocessing
procedure as a regularized inverse-problem for estimating the
original signal given its decompressed form. We also ap-
proximated the nondifferentiable and nonlinear compression-
decompression process by a linear operator, so as to obtain

*The research leading to these results has received funding from the
European Research Council under European Unions Seventh Framework
Program, ERC Grant agreement no. 320649.

*E-mail addresses:
{ydar,freddy,elad}@cs.technion.ac.il, raja@tauex.tau.ac.il.

a tractable inverse problem formulation. This interesting ap-
proach of locally linearizing the nondifferentiable compression
procedures was thoroughly analyzed in [3].

Whereas many studies focused on corrections of specific
artifacts, our approach attempts to generally restore the sig-
nal and thus implicitly repairs multiple artifacts. The major
strength of our method comes from the regularization used.
It relies on the ”Plug-and-Play Priors” framework [4], where
the alternating direction method of multipliers (ADMM) [5]
is utilized to efficiently solve regularized inverse problems
by decoupling the inversion and the regularization parts of
the optimization problem. The Plug and Play approach relies
on the equivalence between the regularization step and an
additive Gaussian denoising optimization. This framework is
flexible and proposes the replacement of the regularization step
by a general-purpose Gaussian image denoiser. As mentioned
above, in [3] we have developed, using this strategy, a post-
processing algorithm for compressed images.

In this work we extend our work in [3] and propose a
postprocessing technique for video signals compressed using
intra-frame coding methods, where each frame is coded inde-
pendently of the rest of the sequence. Our proposed method is
iterative – in each step it solves an optimization problem that
involves the compression-decompression operator, and applies
a Gaussian video denoiser. As video frames are separately
coded, the treatment of the compression-decompression opera-
tor elegantly reduces to individually considering single frames,
and thus, the corresponding optimization can be efficiently
solved. Contrastingly, the spatio-temporal structure of the
signal is utilized by incorporating an efficient video Gaussian-
denoiser (such as V-BM4D [6] or BM4D [7]), which is applied
on frame groups.

The distributed coding approach suggests to separately
encode dependent data elements, and to compensate this
suboptimality via a complicated decoder that utilizes the inter-
component relations by jointly reconstructing them. Accord-
ingly, the low-complexity intra-frame video encoder together
with the extended decoder, defined as the intra-frame decoder
followed by the proposed spatio-temporal postprocessing, con-
stitute an elementary distributed video-coding system [8].
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II. THE PROPOSED POSTPROCESSING METHOD

A. The Video Signal and Intra-Frame Coding

Let us consider a video signal consisting of T frames, each
has a spatial resolution of W pixel width and H pixel height.
Accordingly, the column-stack form of the signal is denoted
here as x ∈ RN , where N = T ·W · H is the total number
of samples in the signal. The signal x is, in fact, a vertical
concatenation of the column-stack form of its T frames, i.e.,

x =

 x(1)

...
x(T )

 (1)

where x(i) ∈ RNf is the column-stack form of the ith frame
(i = 1, ..., T ), and Nf = W ·H is the number of pixels in a
single frame.

The video signal x undergoes a compression-decompression
procedure, C : RN → RN , resulting in the reconstructed
signal y = C (x). More specifically, we examine here an
intra-frame coding procedure, where each frame is sepa-
rately compressed-decompressed via the same procedure, Cf :
RNf → RNf . Accordingly, the reconstructed video satisfies

y = C (x) =

 Cf
(
x(1)

)
...

Cf
(
x(T )

)
 . (2)

B. Problem Formulation using ADMM

For lossy compression methods an error is introduced of
magnitude that depends on the bit-budget, the specific-signal
characteristics, and the compression algorithm. We aim at
restoring the precompressed signal x from the reconstruction
y using the following regularized inverse-problem:

x̂ = arg min
x

‖y − C (x)‖22 + βs (x) , (3)

where s (·) is a regularizer, which can be associated with a
given Gaussian denoiser, weighted by the parameter β.

Similar to [4] and [9], we develop an iterative algorithm for
the solution of (3). We start by applying variable splitting that
yields the following equivalent form of (3):

min
x,v
‖y − C (x)‖22 + βs (v) s.t. x = v, (4)

where v ∈ RN is an additional vector due to the split. The
constrained problem (4) is addressed by forming an augmented
Lagrangian and its corresponding iterative solution (of its
scaled version) via the method of multipliers [5, ch. 2], where
the ith iteration consists of

(x̂i, v̂i) = arg min
x,v

‖y − C (x)‖22 + βs (v) (5)

+
λ

2
‖x− v + ui‖22

ui+1 = ui + (x̂i − v̂i) ,

where ui ∈ Rn is the scaled dual-variable and λ is an auxiliary
parameter, both introduced in the Lagrangian.

Please note the following notation remark for a general
vector u. Whereas ui stands for vector u in the ith iteration,
uj represents the jth component (a scalar) of the vector u. In
addition, u(j) denotes the jth frame of a video signal u and,
accordingly, u(j)

i denotes the jth frame of the video signal ui.
Approximating the joint optimization of x and v in (5),

using one iteration of alternating minimization, results in the
iterative solution in the ADMM form, where the ith iteration
consists of

x̂i = arg min
x

‖y − C (x)‖22 +
λ

2
‖x− x̃i‖22 (6)

v̂i = arg min
v

λ

2
‖v − ṽi‖22 + βs (v) (7)

ui+1 = ui + (x̂i − v̂i) . (8)

Here x̃i = v̂i−1 − ui and ṽi = x̂i + ui.
The regularization step (7) is of the form of a Gaussian

denoising optimization-problem (of a noise level determined
by β/λ) and therefore can be viewed as applying a denoising
algorithm to the signal ṽi. Indeed, the Plug-and-Play Priors
framework [4] suggests exactly this strategy, replacing (7)
with an independent denoiser; even one that does not explic-
itly have in its formulation a minimization problem of the
form of (7), i.e., it replaces (7) with a denoising operation,
v̂i = Denoiseβ/λ(ṽi). The deployment of a favorable
denoiser introduces valuable practical benefits to the design of
the proposed postprocessing procedure, and yields a powerful
generic method. Moreover, by choosing an effective video de-
noiser that utilizes the inter-frame relations, our postprocessing
becomes a spatio-temporal procedure attempting to repair the
inefficiency of the intra-frame encoder.

C. Linear Approximation of the Intra-Frame Compression-
Decompression Procedure

Due to the high nonlinearity of C (x), we further simplify
the forward-model step (6) using a first-order Taylor approx-
imation of the compression-decompression function around
x̂i−1, i.e.,

Clin (x) = C (x̂i−1) +
dC (z)

dz

∣∣∣∣
z=x̂i−1

· (x− x̂i−1) (9)

where dC(z)
dz

∣∣∣
z=x̂i−1

is the N ×N Jacobian matrix of the

compression-decompression at the point x̂i−1.
Since the approximation of the Jacobian, dC(z)

dz , deeply in-
fluences the restoration result and the computational cost, this
is a delicate task. First, C is a nonlinear and even nondifferen-
tiable function as the compression relies on quantization and/or
thresholding. Second, we provide here a generic technique,
and therefore do not explicitly consider the compression-
decompression formulation except from utilizing its intra-
frame coding structure.

For calculating the entries of the Jacobian, we rely on the
standard definition of the derivative, assuming that C is locally
linear. We justify this approach via a mathematical analysis
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provided in [3]. As we might be approximating the derivative
in the neighborhood of a nondifferential point, we take several
step-sizes in the calculation of the derivative and average over
all of them. This leads to the following approximation to the
kth column of the Jacobian:

dC (z)

dzk
=

1

|Sδ|
∑
δ∈Sδ

C (z + δ · ek)− C (z− δ · ek)

2δ
, (10)

where ek is the kth standard direction vector, and Sδ is a
set of step lengths for approximating the derivative using the
standard definition (the set size is denoted as |Sδ|).

The straightforward computation of the Jacobian according
to (10) is costly, especially for video signals, as it heavily
depends on the total number of samples, N . Particularly, the
Jacobian matrix has N columns, each should be computed
using (10) via 2·|Sδ| compression-decompression applications.
In addition, the Jacobian matrix of C is of N ×N size and,
thus, may also impose practical difficulties in solving (6).

Fortunately, the intra-frame coding procedure has the form
in (2), where the frames are individually encoded-decoded
using the procedure Cf . Consequently, the Jacobian matrix
has the block-diagonal form of

dC (z)

dz

∣∣∣∣
z=x̂i−1

= (11)

dCf (w)
dw

∣∣∣
w=x̂

(1)
i−1

0 · · · 0

0
dCf (w)
dw

∣∣∣
w=x̂

(2)
i−1

0
...

... 0
. . . 0

0 · · · 0
dCf (w)
dw

∣∣∣
w=x̂

(T )
i−1


where dCf (w)

dw

∣∣∣
w=x̂

(j)
i−1

is the Nf × Nf Jacobian matrix of

the frame compression-decompression procedure, Cf , around
the Nf -dimensional point, x̂(j)

i−1, that corresponds to the jth

frame of x̂i−1. The block-diagonal form in (11) lets us to
concurrently compute T Jacobian columns, each belonging
to a different video frame. Namely, instead of using (10) for
z = x̂i−1, we employ the following relation:

dCf (w)
dwk

∣∣∣
w=z(1)

...
dCf (w)
dwk

∣∣∣
w=z(T )

 =
1

|Sδ|
× (12)

∑
δ∈Sδ

C

(
z + δ

T−1∑
j=0

e(jNf+k)

)
− C

(
z− δ

T−1∑
j=0

e(jNf+k)

)
2δ

,

where e(jNf+k) is the (jNf + k)
th standard direction vector,

and dCf (w)
dwk

∣∣∣
w=z(j)

is the kth column (k = 1, ..., Nf ) of
the Jacobian matrix corresponding to encoding-decoding the

jth frame of the video signal z. Accordingly, the complete
Jacobian matrix can be formed, for z = x̂i−1, following the
structure in (11).

Due to the high nonlinearity of C, the linear approximation
(9) is reasonable in a small neighborhood around the ap-
proximating point x̂i−1. Accordingly, we further constrain the
distance of the solution from the linear-approximation point
by modifying (6) to

x̂i = arg min
x

‖y − Clin (x)‖22 (13)

+
λ

2
‖x− x̃i‖22 + µ ‖x− x̂i−1‖22 .

The intra-frame coding structure in (2) and the correspond-
ing block-diagonal form of its Jacobian matrix (11) allow us
to decompose the linear form given in (9) for the entire video
signal, and to write

Clin(x) =

 Cf,lin

(
x(1)

)
.
.
.

Cf,lin

(
x(T )

)

 (14)

where Cf,lin is the linear approximation of the frame
compression-decompression procedure, formulated for the jth

frame (j = 1, ..., T ) of the video x as

Cf,lin

(
x(j)

)
= (15)

Cf

(
x̂
(j)
i−1

)
+
dCf (w)

dw

∣∣∣∣
w=x̂

(j)
i−1

·
(
x(j) − x̂

(j)
i−1

)
.

Accordingly, the optimization problem in (13), defined for the
entire video signal, reduces to a set of distinct optimizations,
each considering a single frame. More specifically, the prob-
lem of the jth frame (j = 1, ..., T ) is formulated as

x̂
(j)
i = arg min

x(j)

∥∥∥y − Cf,lin (x(j)
)∥∥∥2

2
(16)

+
λ

2

∥∥∥x(j) − x̃
(j)
i

∥∥∥2
2

+ µ
∥∥∥x(j) − x̂

(j)
i−1

∥∥∥2
2
.

The results of the frame-level optimizations are concatenated
to form the entire spatio-temporal solution x̂i.

The proposed method for postprocessing intra-frame coded
video signals is summarized in Algorithm 1.

D. Further Reduction of the Computational Complexity

The computational complexity of our method is mainly de-
termined by the complexity levels of the utilized denoiser and
the Jacobian estimation procedure. The latter further depends
on the implementation of the compression-decompression
method, as it is repeatedly applied according to (12). In
addition, Equation (12) exhibits also the effect of the size of
the set Sδ utilized for jointly approximating T columns of the
Jacobian of the video compression-decompression procedure,
C. Since the number of columns in the Jacobian of the frame
compression-decompression procedure, Cf , is the number of
frame samples (denoted as Nf ), computation of the Jacobian in
(11) may still be costly, as it requires Nf calculations of (12).
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Algorithm 1 The Proposed Postprocessing Method
1: x̂0 = y , v̂0 = y
2: i = 1, u1 = 0
3: repeat
4: Approximate Cf,lin(·) around x̂

(j)
i−1 (j = 1, ..., T )

using (15) and (12)
5: x̃i = v̂i−1 − ui
6: Form x̂i by solving for j = 1, ..., T :

x̂
(j)
i = arg min

x(j)

∥∥y − Cf,lin (x(j)
)∥∥2

2

+ λ
2

∥∥∥x(j) − x̃
(j)
i

∥∥∥2
2

+ µ
∥∥∥x(j) − x̂

(j)
i−1

∥∥∥2
2

7: ṽi = x̂i + ui
8: v̂i = Denoiseβ/λ (ṽi)
9: ui+1 = ui + (x̂i − v̂i)

10: i← i+ 1
11: until stopping criterion is satisfied

Fortunately, the computational requirements for estimating the
Jacobian matrix can be further relaxed for many compression
methods that operate independently on non-overlapping blocks
within each frame. In this case, the Jacobian of the frame
compression-decompression procedure, dCf (w)

dw , becomes a
block-diagonal matrix and, therefore, its columns can be
arranged in independent subsets for concurrent computation.
This reduces the number of compression-decompression ap-
plications to the order of the block size. Moreover, the block-
diagonal structure of the Jacobian allows to decompose the
computation of (16) to handle each spatial-block separately.
The details of this computational simplification are inherited
from the discussion given above for linearization of separately
coded frames.

In addition, the block-diagonal structure of dCf (w)
dw can be

assumed even for compression methods that do not conform
with it (e.g., Motion-JPEG2000), and thus somewhat compro-
mising the postprocessing result, in order to offer a reasonable
run-time. The (possibly assumed) spatial-block size of the
compression procedure is denoted here as BH × BW , and
yields a Jacobian with blocks of size BHBW ×BHBW along
its main diagonal.

III. EXPERIMENTAL RESULTS

In this section we demonstrate the performance of the pro-
posed postprocessing method by presenting results obtained in
conjunction with the well-known Motion-JPEG2000 standard
[10]. Motion-JPEG2000 is an intra-frame coding method that
naturally extends the JPEG2000 still-image compression stan-
dard [11] to video signals. More specifically, each frame in
the sequence is independently encoded using a wavelet-based
transform coding procedure, applied on large spatial tiles (of
at least 128× 128 pixels).

We use the BM4D method [7] as the denoiser. While the
BM4D was designed to denoise volumetric data, it was also
established in [7] as suitable for video denoising (especially

for low-motion sequences). Since the proposed postprocessing
technique uses a well established denoiser as a subroutine, we
compare our method with a single application of this denoiser
as a postprocessing procedure. This competing approach is
further strengthened by endorsing the denoiser with an oracle
capability by searching for the best parameter in terms of
maximal average frame-PSNR (AFPSNR) result. More specif-
ically, this oracle denoiser optimizes its output AFPSNR based
on the knowledge of the precompressed video, a capability that
cannot be applied in a real postprocessing task.

The code was implemented in Matlab. The following stop-
ping criterion was applied. In (5) we introduced the scaled
dual-variable of the ith iteration, ui ∈ RN . We here denote
∆ui = 1

N ‖ui − ui−1‖1 and set the algorithm termination
conditions to be at one of the following: ∆ui < 0.05,
∆ui > ∆ui−1 or maximal number of five iterations attained.
The remaining parameters are set as follows. The derivatives
are approximated according to a spatial block-size BH ×BW
of 8 × 8 pixels and Sδ =

{
27 · k × (bpp)−1

}5
k=1

, where
bpp is the bit-rate of the group of frames. The components
in the optimization problems are weighted by λ = 0.15,
β = b0×5·10−4×(bpp)−1 and µ = 0.3×20.1875·bpp, where b0
is a parameter depending on the temporal characteristics of the
processed video. We set b0 = 10 for low-motion videos (e.g.,
Akiyo, News and Hall Monitor), and b0 = 1 for sequences of
higher motion-levels (such as Highway and Ice). Note that the
parameter settings can be further improved, e.g., the parameter
b0 can be automatically determined as a function of the average
squared difference of frames in the postprocessed sequence.

We evaluated our method for several video sequences at
CIF resolution (frame size of 352 × 288 pixels), where
a group of 16 frames forms the spatio-temporal signal to
consider. The quality of the reconstructed-from-compression
and the postprocessed videos is measured in terms of average
frame-PSNR (AFPSNR) of the sequence. The reconstruction
AFPSNR of our method reached up to 0.9 dB improvement
of the Motion-JPEG2000 output (Table I). In addition, our
results compete with the oracle denoiser (see Table I). These
results are encouraging since the oracle denoiser needs the
precompressed video and, therefore, is not suitable for the
common compression applications. Furthermore, the results
in Table I establish our technique as suitable for a wide range
of bit-rates. The restoration results visually demonstrated the
artifact reduction using our method, specifically, handling of
the ringing artifact (see Figures 1-2).

IV. CONCLUSION

In this paper we proposed a postprocessing method for
reducing artifacts in intra-frame coded videos. The task was
formulated as a regularized inverse problem, that was sub-
sequently transformed into an iterative form by relying on
the ADMM and the Plug-and-Play frameworks. The result-
ing generic algorithm separately treats the inversion and the
regularization, where the latter is implemented by sequentially
applying an existing state-of-the-art video Gaussian denoiser.
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(a) Precompressed Frame (b) Motion-JPEG2000 (33.48dB) (c) Postprocessing Result (34.16dB)

Fig. 1. Reconstruction of the 5th frame of Highway (CIF) from Motion-JPEG2000 compression at 0.08bpp.

(a) Precompressed Frame (b) Motion-JPEG2000 (32.19dB) (c) Postprocessing Result (32.85dB)

Fig. 2. Reconstruction of News (CIF) from Motion-JPEG2000 compression at 0.27bpp.

TABLE I
RESULT COMPARISON FOR MOTION-JPEG2000

Video Bit
Rate

Motion-JPEG2000
Oracle

Denoiser
Proposed
Method

AFPSNR AFPSNR AFPSNR

Akiyo 0.08 30.76 31.08 31.07
0.09 31.76 32.17 32.14
0.12 33.08 33.58 33.53
0.16 35.08 35.80 35.71
0.27 38.61 39.19 39.28

News 0.08 25.41 25.65 25.68
0.09 26.31 26.53 26.56
0.12 27.35 27.68 27.68
0.16 28.97 29.58 29.54
0.27 32.08 32.76 32.77

Hall Monitor 0.08 25.89 26.17 26.17
0.09 26.80 27.13 27.15
0.12 27.97 28.45 28.44
0.16 29.78 30.57 30.51
0.27 33.29 34.34 34.26

Highway 0.08 33.36 33.98 34.00
0.09 34.42 34.83 35.01
0.12 35.64 35.75 36.25
0.16 37.36 36.73 37.86
0.27 39.98 37.69 40.13

Ice 0.08 28.25 28.88 28.67
0.09 29.35 30.09 29.91
0.12 30.67 31.47 31.39
0.16 32.47 32.88 33.16
0.27 35.49 34.77 36.32

The best results (up to a difference of 0.05dB in the average frame-PSNR) are marked in bold text.

For practicality, we simplified the inversion step by represent-
ing the nonlinear compression-decompression procedure using
a linear approximation. Moreover, by utilizing the structure
of the intra-frame coding procedure, we further eased the
computational cost of the linearization and the corresponding
optimization problem. We demonstrated our approach for

Motion-JPEG2000 compression and presented experimental-
results showing impressive gains.
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