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Abstract Finding the sparsest solution « for an under-determined linear system of
equations Da = s is of interest in many applications. This problem is known to be
NP-hard. Recent work studied conditions on the support size of « that allow its re-
covery using £1-minimization, via the Basis Pursuit algorithm. These conditions are
often relying on a scalar property of D called the mutual-coherence. In this work we
introduce an alternative set of features of an arbitrarily given D, called the capac-
ity sets. We show how those could be used to analyze the performance of the basis
pursuit, leading to improved bounds and predictions of performance. Both theoretical
and numerical methods are presented, all using the capacity values, and shown to lead
to improved assessments of the basis pursuit success in finding the sparest solution
of Da =s.

Keywords Sparse representations - £1-Reconstruction - Basis Pursuit - Random
support - Capacity sets
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1 Introduction

A powerful trend in signal processing that has evolved in recent years is the use of
redundant dictionaries, rather than just bases, for a sparse representation of signals
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(images, sound tracks, and more). In such a setting, we consider a linear equation
s = Do, where s is a given signal, D is the representation dictionary, and « is the
signal’s representation. The matrix D is a general full rank N x L matrix, where
L > N, assumed to have ¢, normalized columns. The number of non-zero elements
in the coefficient vector « is measured by the £g-norm, | - |lo, on RE. The goal is to
find, within the (L — N)-dimensional affine space of the solutions for this equation,
the sparsest representation for s, i.e. one which has the least number of non-zero
entries. This goal is formalized by the following optimization problem:

(Py): Arg min |l¢|lp s.t. Do =s.
aeRL

In this paper, we consider the signals for which the solution of (Pp) is unique, and we
define S(D) as the family of such signals. We denote 2 = {1, ..., L}, and refer to the
support of the vector « = (c1q, ..., )T astheset ' = supp(a) = {n € Q| o, 7 0}.

The problem (Py) is NP-hard, demanding an exhaustive search over all the subsets
of columns of D [16]. One of the most effective techniques to approximate its solution
is the convex relaxation of the £¢-norm. It uses the £;-norm, the closest convex norm
on RE:

(Py): Arg min |jafl; s.t. Da =s.
acRL

The solution of (Py) is carried out by linear programming. We are interested in signals
s € S(D) for which the solutions of (Py) and (P;) coincide. The idea of using (P;)
to find the sparsest solution is called Basis Pursuit (BP), as coined by Chen, Donoho
and Saunders [4, 5].

Let o be a representation of s, with support I' = supp(«) C 2. The matrix Dr is a
matrix of size N x |I'| containing the columns (also referred to as atoms) of D used
for the construction of s. This matrix is necessarily full-rank (with rank equals |T']).
Knowing the support I' suffices to enable perfect recovery of «, and thus our interest
is confined to the ability to recover the support I.

Definition 1.1 A subset I' C Q is called £{-reconstructible with respect to the dic-
tionary D if the solution of (P;) coincides with the solution of (Py) for every signal
s € S(D) that admits a representation with the support I".

The main task of the paper is to obtain conditions on support sizes which im-
ply that they are ¢;-reconstructible. For any specific support I' C €2 there exists a
straightforward (yet exhaustive) test whether it admits recovery by BP—simply ap-
ply BP to the finite family of signals s = Do generated from coefficient vectors « with
the support I' covering all possible sign patterns (i.e. 2!T! such tests'). If the recovery
succeeds for all these choices of «, it will also succeed for any other representation
with support I" [9, 15].

Clearly, such a testing approach is impractical in most cases. If we aim to find
the prospects of success of the BP for a fixed cardinality |I'|, this requires a set of

n fact, half of this amount is required because if « is reconstructible, then so is —a.
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tests as described above per each possible support I' having such a cardinality, and
this implies a need for approximately L!'! groups of tests. Thus, the exhaustive ap-
proach should be replaced either by a random set of tests with empirical claims, or a
theoretical study.

Within the theoretical attempts to estimate the power of the BP, two approaches
are distinguished in the existing literature. Earlier work carried out the worst case
analysis for a given dictionary, providing conditions on the support cardinality that
guarantee that any support satisfying them is £;-reconstructible [8, 9, 11-13, 19].
These conditions are often very restrictive and far from empirical evidence. Another,
more recent, approach presents a probabilistic analysis, providing conditions for spe-
cial families of dictionaries under which most signals of a given cardinality are ¢;-
reconstructible [1, 3, 7, 10, 18]. The results depict a general asymptotic behavior with
regard to the sparse support recovery.

In both worst-case and probabilistic-analysis branches of work, many classical re-
sults rely heavily on a scalar feature of the dictionary, known as the mutual-coherence
[8, 12, 13, 19]. A related measure also used is the Babel function [8, 19]. More recent
work employs the Restricted Isometry Property (RIP) [2]. The information carried by
all these measures is very pessimistic; furthermore, the RIP is very expensive com-
putationally and mainly used for theoretical analysis. In this work we set to improve
the existing worst case results for a given general dictionary D, as reported in [8,
12, 13, 19]. We achieve this progress by replacing the above-mentioned with a set
of alternative features that we refer to as the capacity sets of the dictionary. A thor-
ough computational analysis of D and probabilistic tools are applied to the problem,
leading to improved probabilistic bounds.

In the next section we recall the existing theoretical results concerning £1-recovery
as a function of the support cardinality. In Sect. 3 we define two versions of the
capacity set and present the main theoretical results of this paper using these features.
Section 4 expands on the above results by providing two numerical algorithms using
the capacity sets. Section 5 provides an overall comparison of the various methods
presented in this work to assess the performance of BP for several test-cases.

2 Background

Most known results on sparsity rely on the mutual-coherence, denoted as u, of
the dictionary. This is the maximum of the inner products between the columns:
1 =max;xjecq [(d;, d;)|. This correlation between the columns, reflected in its worst
value by w, helps establishing the “safe zone” for the support sizes, where both the
uniqueness of sparsest representation and its £ -recovery can be guaranteed.

For D = [®, ®;] a pair of orthonormal bases, the following sufficient condition
for I to be £1-reconstructible is proven in [11]:

Tl < \/5—0.5.

Donoho and Elad in [8] treat a general dictionary D. They define the problem

(Cr): max >8] st 8l =1, 2.1)
deNull(D) =
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and show that its solution is intimately tied to the ability to recover the support I', by
the following lemma:

Lemma 2.1 [8, Lemma 2] A sufficient condition on the support T' to be
Ly -reconstructible is

val(Cr) < % (2.2)

This criteria is used to prove the following theorem:

Theorem 2.2 [8, Theorem 7] A sufficient condition on a support T' C Q to be

L -reconstructible is
1 1
ITl<=(14+—). 2.3)
2 u

Typically, the coherence behaves at best like O(ﬁ), hence the results stated

above predict quite weak £;-recovery, which is refuted by the empirical evidence:
usually BP recovers supports of size proportional to N (and not its squared-root).

A generalization of the coherence is introduced in [8] and later used by J. Tropp
in [19]: for any 0 <m < L, the Babel function 1 (m) is defined by

pi(m) = max max Z| A

In terms of this function, a support of size m is proven to be £{-reconstructible pro-
vided the following inequality holds [19]:

ui(m—1) +puy(m) < 1.

Unfortunately, in cases where the coherence u is close to 1 (implying an existence
of at least one problematic pair of atoms), the growth of w1 (m) is too fast to provide
any improvement.

Average case analysis improves the asymptotic bounds on reconstructible sup-
port sizes. The work in [1] shows that for the dictionary D = [I, F*], where F is the
Fourier transform, random uniformly sampled support admits £1-recovery with high
probability if (the expectation of) its cardinality is O(N/log N), which improves the
O(+/N) estimation of the worst case approach. For a general orthonormal pair, it is
shown in [1, Theorem 5.3], that most random supports which cardinality behaving
like O(1/(u? log6 N)) admit recovery by BP. The log N appearing in these expres-
sions is suspected by the authors of [1] to be unnecessary, which in effect turns this
expression into O(N) (for incoherent dictionaries). A similar and related result, ex-
hibiting the square of the mutual coherence in the denominator of the bound, appears
in [18]. As such, this result is effective in cases where the dictionary is “uniformly
coherent”, and the methods employed are not very suitable for dictionaries with high
coherence.

The idea that representations with cardinalities O(N) are £ -reconstructible is sup-
ported by the results reported in [6, 7, 10]. This result is obtained for asymptotically
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growing dictionaries of size N x § N constructed by concatenating random vectors of
unit />-norm, independently drawn from the uniform distribution. It is shown that all
supports of size up to p(§) N are £j-reconstructible with probability approaching 1.
The work in [6, 10] provides theoretical assessments for p(8), based on connection to
study on neighborly polytopes. Despite being asymptotical, these results illuminate
the empirically-supported evidence regarding the reconstruction abilities of minimal
Lo-norm supports by linear programming.

As good as these results sound, they do not provide useful numerical information
about the ability of ¢;-reconstruction applied to a specifically given dictionary D of
certain size, which is a practical and central question in the application of BP. Such
information can only be obtained today by results involving the coherence u or its
descendants. Thus, the gap is especially big when the dictionary is not uniformly
coherent and when u >> ﬁ

In this work we introduce new features of the dictionary D, the capacity sets. These
features are obtained as the solutions to specific linear programming problems that
probe the dictionary D. We consider two such options: a vector of capacities q and a
matrix Q, as we shall explain in details in the next section. These features are used to
develop novel analysis of BP performance as a function of the support’s cardinality.

One interesting benefit of the proposed analysis is a better treatment of dictionar-
ies which are not “uniformly coherent”. In cases where there exists a small set of
columns in D with strong linear dependency, the coherence and the babel function
behave badly, tending to lead to overly pessimistic bounds. As we show, the use of
the capacities leads in these cases to much better results. Besides that, the capacities
are shown to be more delicate indicators of the dictionary, as reflected in a better
prediction of the BP performance.

Use of capacity sets bridges the gap between purely theoretical estimations of
the reconstructible support sizes for given dictionary D, which are usually fast but
provide pessimistic lower bound, and the empirical tests of D, which give very accu-
rate account on BP-reconstruction abilities, but are computationally prohibitive. We
propose theoretical results and algorithms that employ the capacity sets to perform
computational assessment of these abilities, which is fast relative to full empirical test
and more optimistic than known practical formulae. The question of computational
complexity is discussed in details in Sect. 5.4.

3 Capacity Sets and their Use

In this section we define two versions of the capacity sets, and state the main theoret-
ical results that employ them for the analysis of the BP.

3.1 The Capacity Vector q

The capacity vector consists of elements related to an intermediate tool used in the
proof of Theorem 2.2 in [8]:
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Definition 3.1 The capacity vector q = (q1, ...,qz)T of a dictionary D € RV*L ig
defined for all k € Q2 by

qgr= max & s.t.||é§]1=1. 3.1
SeNull(D)

Computing the elements of q is relatively easy, and amounts to a simple set of L
independent linear programming problems of the form

f(szrngin Ix|]l; subjecttoDx=0 and x;=1,

and then assigning gx = 1/||X|l1.

To see the equivalence of the two problems, notice that the vector X = Xz /||Xx |1
is an element of null space of D with unit £;-norm. Since (X;)r = 1 and ||X¢||; is
smallest possible, the value g = 1/||Xk||1 = (Xg) is just the solution of (3.1).

Via Lemma 2.1, the definition of q provides a sufficient condition ) ;.- gx < %
on a given support I' to ensure its recovery by £1-minimization. Furthermore, by
gathering the |I"| largest entries from q, a simple generalization of Theorem 2.2 can
be proposed. However, in this work we seek a better bound that takes into account the
variety of possible supports, rather than the worst one. One such numerical technique
is suggested in Sect. 4, proposing a special quantization of the values in q to obtain a
lower bound on the fraction of support sizes which admit recovery by BP.

In this section we aim to obtain a more theoretically flavored result that uses q.
Denote by E, the mean value of the capacity vector q, and by qu its variance

% Y kea(ak—E q)z_ The following theorem uses these quantities to evaluate the prob-
ability of £;-reconstruction for a given support size:

Theorem A Forany 1 <{ < i, a support T of size £, sampled uniformly at ran-
dom from Q, admits £1-recovery with probability
(5 — LEy)?
T .
Zoqz + (5 —LEy)?

P() > (3.2

In the special case of a constant capacity vector, the theorem boils down to support
size threshold of i, since then the variance becomes zero. We show in Sect. 3.2 that
weakened version of Theorem A yields the classical threshold of |T'| < %( 1+ ﬁ) (see
Theorem 2.2).

Proof We fix £ and chose subsets A, I" C © according to two different probability
models. The elements of I' are chosen uniformly from 2 without replacement and
form a set of £ distinct column indices. The ¢ elements of A are chosen uniformly
with replacement (i.e. A is a multiset of size ¢ with possible duplicates). Now, define

random variables
Xe=)_ gk Y=Y dm (3.3)
kel meA
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In these terms, the probability P(€), defined in the statement of the theorem, is
bounded below by P(x; < %). In turn, we shall bound the probability P (x, < %)
by means of the Tchebychev inequality, which involves the mean and the variance
of x¢. These parameters are easily computable for y,: by its definition, we have
E(ye) =LE,, var(ye) = Koqz. Our result is based on the following connection be-
tween the variables x; and y,, as shown in Appendix A:

E(x¢) =E(y,) and var(xe) <var(ye). 3.4

Given any real scalar a > 0, the one-tailed version of the Tchebychev inequality [14]
for x, reads

1
P(x¢g— Ex > aoy)=P(x¢ > Ex +aax)§ma

where E, = E(xy), axz =var(xy).

By (3.4), we substitute E, = £E,. Also, since a larger variance implies a lower
probability, we put \/Zaq instead of o, and obtain

P(x¢ > LEy +av/loy) < P(x¢ > Ex +aoy) <

14+a?

The parameter a is chosen such that LE, + a+/o, = %, leading to a = (% -
tEy)/ (ﬁaq). Note that the condition a > 0 translates to the requirement £ < ﬁ as
claimed in the theorem. In case it holds, we have

P > ! < !
x - —’
t=2)= |4 G-ty

@07
or put differently,
P()C[ < %) >1— (lI—ZE g — 2(% _1£Eq)2 -,
L+ st tog + (3 —LEy)
as stated by the theorem. O

3.2 From Capacity Vector to Coherence

We mentioned earlier that previous work often uses the mutual coherence to derive
performance bounds on £ -reconstructible supports. The relation between the capac-
ities in q and the inner products between the dictionary atoms, |(d;, d ;)| has been al-
ready discussed in [8]. Given a dictionary D, construct its Gram matrix as G = D’ D.
Define the sequence

uk =max |G; x| forke Q. 3.5
ik
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Namely, i is the maximal value on the k-th column of |G|, disregarding the main
diagonal entry. As [8] shows, this sequence of values satisfies
Hk
k= ———r.
1 mr+1
Thus the condition Y"1 gk < % can be replaced with Y - Tk < 1. leading of-
course, to weaker bounds. Further relaxation
I w

-

uk+1  p+1

qr = (3.6)

yields a constant capacity vector with entries of size M% Applying Theorem A to

this vector we obtain, as a special case, the classical Theorem 2.2.
3.3 Using the Capacity Matrix Q

One problem with the capacity vector q is the independence with which its entries
qx are computed. This implies that one (or more) of the entries in q may become un-
necessarily large, compared to the values obtained in (2.1), causing a weaker bound.
By working with pairs of such entries, one could in principle improve the obtained
bounds. This leads us to the following definition:

Definition 3.2 Denote by 2, the set of indices Q2 = {(i, j)| i, j € 2,i < j}. The
upper triangular capacity matrix Q = {Q; ;} is the matrix with non-zero elements
indexed by (7, j) € 2, defined as follows:

Q,"j = max {max(é; +3j, 8 — (Sj)} s.t. ||6]l1 = 1.
SeNull(D)

Each of these entries can be computed by two independent linear programming
problems of the form

xz = Argminy [|X||; subjectto Dx=0and x; +x; =1
X = Argminy [|X||; subjecttoDx=0and x; —x; =1

and then assigning Q; ; = 1/min(||f($,j)||1, ||f((_l.’j) ).

Asin Sect. 3.1, the obtained values Q; ; could be used to form an improved worst-
case bound for Lemma 2.1 and consequently for Theorem 2.2: Let I' C 2 be a ran-
domly chosen support of size? £ = 2n. By definition, the non-zero elements of Q
satisfy

max 8| +|8;j|=0Q;; < max [§|+ max [6;|=gq;+gq;.
SeNull(D) SeNull(D) SeNull(D)
811=1 lélly=1 18]Iy =1

2We consider hereafter even support sizes. Generalization to odd ones is relatively simple, requiring use
of one entry from q. We omit this discussion for simplicity.
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Thus the values Q; ; can be used in the evaluation of an upper bound on Cr. To any
partition Z of I into disjoint pairs there corresponds the sum 3 1)o7 Ok, &, that
bounds the value of Cr from above. Therefore, I" is £;-reconstructible if there exists
such a partition satisfying Z(kl JoyeT Qhiky < % Naturally, among all such possible
partitions, we are interested in the one that leads to the smallest sum.

Just one glance at the values of Q gives a lower bound for sizes of
£1-reconstructible subsets: namely, if max(Q) < %, then a sum of any £/2 of its
elements does not exceed 1/2; hence any subset of columns of size up to £ is guar-
anteed to be recovered by BP. Conjecture B below estimates the uncertainty caused
by replacing max(Q) with mean(Q). Some numerical techniques based on Q are
described in Sect. 4.

Here we concentrate again on a theoretical bound that uses Q, similar to the one
proposed in Theorem A with few necessary modifications.

We arrange the values {Q; ; | i < j € @} of the Capacity matrix in a vec-

tor QV. Denote by Ey the mean value of QV, and by O’é its variance, cré =

ﬁ D jesz(Qi,j —FE Q)z. The following statement based on Q is similar to the
one in Theorem A:

Conjecture B> Forany 1 </{ < E]—Q, a support I" of even size £, sampled uniformly
at random from 2, admits €1-recovery with probability

(3.7)

Notice that the expression obtained in (3.7) is the same as the one in (3.2), with
¢ replaced by £/2. Since Eg and o refer to pairs, if Eg =2E, and 0}, =20, the
two bounds are the same. However, as we shall demonstrate in Sect. 5, Eg < 2E,
and oé < 20(]2 for random dictionaries, implying that this bound is indeed stronger.

Proof Fix an even support size £. In order to translate the condition Z(i ez Qij <

% to a probabilistic one, we use again the model involving a subset I' C 2 of size
£ which elements are chosen uniformly from 2 without replacement. Also, we let
7 be a random partition of the index set I' into pairs. Based on these notions, we
define a random variable x; = Z(kl, ko)eT Ok, .k, In effect, x¢ is a sum of elements
of Q randomly chosen “without replacement” in a stronger sense, i.e. not only the
elements are not repeated, but two elements with common index are not allowed.
The probability P (£), defined in the statement of the theorem, is bounded below by
P(xy < %). This bound is not tight, since the support I' is reconstructible if there
exists some partition Z°" such that 3, c7opr Ok, k, drops below the half, while

P(xp < %) is only the probability this will happen for a random partition Z.

3This claim is a conjecture since it relies on a property that is used here without a proof. More on this is
given in Appendix B.
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In order to analyze the variable x;, we consider a multiset ® of size % chosen
uniformly with replacement from QV, and define the random variable y; to be its
sum, y; = »_ ®. Then we have E(y,;) = %EQ, var(yg) = %aé.

The expectation of x, equals to that of yy, which is proven in Appendix B. Re-
garding the variance, we are making an assumption similar to (3.4):

var(xe) < var(ye). (3.8)

We do not provide its proof and leave it as an open question at this stage. Empirical
verification of this inequality is demonstrated in Appendix B.

Following the steps of Theorem A, given any real a > 0, the one-tailed version of
the Tchebychev inequality [14] for x; reads

P >£E + \/? < !
X — a,| -0 _— .
t=37"0 2°2) =T1¥a2

The parameter a is chosen such that %E o+ a\/gaQ = %, leading to a = (% —

%E 0)/ (\/%UQ), implying that we should require ¢ < ELQ to get a > 0. This leads to

(=3)=5
Plrezs)s—rp
I L

3-5E?’
i

or put differently,

1 1 1 —5Ep)?

P(xg<—>>1— — 2=£2(2 12 %) >
2 1_’_(7—‘57’?) 200+ (G —32EQ)
290

as stated in the theorem. O

4 Numerical Algorithms

Given the capacity vector q (or its weaker version as described in Sect. 3.2) or ma-
trix Q, we can use Theorems A and B to predict the £1-reconstructible supports, and
show lower bounds of the probability for success as a function of the support size £.
However, we can alternatively evaluate these probabilities numerically, provided that
there are shortcuts that avoid the exponential growth in support possibilities. This
leads us to the following two algorithms.

4.1 A Fast Combinatorial Count Using q
Below we propose an algorithm which provides worst-case bounds on reconstructible

support sizes. We would like to establish the fraction of the total number of supports
I of size ¢ that satisfy val(Cr) < % Testing the sufficient condition Zkel" qr < %
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for every single I requires O(L) flops, which is prohibitive. Instead, we propose
to perform a quantization of the entries of q to d distinct values, and lead to a more
reasonable computational process.

Suppose we are given a partition A = {Ai}?: | of © into d disjoint clusters, such
that Q = Ule A;. The corresponding quantized values in q are denoted by {qj\},
each set to be the maximal in its subset, {qf\ =maxiea,(qx) | 1 <i <d}.

Given the quantization parameters A = {A;, qﬁ\}f: 1» every £-sized support I' €
can be described as the union U;lzl I';, where I'; € A; is the subset of indices in
I allocated to the quantized value qf\. Thus, the sum ), . ¢; can be replaced by a
larger sum, 30, [T lql,.

In order to test all possible supports I' € Q of size £, a combinatorial count
of all sequences p = (pi1,...,pq) is performed, such that 0 <|p;| <|A;| and
Z?zl |pil = £. For each of these we evaluate Zflzl |pilg’, and count the relative
number of those* below % The complexity of such computation does not exceed
o).

As to the choice of the quantization parameters A = {A;, qf\}fi: 1> as said above,
we let qj\ = maXyep, gk to guarantee that the evaluated summations are considering
a worst-case scenario. The clustering is done by an attempt to minimize the function

d

F{AL gy ¥)) = z(mm - qk). .1

i=1 keA;

The difference |A;lg — > 4c A; 9k 1s the quantization error for the elements in the
subset A;, and the above error simply sums these values.

The minimization of f({A;, qf\}ld:l) can be done exhaustively in case d is
small—in our experiments we have used d = 3 implying that the above requires
O(L?) flops. For larger values of d a sequential algorithm that chooses A; can be
proposed, separating the set Q2 to two parts, and proceeding in a tree and greedy
separation scheme.

Computationally, the results of the combinatorial count are very close to those
predicted by Theorem A. Therefore, this method serves as a supporting evidence for
the probabilistic approach taken in Theorem A, but its numerical output is omitted
from our display of experimental results in Sect. 5.

4.2 A Sampling Algorithm Using Q

An alternative to Conjecture B is a direct evaluation of ¢1-reconstructible supports I"
of cardinality £, by the following stages:

e We draw M >> L such supports {I';})7 .

e For each I'; we seek to find a partition Z; that leads to the smallest value of
Z(k’ nez Qk,1- While finding the best such partition is combinatorial in complex-
ity, we use an approximate greedy algorithm of complexity O(£? - log(£)) which
computes the following suboptimal partition:

4Each instance must be wei ghted by the number of its possible occurrences.
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1. Begin with empty set Z of pairs.

2. Denote by Qs the sub-matrix of Q which rows an columns consist of
only those indices from |I'| which do not occur in Z. Retrieve the couple
(io, jo), (i1, j1) of index pairs which minimize the sum Q(io, jo) + Q(1, j1)
over Qyes.

3. Joint the couple (ip, jo), (i1, j1) to Z and return to item 2 while Qs is non-
empty.

Therefore, the algorithm is, in a sense, “second-order greedy”, i.e. at each step
the least-sum couple of values from Q, rather than least single value, is extracted.
Possibly, better algorithms will improve the performance of this scheme, but we
believe it to be quite close to optimal, while keeping low computational costs. The
fact such partition can be found in O2. log(£)) follows from the next combina-
torial claim: let (i*, j*) be the index pair of minimal value in submatrix of Q sup-
ported on |I"|. Then both i*, j* necessarily present among indices (ig, jo, i1, j1)
defined above.

e Given the partition Z, test Z(k’ heT Okl < % Accumulate the relative number of

such occurrences over the collection {I'; }f‘i I

The fact that this method relies on capacity values implies that the predicted per-
formance is expected to be weaker compared to the true behavior of BP. Neverthe-
less, among the various methods discussed thus far, this method is expected to be the
most optimistic because it uses Q and not q, and also because it does not build the
evaluation through the Tchebychev inequality that looses also part of the tightness.
However, as opposed to all the other methods described above, this method cannot
claim theoretical correctness of its results.

In the light of similarity of the proposed scheme to the pure empirical test, we can
make a direct comparison of the computational cost of the two tests. See the details
in Sect. 5.4.

5 Experimental Results
5.1 Test-Cases to Study

We carry out a number of tests on each of the three following dictionaries:

1. D-Random is the dictionary of size 128 x 256, which consists of £;-normalized
random vectors, independently drawn from the Normal distribution on the unit
sphere. Such a dictionary is often used in numerical experiments as well as in
various applications.

2. D-Spoiled is the dictionary D-Random, which has undergone an operation de-
signed to create a small set of columns with high linear dependence. More pre-
cisely, we re-generate a set of 3 columns as a random linear combination of 12
other columns. This dictionary is used to demonstrate the ability of the capacity-
sets methods to better handle dictionaries with a non-uniform distribution of inner
products.

3. D-DCT is the orthonormal pair [I, C*] of size 128 x 256, where C is the
1-dimensional Discrete Cosine basis and I the identity matrix.
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Table 1 Behavior of the

capacity-sets q and Q by Dictionary E(R) o (R)

evaluating the mean and

variance of the ratios D-Random 0.7175 0.0008
D-Spoiled 0.7154 0.001
D-DCT 0.6509 0.0109

Table 2 Comparison of mean and variance of capacity sets

Dictionary Eg 2Eq aé 203

D-Random 32 x 128 0.2329 0.3179 0.5849E-03 0.8252E-03
D-Random 64 x 128 0.1695 0.2345 0.1405E-03 0.1654E-03
D-Random 128 x 256 0.1235 0.1721 0.4511E-04 0.5652E-04
D-DCT 64 x 128 0.1687 0.2586 0.4732E-03 0.0112E-03
D-DCT 128 x 256 0.1265 0.1943 0.4070E-03 0.4144E-05

5.2 Behavior of q and Q

As explained earlier, the passage from the capacity vector q to the matrix Q was
motivated by the fact that Q; ; provide a lower bound in this context. To exhibit the
numerical behavior of these bounds, we compute the mean and the variance of the
family of ratios

Ris = Okl ok £lca. (5.1)

gk + qi
The mean and variance of these ratios for the three test cases is given in Table 1.

As these figures show, we earn up to 30% of the upper bound value by upgrading
to Capacity Matrix from the Capacity Vector. This ratio between the two bounds for
the corresponding indices is very stable, as seen from the low values of the standard
deviation o (R).

To display the power of Conjecture B, we show that Eg < 2E, and either aé <

207 or 0y < Eg. The corresponding values for various dictionaries are presented in
the table above.

Notice that for the D-DCT dictionary the variance of the capacity vector is smaller
than that of the Capacity matrix, due to the special structure of this dictionary. Nev-
ertheless, as seen later in the results section, Conjecture B predicts BP success on
support sizes larger than those allowed by Theorem A.

5.3 Compared Methods

We perform a number of computations, applying various methods for the estimation
of BP performance on the given dictionaries. The results are expressed via a set of Es-
timation Functions, E F : 2 — R, which value at £ € Q is the predicted percentage of
£-sized supports which admit recovery by £1-norm optimization. The EFs considered
are the following:
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. EF-emp—The standard empirical test on the dictionary. This test is done by draw-

ing 1,000 random supports for each cardinality ¢, generating a corresponding sig-
nal, and solving the BP per each. EF-emp is obtained by showing the relative
number of successes in recovering the support.

. EF-CB—The classical coherence-based upper bound %(1 + ILL), provided by the

Theorem 2.2.

. EF-thmA—Expresses the results of the Theorem A, EF-thmA (£) = P(¢) as de-

fined in the statement of the theorem. The values are computed from q of the
dictionary.

. EF-thmB—Expresses the results of the Conjecture B, computed from the capacity

matrix Q of the dictionary.

. EF-compB—The results of the sampling algorithm based on Q, which results

support the estimation of Conjecture B (see Sect. 4.2).

. EF-GB—The Grassmannian upper bound, computed by the formula for the Clas-

sical Bound using the ideal coherence u =,/ %

This last EF deserves more explanation: Among all possible dictionaries of size

N x L, the Grassmannian frame is the one leading to the smallest possible coher-
ence = ‘/% [17]. Thus, this leads to the most optimistic worst-case bound.

When the dictionary is “un-balanced”, implying a large spread of inner-products in
the Gram-matrix, we know that the mutual-coherence-bound deteriorates dramati-
cally. Thus, by using the Grassmannian Bound, we test what is the best achievable
coherence-based performance behavior for the same dictionary size.

5.4 Complexity Analysis of the Methods

We argue the usefulness of Capacity-based numerical algorithms for an evaluation of
a given dictionary D. To that end, we consider the computational complexity of each
method listed in previous section.

1.

EF-emp—The standard empirical test of D is conveyed as follows: for each sup-
port size £, pick M >> L random subsets I" of columns of size £. For each I', gen-
erate a signal with random coefficients vector supported on I" and test if BP will
recover the support. Since in practice maximal relevant size £ is proportional to L,
the computational complexity of this test is O(M - L - Cpp (L)), where Crp(L)
denotes the complexity of linear programming algorithm for problem of size L.
EF-CB requires the computation of u, which takes O(L - N) flops.
EF-thmA—To employ results of the Theorem A, the capacity vector q is com-
puted in (O(L - Crp(L))), and then for each ¢ the probability P(¢), defined
in the statement of Theorem A, is computed in O(L). Overall complexity—
O(L*+L-CrLp(L)) =O(L-Crp(L)).

EF-thmB—To employ results of Conjecture B, the capacity vector q is computed
in (O(L? - Crp(L))), and then for each £ the probability P (£), defined in the
statement of Conjecture B, is computed in O(L?). Overall complexity—O(L3 +
L?-Crp(L)) = O(L?- Crp(L)).

EF-compB—Our heaviest (and best-performance) algorithm conducts a semi-
empirical test: for each support size £, pick M > L random subsets of columns of
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size £, and employ the analysis detailed in (4.2). The computational cost of single
support treatment is O>. log(£)). Overall complexity is O(L?-Crp(L)y+M -
L? -log(L)).

As seen from the analysis above, only the EF-compB has non-negligible computa-
tional complexity. When comparing EF-emp and EF-compB, we can concentrate on
the relative complexities of linear programming solver versus the O(£2 - log(¢)) of
the partition algorithm, and the benefit of the later is evident.

5.5 Comparison Results

Figure 1 presents the obtained graphs of the various EF-s functions described above,
for the three dictionaries described at the top of this section. As we see from the left-
side graphs in the figures, for all the dictionaries the empirically established support
size which admits BP recovery is at least 40 columns. Note that this relative number
of columns is also predicted in [10], however, this holds true only asymptotically (for
dictionaries of growing sizes) and for specific random dictionaries.

Returning to statements which hold for our modest size of 128 x 256, we notice
that the estimation made by the sampling algorithm based on the Capacity Matrix
(EF-compB) is much better than the Classical bound, established so far in the litera-
ture. The difference is especially high for the D-Spoiled dictionary, which reflects the
fact that methods based on capacity sets manage well the non-uniform distribution of
inner products.

On the right side of each figure we display various method developed in this work.
Noticeably, the results of Conjecture B (EF-thmB) are stronger than those of Theo-
rem A (EF-thmA), which is explained by the benefit of using the Capacity Matrix
rather than the Capacity Vector. This benefit is expressed in the ratio values given in
Tables 1, 2 and explained thereafter. Apparently, Conjecture B does not express the
full power of the Capacity Matrix estimation, since the sampling algorithm based on
its values (EF-compB) outperforms EF-thmB by 15-20%. This algorithm produces
values which are quite close to the Grassmannian Bound, the best possible bound
one can hope to obtain using coherence-based estimation for the given dictionary
size. We do not have enough information to explain the fact that values of EF-compB
and of Grassmannian bound nearly coincide for all the dictionaries discussed here
(and additional ones examined during the work); Discovering the reason underly-
ing this connection may be a lead to important insights regarding the Basis Pursuit
performance.

Appendix A

We prove the claim (3.4).

Theorem C For the two random variables, x; and yy, defined in (3.3), the following
relations between the first and second moments hold:

Exe) =E(ye) and var(xe) <var(ye). (A.1)
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Fig. 1 Estimation functions for various dictionaries of size 128 x 256

Proof We begin by introducing some notation. Fix the support size 1 < ¢ < L. For
any 1 <k < ¢, we denote by Cf the collection of all £-sized non-ordered multisets
of indices from 2 (with repetitions), which have precisely k distinct elements each.
For instance, {1,4,5,4,7} and {5, 1,7, 4,4} are two distinct elements of Cg‘. Such
multiset will be sometimes referred to as “index set”. Also, we define D} = Cf U

Cf_l U..-u Cf_" , the collection of all £-sized multisets having at least £ — n distinct

elements.
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In this notation, x, is a random variable with uniform distribution over the domain
Dg, which admits value ) ;. 4 g« on a given element A € D?. The variable y;, has the
same definition on a larger domain fol, containing the domain of x;. Therefore, we
treat both x, and y, as restrictions of the same uniformly distributed random variable
x on the corresponding domains: x; = Xpgs Ve = Xpi-i. In the proof we use the

following basic property of the variance:

Proposition 5.1 Let z be a random variable defined over a domain given as the

disjoint union D = Dy U Dy U --- U D, with uniform distribution. Denote v =
n .

var(zip), vi =var(z|p,), si = |D;|. Then v = %
i=1°1

Part 1. The expectation of the random variable x restricted to Dg is computed by

Elxpo) = Z > ak

AE'DO keA

This sum contains |D?| - £ elements, and for each j € 2, g; appears in it the same
number of times. Therefore, each ¢; appears |Dg|% times, and we have IE(x‘D?) =

% Y keq qk = LE4. The mean of Xpt-1 is computed similarly:

E(xmf“) Del Z qu

AeD‘f lkeA

Here each g; appears |D§‘1 |% times, and we have ]E(X‘Dg—]) = % Y ke dk =LEq.

This proves our first claim, E(x;) = E(y¢). For the rest of the proof, where only
the variance of the two variables is considered, we assume w.l.g. that the expectation
of x; and y, is zero (in the light of equality var(z) = var(z — E(z) for any random
variable z), thatis E, =0.

Part 2. We consider the extension of x, defined so far on domain comprising of
distinct £-sized index sets, to the domain where each such set may appear any finite
number of times. x still has a uniform distribution over this collection. Thus, a disjoint
union of two or more (non-necessarily distinct) index sets is a sub-domain to which
x may be restricted.

For any 0 <n < ¢, we define two disjoint unions

A= | (TU{jlljer),
reDy_,

U (ruitlije

reDj_,

(In the definition of A,,, the set I' U {j} is added to the collection one time for each
appearance of j in I".)
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Let A € Ck be a set which contains distinct indices ji, ..., jx with multiplici-
ties myq, ..., my (so that Z _ym; =4¢). For each 1 <i <k, A is obtained in A,
m; — 1 times in the form I' U {j;} for an appropriate ' =T7; € Cefl (this claim also
holds vacuously for m; = 1). Therefore, the number of copies of A in 4, equals
Zf-;] (m; — 1) =€ — k. Also, A appears in B, precisely once for each ji, ..., jk, in
the form I U {j;} (for an appropriate I' = I'; each time). Therefore, 3, contains k
copies of A.

Denote a disjoint union of a distinct copies of some collection C by a - C. Then we
can write A,, B, as

A, =0-cfut-citu--un-ci" (E.2)
By=¢t-Clu—1-c7'u--u@—ny-ci (E.3)
We prove the following inequality:
var(x|g,) < var(x4,).

Since E; = 0 by our assumption, the expectations of x| 4, and x5, also equal zero:
by the argument similar to one presented in the first part of the proof, E(x|4,) =
E(xp,) ={ - E;. Thus we have

1 1 :
var(JqA”):|DZ—71| Z m2<2qk+qj>.

reDy_, jel “kell

For the brevity of the argument we introduce the notation gr = ) ;. gk. Then
var(x 4,) reads as

1 1
var(xia,) = o ) m2<q%+q§+2qrq,~>

D1l reD!_, jer
Z aF+ Z(q, +24rq;).
I‘eD” jeI‘

Similarly, we have

var(x|p,) = Z Z(Z% +6]/>

l‘eD” jeQ kel
o Z at + — Z(q, +24rq;).
@ GD” jeQ
The summand p7 ZFED q% appears in both expressions hence cancels out.

We consider the term \DZZH ZFEDZ_l =3 jer qu in var(x 4,). The element g2
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appears in it same number of times for every a € €2. Hence

1 1 1
D} Z TIZ‘]JZ':ZZ‘13~

1l reD_ jer acQ

By same argument, in the expression of var(xz3,) we have

Zqi,

FeD” ]eQ aeQ

hence this quadratic term also cancels out. In the light of these observations, we
obtain

2 1 1
var(x|4,) —var(x|g,) = — qr E ‘Ii__z qj )
D}, —1+4 L
reDy_, iel

Jje

Here we substitute again gr for ) ; - ¢; and recall % ZjeQ qj = E4 =0. Thus, we
have

var(x4,) —var(xg,) =

-, 1>|D 2 af=0

FED”

In order to use this result for the proof of the theorem, we make the following
observations: Denote v, = var(x‘czz) and s, = |Cy|. By virtue of the decomposition

0
D oioltSe—ivVe—i

Z?:() i-Sg—i

. We compute the coefficients of v;

(E.2), var(x)4,) can be written as var(x|4,) =

imi i W=i)se—ive—
Similarly, we have var(x|g,) = SN

(see Proposition 5.1).

in the expression

n . n .
0l SV 0l —i0)-sp_jvp_;
var(x| 4,) — var(xg,) = Lizo L 2izo L

Do iSe— Yo (€ —0) - se—

For any 0 < k < n, the coefficient of v;_g is

1 n n
Do Stk (k D (i) sei = (€—k) Z:;z 'Se—i>

i=1

1 ! .
= ﬂﬁ “Se—k Z(k —i)se—i,

i=0

with

Den—Zl - So—i Z(ﬁ—l) Sg—i-

i=1
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We denote oy = £ Zf’zo(k —1i)s¢—;, for 1 <k <n, in order to write the above
difference as

1 n
0 <var(x4,) —var(xg,) = Den ;)ag_ks/g_kv(_k. (E4)

The constant DLen is positive, since n < £. Thus,it can be omitted while preserving the
inequality:

n
0= Zaefkwfkvefk. (E.5)
k=0

The coefficients in this expression have the two following properties:

1. ZZ:O S¢—kOly_| = 0.
2. Vj,aj1—aj =0>7 oSo—i-

To show the first equality, we consider the sum in (1) as the linear combination of
the elements s¢_;s¢—j, i, j =0, ..., n. The coefficient of s;_;s¢—; is zero for any i.
For any i # j, s¢_;s¢—; appears just in two components of the sum above, namely,
s¢—ijog—; and sg_jog ;. Specifically, cg—; contains the summand £(i — j)s¢—;, and
a¢—j contains the summand £(j — i)s¢—;, therefore in the sum s¢_;op—; + s¢—jorg—;j
the coefficient of s¢_;s¢_; is zero. The second property follows from the definition
of ;. In the light of the first property, (E.5) can be written as

n n
ZOlE—kSZ—k v < Z‘U—ksé—kvl—k- (E.6)
k=1 k=1

Equipped with these observations, we prove, by induction on n, the inequality
var(xng) < var(xmz).

for any n =1,...,£ — 1. The theorem follows for n = ¢ — 1. By Proposition 5.1,

n 7 i . .
var(xm?) = W, and var(xlD?) is just vg. Thus we need to prove
1

—0S¢—i
n
i—0S0—iVl—i
e
Zi:O Se—i

or

n n
ZSE—:' v < Zsi—ivl—i- (E.7)

i=1 i=1

For n =1, (E.6) reads as
Og—1S¢—1V¢ < 0g—185¢—1V¢—1.
Here ay_1 = £sy > 0, thus we obtain the inequality

S¢—1V¢ = S¢—1V¢—1,
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as required. Now, we assume by induction that inequality (E.7) holds up ton — 1 and
prove for n. We use (E.6):

n n
(ED): (Z az-kSzz-k) ve < Zaf—kse—kvf—k-
k=1 k=1

This inequality undergoes a series of transformations designed to bring it to the form
of (E.7).

First, we have ay_1 < ag—. Since vy < vy by the proof for n = 1, we have an
inequality

(dl): (-2 — ag—1)se—1V¢ < (Qg—2 — Ag—1)Se—1V¢—1-
Adding (d1) to the inequality (E'1), we arrive at
n
(E2): <a£—2(Se—1 +s5e-2) + ZaZ—kSe—k> Ve
k=3
n
<og—2(se—1v¢—1 +Se—2v¢-2) + Zai—ksﬂ—kvé—k-
k=3
Second, by induction assumption for n =2 we have the inequality

(Se—1+5¢-2)vg < Sg—1vg—1 +S¢—2V¢2.

Also, ay—>» < ay—3 as noticed earlier. Then we can construct the next inequality in
order to add it to (E?2):

(dl): (ag—3—0ap2)(sg—1 +5¢-2)v¢ < (g3 —g_2)(Sg—1V¢—1 + Sg—2V¢—2)

This results in the following expression:

3 n
(E3): <Ote3 D s+ Zaeksﬁk) ve
i=1 k=4

3 n
a3 Z(S(Zfi ve—i) + ZaszSefkvsz.

i=1 k=4

In this fashion we make n — 1 steps resulting in the inequality

n n
(E(n)): (aen ZSei) Ve S n Y Se-iVei
i=1 i=1

Notice that ay_, is positive: op—,;, = S¢—nl(ns¢ + (n — 1)sg—1 + - - - +S¢—p+1). Thus,
we obtain the desired result. As mentioned, the theorem follows forn =¢ — 1. O
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Appendix B

We prove the equality of expectations

E(xe) =E(ye), (B.1)

for random variables x; and y, defined in the proof of Conjecture B. Recall that
ye is a sum of % values from Q, uniformly distributed over this matrix, therefore
E(ye) = %EQ. We show E(x¢) = %EQ, too, by considerations of symmetry, similar
to those used in the proof of Theorem A, part 1.

Namely, we consider a totality P, of partitions of all £-sized supports A C €2, into
ordered pairs of indices. An element in this collection is therefore a pair (A,Zy).
We clarify that the index sets A C 2 are chosen without repetitions and up to a
permutation of their elements. Now, let (i, j) be an ordered pair of indices from €.
We argue that the number of appearances of this pair in the elements of P, does not
depend on choice of i and j. Indeed, this number is just the size of the collection
Pe—_2, built for submatrix of Q with i-th and j-th rows and columns missing.

D-Random 32x64 D-Random 64x128
10 5
7var(x|) L 7var(x|) .
8r| - - var(y) 7 1 47| - - var(y) o
8 6 83
c c
8 8
S 4 2
2 1
0 0
0 5 10 15 20 0 10 20 30 40
Half of support size | Half of support size |
D-Random 128x256
3 : . .
7var(x|) L
251 - _ var(y)

Variance

0 20 40 60 80
Half of support size |

Fig. 2 The variances of x; and y, (scaled by 10%)
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Since x¢(A,Zp) is the sum Z(i,j)eIA Q(, j), we conclude that all the elements

Q(, j) contribute to the value of x, with equal probability, hence E(x;) = %EQ as
desired.
Now we provide an empirical evidence to the claim

var(xg) < var(ye) (B.2)

We provide statistical data that supports this inequality. While the variance of y, is
known precisely, for x; we estimate it by drawing 10* random subsets of indices
for each support size up to half the signal dimension of the dictionary. Results are
presented in Fig. 2. The computation is carried out for a number of dictionary sizes
on dictionary D-Random. As can be seen from these figures, the gap between var(xy)
and var(yg) is roughly proportional to the support size.

Same experiments on dictionary D-DCT display different results: the variance of
both variables coincides. As number of samples grows, we observe that the difference
of variance values, for all support sizes, tends to zero. We conclude that for this
specific dictionary, (B.2) is an equality.
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