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The easy-to-compute Anscombe transform offers a conversion of a Poisson random variable into a vari-
ance stabilized Gaussian one, thus becoming handy in various Poisson-noisy inverse problems. Solution
to such problems can be done by applying this transform, then invoking a high-performance Gaussian-
noise-oriented restoration algorithm, and finally using an inverse transform. This process works well
for high-SNR images, but when the noise level is high, it loses much of its effectiveness. This work sug-
gests a novel method for coupling Gaussian denoising algorithms to Poisson noisy inverse problems. This
approach is based on a general approach termed ‘‘Plug-and-Play-Prior”. Deploying this to Poisson
inverse-problems leads to an iterative scheme that repeats an easy treatable convex programming task,
followed by a powerful Gaussian denoising This method, like the Anscombe transform, enables to plug
Gaussian denoising algorithms for the Poisson-oriented problem, and yet, it is effective for all SNR ranges.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

In an inverse problem we are given a degraded image, y, and
aim to recover from it a clean image, x. The mathematical relation
between the two images is given by y ¼ N Hxð Þ, where H is some
linear operator and N is a noise operator. A popular way to handle
this reconstruction is to use a Bayesian probabilistic model that
contains two ingredients: (i) the measurement forward model,
mathematically given by the conditional probability PðyjxÞ; and
(ii) a prior distribution model for clean images, given by P xð Þ.

This work concentrates on the case of Poisson Inverse Problems
(PIP), Where N stands for Poisson contamination. In a Poisson
model for an image the gray levels of the pixels are viewed as Pois-
son distributed random variables. More specifically, given a clean
imagepixel x½i�, the probability of getting anoisy value y½i� is givenby

P y½i�jx½i�ð Þ ¼
x½i�ð Þy½i�
y½i�! e�x½i� if x½i� > 0

d y½i�ð Þ if x½i� ¼ 0

(
; ð1Þ

where dð�Þ is the Kronecker delta function.
A known property of this distribution is that x½i� is both the
mean and the variance of y½i�. This model is relevant in various
tasks such as very low light imaging, CT reconstruction [21], fluo-
rescence microscopy [2], astrophysics [25] and spectral imaging
[16]. Common to all these tasks is the weak measured signal
intensity.

An important note about Poisson noise is that the SNR of the
measurements is proportional to the original image intensity,
given by

ffiffiffiffiffiffiffi
x½i�p

. Therefore the peak value of an image is an impor-
tant characteristic, needed when evaluating the level of noise in
the image. For high peak levels, there exist several very effective
ways to solve Poisson inverse problems. Many of these methods
rely on the fact that it is possible to perform an approximate trans-
form (known as Variance Stabilized Transform - VST) of the Pois-
son distribution into an approximately unit variance Gaussian
one, which is independent from the mean of the transformed dis-
tribution [1,12]. Since there are highly effective algorithms for
Gaussian noise restoration (e.g. [5,10,18,29,7]), such methods can
be used, followed by an inversion of the VST operation after the
Gaussian solver [19,30].

When dealing with lower peaks, such transformations become
less efficient, and alternative methods are required, which treat
the Poisson noise directly (e.g. [13,23]). In recent years this direct
approach has drawn considerable attention, and it seems to be
very successful. This work aims at studying yet another method
for Poisson inverse problem restoration that belongs to the direct
approach family. The appeal of the proposed method is the fact
that it offers an elegant bridge between the two families of
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methods, as it is also relying on Gaussian noise removal, applied
iteratively.

This paper is organized in the following way: Section 2 intro-
duces the plug and play approach, as presented in [28]. This
scheme is also extended to be able to work with several priors in
parallel. Section 3 presents our algorithm, as derived from the plug
and play approach. This section explains how to integrate a custom
Gaussian denoising algorithm of choice, and discusses several
improvements that were added to the algorithm. Section 4 pre-
sents experiments results, and Section 5 concludes this paper by
suggesting further improvements.

2. The Plug-and-Play Prior (P&PP) approach

2.1. Standard Plug-and-Play Prior

The Plug-and-Play Prior (P&PP) framework, proposed by
Venkatakrishnan et al. [28], allows simple integration between
inversion problems and priors, by applying a Gaussian denoising
algorithm, which corresponds to the used prior. One of the prime
benefits in the P&PP scheme is the fact that the prior to be used
does not have to be explicitly formulated as a penalty expression.
Instead, the idea is to split the prior from the inverse problem, a
task that is done elegantly by the alternating direction method of
multipliers (ADMM) optimization method [3], and then the prior
is deployed indirectly by activating a Gaussian denoising algorithm
of choice.

The goal of the P&PP framework is to maximize the posterior
probability in an attempt to implement the MAP estimator. Math-
ematically, this translate to the following:

max
x2Rm�n

P xjyð Þ ¼ max
x2Rm�n

P yjxð ÞP xð Þ
P yð Þ ¼ max

x2Rm�n
PðyjxÞP xð Þ: ð2Þ

The above suggests to maximize the posterior probability PðxjyÞ
with respect to the ideal image x, which is of size n�m pixels. Tak-
ing element wise � ln �ð Þ of this expression gives an equivalent
problem of the form

min
x2Rm�n

� ln P xjyð Þð Þ ¼ min
x2Rm�n

� ln PðyjxÞð Þ � ln P xð Þð Þ: ð3Þ

In order to be consistent with [28] we denote l xð Þ ¼ � ln PðyjxÞð Þ and
s xð Þ ¼ � ln P xð Þð Þ. Thus our task is to find x that solves the problem

x̂ ¼ arg min
x2Rm�n

l xð Þ þ bs xð Þ: ð4Þ

Note that y is constant in this minimization. Also, a parameter bwas
added to achieve more flexibility. By adding a variable splitting
technique to the optimization problem we get

x̂ ¼ arg min
x;v2Rm�n

l xð Þ þ bs vð Þ:

s:t: x ¼ v
ð5Þ

This problem can be solved using ADMM [3] by constructing an
augmented Lagrangian which is given by

Lk ¼ l xð Þ þ bs vð Þ þ k
2

x� v þ uk k22 �
k
2

uk k22: ð6Þ

ADMM theory [3] states that minimizing (5) is equivalent to
iterating until convergence over the following three steps:

xkþ1 ¼ arg min
x

Lk x;vk;uk
� �

;

vkþ1 ¼ arg min
v

Lk xkþ1; v; uk
� �

;

ukþ1 ¼ uk þ xkþ1 � vkþ1� �
:

ð7Þ

By plugging Lk we get
xkþ1 ¼ arg min
x

l yjxð Þ þ k
2

x� vk � uk
� ��� ��2

2;

vkþ1 ¼ arg min
v

k
2

xkþ1 þ uk � v
�� ��2

2 þ bs vð Þ;

ukþ1 ¼ uk þ xkþ1 � vkþ1
� �

:

ð8Þ

There exist ADMM variations that modify k at each iteration. Thus k
could be dependent on k. The second step means applying a Gaus-
sian denoising algorithm which assumes a prior s vð Þ on the image
xkþ1 þ uk with variance of r2 ¼ b

k. Therefore, as already mentioned
above, the formulation of the prior does not have to be known
explicitly, as the corresponding Gaussian denoising algorithm can
simply be used.

The first step is dependent on the targeted inversion problem.
Next section shows how Poisson inverse problems are connected
to this step. In this case step 1 is convex and becomes easy to com-
pute. When handling the Poisson Denoising problem, this steps
becomes even simpler because it is also separable, thus leading
to a scalar formula that resembles the Anscombe transform.

The P&PP framework’s convergence is analyzed in [26]. It is
shown that there exist Gaussian denoisers which are guaranteed
to converge. However, other denoisers may lead to good results
as well, despite the lack of solid theoretical foundations.

2.2. Extension to multiple priors

We now show a simple extension of the Plug-and-Play Prior
method that enables to use several Gaussian denoisers. We start
from the following ADMM formulation, that follows Eq. (5)

argmin lðxÞ þ b1s1ðv1Þ þ b2s2ðv2Þ;
s:t: x ¼ v1; x ¼ v2

ð9Þ

where s1 and s2 are two priors that are aimed to be used, and v1 and
v2 are two auxiliary variables that will help in simplifying the solu-
tion of this problem. The full derivation of Lk appears in Appendix B.
Following the steps taken above in the derivation of the P&PP, we
get

Step 1:
xkþ1 ¼ arg min
x

l xð Þ þ k x� vk
1 þ uk

1

�� ��2
2

þ k x� vk
2 þ uk

2

�� ��2
2: ð10Þ

As in the original Plug-and-Play-Prior scheme, this expres-
sion too is convex if lðxÞ is convex, and also separable if lðxÞ
is separable.
Step 2:
vk
1 ¼ arg min

v
b1s1 vð Þ þ k xkþ1 þ uk

1 � v
�� ��2

2

vk
2 ¼ arg min

v
b2s2 vð Þ þ k xkþ1 þ uk

2 � v
�� ��2

2

ð11Þ

which are two Gaussian denoising steps, each using a differ-
ent prior.
Step 3:
ukþ1
1 ¼ uk

1 þ xkþ1 � vkþ1
1

ukþ1
2 ¼ uk

2 þ xkþ1 � vkþ1
2

ð12Þ
Obviously, this scheme can be generalized to use as many priors
as needed. The core idea behind this generalization is that it is not
uncommon to encounter different priors that address different fea-
tures of the unknown image, such as self-similarity, local smooth-
ness or other structure, scale-invariance, and more. By merging
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two such priors into the P&PP scheme, an overall benefit may be
attained, as they complement each other. Another possible usage
of this extension is to force the solution to reside in some convex
set. This can be done by using an indicator function for s2ð�Þ.

2.3. Related ideas

In the context of Gaussian deblurring, a similar derivation is
adapted in [6]. Here too, the authors use a splitting of the fidelity
term and a prior term, but unlike the P&PP, an explicit formulation
of the prior is required. This splitting of the two terms appears also
in Poisson restoration algorithms [9,11], and is shown to be a ben-
eficial technique in this scenario as well. The work reported in [9]
relies on proximal splitting, where the assumed prior is based on
positivity of the unknown, along with sparse representation of
the image in a dictionary of waveforms such as wavelets or curve-
lets. The authors use analysis and synthesis based sparsity. The
work in [11] uses ADMM to enable the splitting. The authors test
the Total Variation (TV), analysis and synthesis priors. In [17] a dic-
tionary learning technique is also added, and a variable splitting
technique produces the algorithm, which treats every term sepa-
rately. In contrast, our work can apply any prior that is used in
the context of Gaussian denoising (even an implicit one), which
gives us the freedom to use leading denoising techniques and thus
get to superior results.

The idea of using several prior terms has appeared previously in
the context of Poisson noise in [20]. Here, the authors use a com-
pound of TV and a wavelet domain regularization, and show
improvement over using each regularization term separately. In
thiswork anymixture of available priors that are beneficial in Gaus-
sian denoising may be used with complete freedom and flexibility.

3. P4IP algorithm

We now turn to introduce the ‘‘Plug-and-Play Prior for Poisson
Inverse Problem” algorithm, P4IP in short, and how it uses the P&PP
framework. We also introduce the Multiple Plug-and-Play Priors
for Poisson Inverse Problem (M-P4IP) algorithm, which is based
on using the multiple prior P&PP, as presented above. We start
by invoking the proper log-likelihood function lðxÞ into the
above-described formulation, this way enabling the integration of
Gaussian denoising algorithms to the Poisson inverse problems.
Then two applications of our algorithm are discussed – the denois-
ing and the deblurring scenarios.

3.1. The proposed algorithm

We denote an original (clean) image, with dimensionsm� n, by
an m� n column-stacked vector x. Similarly, we denote a noisy
image by y. The i-th pixel in x (and respectively y) is given by x½i�
(respectively y½i�). We also denote by H the linear degradation
operator that is applied on the image, which could be a blur oper-
ator, down-scaling or even a tomographic projection. In order to
proceed an expression for lðxÞ should be found. As mentioned
before, this is given by taking � ln �ð Þ of PðyjxÞ. When taking H into
account we get

P yjxð Þ ¼
Y
i

ðHxÞ½i�y½i�
Cðy½i� þ 1Þ e

�ðHxÞ½i�: ð13Þ

Thus, lðxÞ is given by

lðxÞ ¼ � lnðPðyjxÞÞ ¼ �
X
i

ln
ðHxÞ½i�y½i�
Cðy½i� þ 1Þ e

�ðHxÞ½i�
 !

¼ �yT lnðHxÞ þ 1THxþ constant: ð14Þ
Relying on Eq. (8), the first ADMM step in matrix form is
therefore

arg min
x

Lk ¼ arg min
x

�yT ln Hxð Þ þ 1THxþ k
2

x� v þ uk k22: ð15Þ

This expression is convex and can be solved quite efficiently by
modern optimization methods. The final algorithm is shown in
Algorithm 1. k can be changed in many forms in each iteration.

The update rule kk ¼ k0 � ðkstepÞk, where k0 and kstep are some con-
stants was chosen for the P4IP algorithm.

Algorithm 1. P4IP

Input: Distorted image y, Gaussian_denoise �ð Þ function
Initialization: set k ¼ 0; u0 ¼ 0; v0 ¼ some initialization,

k0 ¼ const;
while !stopping criteria do

xkþ1 ¼ arg min
x

�yT ln Hxð Þ þ 1THxþ kk

2 x� vk þ uk
�� ��2

2

vkþ1 ¼ Gaussian_denoise ðxkþ1 þ ukÞ with r2 ¼ b
kk

ukþ1 ¼ uk þ xkþ1 � vkþ1
� �

kkþ1 ¼ kk � kstep
k ¼ kþ 1

end while
Output: Reconstructed image xk

Obviously, the Plug-and-Play Prior extension that employs sev-
eral denoising methods can be used, as shown in the previous sec-
tion. Such a change requires only slight modifications to Algorithm
1. Here, the update of v is done by two denoising algorithms, and
the associated variance parameter is determined by the prior
weight coefficients.
3.1.1. Poisson denoising
For the special case of Poisson denoising H ¼ I. In this case the

first ADMM step is separable, which means that it could be solved
for each pixel individually. Moreover, this step can be solved by the
closed form solution

xkþ1½i� ¼ k vk½i� � uk½i�� �� 1
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k vk½i� � uk½i�ð Þ � 1ð Þ2 þ 4ky½i�
q

2k
;

ð16Þ
where xk½i� is the i-th pixel of xk (and vk½i�; uk½i� and y½i� are the i-th
pixels of vk; uk and y respectively). The full derivation of this step is
shown in Appendix A.

A closer look at Eq. (16) reveals some resemblance to the
Anscombe transform. Indeed, for the initial condition

u0 ¼ 0; v0 ¼ 4
ffiffi
3
8

q
þ 1

� �
, and k ¼ 0:25, the transformed random

variable y after (16) is applied onto it is given by 2
ffiffiffiffiffiffiffiffiffiffiffi
3
8 þ y

q
þ 2

ffiffi
3
8

q
.

Thus the variance is the same as the one achieved by
Anscombe’s transform, because the two differ only by a constant.
Fig. 1 shows the Anscombe transform and the one obtained by
Eq. (16) with the parameters k ¼ 0:25; vk½i� � uk½i� ¼
4

ffiffi
3
8

q
þ 1

� �
þ c for c ¼ f0;3;6;9g. While the curve (16) may look

like the Anscombe one, P4IP is substantially different than the
Anscombe transform based denoising in two ways - (i) The curve
by Eq. (16) changes (locally) from one iteration to another due to
the change in u and v, and (ii) P4IP has no inverse transform step
after the Gaussian denoising. This leads to improved restoration
compared to the Anscombe transform based denoising scheme.
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Fig. 2. Average PSNR on eight test images as a function of b for peak = 0:5.
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3.1.2. Poisson deblurring
When dealing with the deblurring problem, H represents a blur

matrix. The first P&PP step is no longer separable and usually no
analytical solution is available. However the problem is convex
and a common way to solve it is by using iterative optimization
methods, which usually require the gradient. Turning back to our
problem, the gradient of LkðxÞ is given by

rxLk ¼ �HT y= Hxð Þð Þ þHT1þ k x� v þ uð Þ: ð17Þ
where ‘‘/” stands for element-wise division. As can be seen, this gra-
dient is easy to compute, as it requires blurring the temporary solu-
tion x, the constant vector 1 and the vector y= Hxð Þ in each such
computation.

3.2. Details and improvements

The focus was given to two different inverse problems - the
denoising and deblurring problem scenarios. In both, BM3D was
chosen as the Gaussian denoiser, as it provides very good results
and has an efficient implementation. Also, in the denoising sce-
nario the multiple prior M-P4IP algorithm was tested. As a second
denoiser a simplified version of [27] was chosen, which is a multi-



Table 1
Denoising without binning PSNR values [dB].

Method Peak Saturn Flag Camera House Swoosh Peppers Bridge Ridges Average

BM3D 0.1 19.42 13.05 15.66 16.28 16.93 15.61 15.68 20.06 16.59
SPDA 17.40 13.35 14.36 14.84 15.12 14.28 14.60 19.86 15.48
P4IP 21.14 13.18 16.93 18.34 21.22 16.11 16.43 18.66 17.75

BM3D 0.2 22.02 14.28 17.35 18.37 19.95 17.10 17.09 21.27 18.43
SPDA 21.52 16.58 16.93 17.83 18.91 16.75 16.80 23.25 18.57
P4IP 23.01 14.98 17.81 19.48 23.56 17.18 17.50 21.08 19.32

BM3D 0.5 23.86 15.87 18.83 20.27 22.92 18.49 18.24 23.37 20.23
SPDA 25.50 19.67 18.90 20.51 24.21 18.66 18.46 27.76 21.71
P4IP 25.07 16.31 19.20 20.92 25.72 18.74 18.50 24.25 21.09

BM3D 1 25.89 18.31 20.37 22.35 26.07 19.89 19.22 26.26 22.30
SPDA 27.02 22.54 20.23 22.73 26.28 19.99 19.20 30.93 23.61
P4IP 27.11 18.89 20.48 22.72 27.82 20.72 19.28 27.25 23.03

BM3D 2 27.42 20.81 22.13 24.18 28.09 21.97 20.31 29.82 24.34
SPDA 29.38 24.92 21.54 25.09 29.27 21.23 20.15 33.40 25.62
P4IP 28.89 20.98 21.95 24.64 29.54 22.33 20.23 30.47 24.88

BM3D 4 29.40 23.04 23.94 26.04 30.72 24.07 21.50 32.39 26.39
SPDA 31.04 26.27 21.90 26.09 33.20 22.09 20.55 36.05 27.15
P4IP 30.83 22.29 23.33 26.35 31.67 23.90 21.12 32.86 26.54

original

Anscombe+BM3D, PSNR=18.51[dB]

noisy, peak=1, PSNR=2.91 [dB]

P4IP, PSNR=18.93 [dB]

Fig. 6. The image Flag with peak 1 - denoising (no binning) results.
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scale denoising algorithm. Multi-scale considerations are not used
in BM3D, and therefore the two algorithms joint together may
form a more powerful denoising prior.

In the low SNR case, an improvement in the recovery can be
achieved by using a technique called binning: The noisy image is
down scaled and the algorithm is applied on the smaller sized
image that has a better SNR, since the photon count of the merged
pixels are added up. Once the final result of the algorithm is
obtained, up-scaling is applied by a simple linear interpolation.
This technique leads to better results, and also reduces runtime
as the operation is done on smaller images. All the experiments
reported below with binning use a 3:1 shown-scaling in each axis.



original

Anscombe+BM3D, PSNR=28.52[dB]

noisy, peak=2, PSNR=5.60 [dB]

P4IP, PSNR=29.66 [dB]

Fig. 7. Peak 2 - denoising (no binning) results.
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Binning can only be used in the denoising scenario as down sam-
pling doesn’t commute with the blur operator. Moreover, using
binning on deblurring tasks may be viewed as merely an approxi-
mation because the blur kernel undergoes down-sampling too.
Another problem with binning which holds true for denoising,
but has much stronger effect in deblurring, happens in the up-
scaling stage, where artifacts from the restoration algorithm are
amplified during this process, because the down-sampled
deblurred image suffers from them more than the simpler-to-
produce denoised one. Thus using binning in the deblurring sce-
nario leads to sub optimal reconstruction. Obviously, binning could
be used in the deblurring scenario by choosing down sampling as
the forward operator H.

As mentioned before, when dealing with the deblurring scenar-
io, the first P&PP step cannot be solved analytically, and the mini-
mization is done using convex optimization tools. L-BFGS [24] is a
good choice for this task. In order to avoid calculating lnð�Þ where
Hx is negative, it is preferred to optimized the surrogate function
f xð Þ ¼ Lk xð Þ x < e
ax2 þ bxþ c x P e

�
ð18Þ
where the coefficients a; b and c were chosen such that this func-
tion and its derivative coincides with Lk and its derivative at
x ¼ �. As x ! 0 we get that Hx ! 0 and LkðxÞ ! inf, therefore
choosing a small enough � value guarantees that the surrogate
function will have the same minimum as Lk and all entries in Hx

are positive. The chosen value for � is 10�10.

3.2.1. Choice of parameters
Both scenarios required appropriate choice of parameters and

their values. The first important parameter is b - the prior weight.
If the noise is very weak, b should be small because the noisy image
has to be only slightly modified. However, when the noise level is
high, the restoration process should rely more on the prior knowl-
edge and therefore b should be large. Empirical results show that
inappropriate choice of b leads to poor results, sometimes by sev-
eral dB. Fig. 2 shows the average PSNR for peak 0.5 on eight test
images as a function of b around b’s optimal value.

Interestingly, optimal b and k0 can be approximated by simple
polynomials. Figs. 3 and 4 show the optimal b and k0 and their
polynomial approximation as a function of the peak. The optimal
b and k were found by a joint exhaustive search.

Another two parameters that have big effect on the reconstruc-
tion relate to the choice of k. This parameter is considered to be pro-
portional to the inverse of the step size.We found that increasing k at
each iteration gives better results then a constant k. Thus, k update
requires two parameters. The first is k0 - the initial value of k, and
the second, kstep - the value k is multiplied by at each iteration.

Another important parameter is the number of iterations. A
fixed number of iterations was chosen, but of course this parame-
ter can also be learned or even estimated, similarly to what is done
in [22,4]. For denoising this value was set to 50 when binning was
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Anscombe+BM3D, PSNR=19.90[dB]

(a) noisy, peak=0.2, PSNR=-4.10 [dB]

(b) M-P4IP, PSNR=20.18 [dB]

Fig. 8. Peak 0.2 denoising (with binning).
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used, and to 70 without it. M-P4IP was tested only with binning
and the number of iteration is set to 47. In the deblurring scenario
60 iterations are used. Setting the number of iterations is impor-
tant as the PSNR starts decreasing after a while. This happens
because the objective in Eq. (5) which is minimized, is only an
approximation to the PSNR. Thus, the maximum of the PSNR is
achieved near the minimum of this penalty function. This suggests
that the optimal iteration number is a finite value, which should be
chosen wisely.

For a given noise peak, each parameter was tuned on a series of 8
images. Out of each original image five degraded images were
generated, noisy for the denoising scenario, and blurred and noisy
for the deblurring scenario. Multiple peak values in the range of
0.2–4 were tested. Optimal k0 and b were found to have strong
correlation with the peak value. On the other hand, kstep has a weak
dependence on the peak, and was thus chosen independently of it.
For all scenarios kstep was set to 1:065 without binning and to 1:1
with it. We observed that the initialization of v0 does not lead to a
noticeable change in the final reconstruction, and thus it is set to 0.

4. Experiments

4.1. Denoising

The algorithmwas tested for peak values 0.1, 0.2, 0.5, 1, 2 and 4.
To evaluate our algorithm it was compared to BM3D with the
refined inverse Anscombe transform [19], and to [13], which leads
to the best of our knowledge, to state of the art results. All algo-
rithms were tested with and without binning. The results are
shown in Table 1, where each value is the average of five noisy real-
izations. While the reported results refer to BM3D, other options
were tested as well (e.g. K-SVD [10], WNNM [14]) and led to similar
results in spirit and roughly speaking, for the same parameter set-
ting strategy. BM3D’s oneswere reported simply because theywere
the best in terms of performance vs. computation trade-off.

Figs. 6–9 show several such results. Here each PSNR value refers
to specific noise realization. As can be seen, the propose approach
competes favorably with the BM3D+Anscombe and state-of-the-
art algorithms. Binning is found to be beneficial for all algorithms
when dealing with low peak values. As for run-times, our algorithm
takes roughly 10 s/imagewhen binning is used, nearly 0.2 s took for
a single 2nd step run, and negligible time (less then one milli-
second) for steps 1 and 3. This should be compared to the BM3D
+Anscombe that runs faster (0.2 s/image), and the SPDA method
[9] which is much slower (an average of 15–20 min/image). When
removing the binning, our algorithm runs for about one minute,
with 0.6 s on average for a single 2nd step run. BM3D+Anscombe
run takes one second and SPDA runs for approximately 10 h. These
runtime evaluationsweremeasured on an i7with 8 GB RAM laptop.
Practical convergence of the algorithm on the image ‘‘Cameraman”
with noise peak 0.1 is shown in Fig. 5. Due to themodification of the
value of k along the iterations, we get the non-consistent curve as
seen in Fig. 5. Nevertheless, this approach does lead to improved
results over the alternative (and more consistent) fixed k option.

As mentioned before, to check the effectivity M-P4IP a combina-
tion of BM3D with a simplified version of [27] was chosen, with



original

Anscombe+BM3D, PSNR=20.75[dB]

(a) noisy, peak=0.1, PSNR=-4.77 [dB]

(b) M-P4IP, PSNR=21.51 [dB]

Fig. 9. Peak 0.1 denoising (with binning).

Table 2
Denoising with binning PSNR values [dB].

Method Peak Saturn Flag Camera House Swoosh Peppers Bridge Ridges Average

BM3Dbin 0.1 21.19 14.23 16.91 18.62 21.90 15.92 16.91 20.40 18.26
SPDAbin 22.00 15.50 16.75 18.73 21.90 16.27 16.99 25.32 19.17
P4IP bin 22.14 15.03 17.16 18.55 21.88 16.24 16.79 21.85 18.70
M-P4IP bin 21.83 14.87 17.44 18.54 21.92 16.33 16.61 22.67 18.78

BM3Dbin 0.2 23.20 16.28 18.25 19.71 24.25 17.44 17.70 23.92 20.09
SPDAbin 23.99 18.26 17.95 19.62 23.53 17.59 17.82 27.22 20.75
P4IP bin 23.92 17.17 18.36 19.86 24.64 17.39 17.63 24.52 20.44
M-P4IP bin 24.09 16.49 18.52 19.94 25.00 17.63 17.70 24.56 20.49

BM3D bin 0.5 25.70 18.40 19.64 21.71 26.33 19.01 18.67 28.23 22.21
SPDA bin 25.83 19.22 18.97 21.15 26.57 18.63 18.57 30.97 22.49
P4IP bin 26.12 18.19 19.72 21.67 26.43 18.88 18.65 27.76 22.18
M-P4IP bin 26.12 18.15 19.71 21.74 26.54 18.93 18.60 28.03 22.23
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suitable prior weight parameter. Peaks 0.1, 0.2 and 0.5 were tested.
The results are shown in Table 2. For the tested peaks, the multiple
prior algorithm show improvement. It is important to note that it
was harder to find good parameters and therefore it is reasonable
to expect that it is possible to improve even more.
4.2. Deblurring

In this scenario, the algorithm was tested for the peak values 1,
2 and 4 of an image that was blurred by one of the following blur
kernels:
(i) a Gaussian kernel of size 25 by 25 with r ¼ 1:6
(ii) 1

1þx21þx22ð Þ for x1; x2 ¼ �7; . . . ;7

(iii) 9� 9 uniform

To evaluate our algorithm it was compared to IDD-BM3D [7]
with the refined inverse Anscombe transform [19]. It is important
to note that such a scheme is essentially inaccurate, because after
the Anscombe operation the image cannot be considered as one
blurred by the used kernel because the blur is no longer translation
invariant. Although this leads to sub-optimal results, this recon-
struction strategy outperforms existing state-of-the-art direct
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Fig. 10. Inverse VST curves.
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approaches. In addition, the inversion part is biased, however this
issue can be resolves. We empirically searched for the best pixel-
wise transform by learning the best inverse curve. This was done
by constructing a graph, in which its x axis values are pixels after
the IDD-BM3D step and its y axis are values of the original pixels.
Such a graph was constructed for several images at various peak
Table 5
Deblurring PSNR values for blur kernel (iii) [dB].

Method Peak Saturn Flag Camera House

BM3D 1 24.11 15.46 18.93 20.71
Ma et al. 24.27 14.86 18.81 20.64
P4IP 24.36 17.12 19.49 21.37

BM3D 2 26.06 16.54 19.93 22.20
Ma et al. 25.56 15.82 19.44 21.63
P4IP 25.62 18.61 20.11 22.54

BM3D 4 27.41 18.83 20.63 23.47
Ma et al. 26.82 16.66 19.99 22.35
P4IP 27.97 19.77 20.66 23.39

Table 3
Deblurring PSNR values for blur kernel (i) [dB].

Method Peak Saturn Flag Camera House

BM3D 1 24.32 16.18 19.39 21.06
Ma et al. 24.17 15.25 18.92 20.69
P4IP 25.69 17.97 19.84 21.93

BM3D 2 26.07 17.78 20.61 22.66
Ma et al. 25.47 16.43 19.84 21.86
P4IP 25.95 19.49 20.78 23.33

BM3D 4 28.05 20.25 21.66 24.69
Ma et al. 27.01 17.49 20.56 22.83
P4IP 28.81 20.44 21.37 24.51

Table 4
Deblurring PSNR values for blur kernel (ii) [dB].

Method Peak Saturn Flag Camera House

BM3D 1 24.36 15.53 18.99 20.81
Ma et al. 23.51 15.24 18.84 20.41
P4IP 25.14 17.07 19.50 21.52

BM3D 2 26.02 16.58 20.01 22.15
Ma et al. 25.07 16.62 19.88 21.66
P4IP 26.39 18.61 20.18 22.49

BM3D 4 27.64 19.00 20.84 23.68
Ma et al. 26.42 17.83 20.73 22.73
P4IP 28.48 19.80 20.76 23.58
levels. The results are shown in Fig. 10. This empirical curve coin-
cides with the refined inverse, even though the tested scenario is
deblurring and not denoising. Such a result implies that the refined
inverse transform is useful in the deblurring task just as well. We
further note that a transform that takes into account all pixels that
are effected by the blur kernel, could potentially outperform the
proposed VST scheme, however, such a transform is harder to com-
pute. In addition such a transform would be dependent on the blur
kernel. Also, the obtained results were compared to Ma et al. [17]
which produces state of the art results. The work reported in [17]
requires an appropriate parameter k, and was thus set for each
peak, such that it produces the highest average PSNR on all tested
images.

The results are shown in Tables 3–5. Figs. 12–14 show specific
results to better assess the visual quality of the outcome.

It is clearly shown that in this scenario P4IP outperforms the
Anscombe-transform framework. Practical convergence of the
algorithm on the image ‘‘Cameraman” with noise peak 1 is shown
in Fig. 11.

The runtime for a single image took about 2–3 min, with 1.5 s
for a single 1st step run and with 0.7 s on average for a single
2nd step run. The 3rd step runtime is negligible. The runtime
was measured on an i7, 8G RAM laptop, about as fast as the
Anscombe transform based algorithm. Although the noise is strong,
Swoosh Peppers Bridge Ridges Average

26.23 18.12 18.17 21.48 20.40
23.32 18.73 18.38 23.29 20.29
26.03 19.04 18.64 23.53 21.20

28.26 19.29 18.83 24.69 21.97
24.84 19.57 19.03 24.94 21.35
28.17 19.81 19.19 25.83 22.48

29.81 20.36 19.63 27.56 23.46
25.97 20.27 19.65 26.43 22.27
29.93 20.47 19.71 29.15 23.88

Swoosh Peppers Bridge Ridges Average

26.51 18.47 18.34 22.06 20.79
22.82 18.92 18.56 23.64 20.37
26.51 19.48 19.03 25.56 22.00

28.61 19.84 19.28 25.71 22.57
24.39 19.96 19.39 25.43 21.60
28.67 20.47 19.67 28.38 23.34

30.30 21.25 20.20 29.05 24.43
25.52 20.86 20.13 27.15 22.69
30.62 21.11 20.13 31.42 24.80

Swoosh Peppers Bridge Ridges Average

25.83 18.24 18.20 21.21 20.40
22.13 18.81 18.30 22.97 20.03
25.89 19.05 18.69 24.28 21.39

28.33 19.29 18.98 24.38 21.97
23.63 19.98 19.38 24.90 21.39
28.29 19.80 19.25 26.63 22.70

29.45 20.55 19.71 27.52 23.55
24.67 21.05 20.28 26.35 22.51
29.70 20.56 19.70 29.20 23.97



iteration
10 20 30 40 50

P
S

N
R

17

18

19

20

21

22

Fig. 11. PSNR value as a function of the iteration of the image Cameraman for the
deblurring experiment.
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the blurring of the images adds degradation. Simply applying the
denoising version of P4IP leads to inferior results compared to
original

Anscombe with IDD-BM3D,
PSNR=20.65 [dB]

Fig. 12. The image Peppers with peak 2 an
the deblurring version by an average of 0.4 dB for peak 1, 0.8 dB
for peak 2 and 1.7 dB for peak 4. This implies that the first P4IP step
which deals with the specific inverse problem should be chosen
correctly.

5. Conclusion and discussion

This work proposes a new way to integrate Gaussian denoising
algorithms to Poisson noise inverse problems, by using the Plug-
and-Play framework, this way taking advantage of the existing
Gaussian solvers. The integration is done by simply using the Gaus-
sian denoiser as a ‘‘black box” as part of the overall algorithm. This
work demonstrates this paradigm on two problems - image
denoising and image deblurring. Numerical results show that our
algorithm outperforms the Anscombe-transform based framework
in lower peaks, and competes favorably with it on other cases.
These results could be further improved by using the proposed
extension of Plug-and-Play, which enables to combine multiple
Gaussian denoising algorithms.

Further work should be done in order to better tune the algo-
rithm’s parameters, similar to [8]. Also, there exist many tech-
niques that may improve the obtained results. For instance,
averaging the final results of several algorithm runs with slightly
different parameters may be beneficial. Of course, this comes at
cost of run time. It is also interesting to learn more closely the rela-
degraded, peak=2, PSNR=6.10 [dB]

P4IP,
PSNR=20.83 [dB]

d blur kernel (i) - deblurring results.



original

Anscombe with IDD-BM3D,
PSNR=24.04 [dB]

degraded, peak=2, PSNR=13.07 [dB]

P4IP,
PSNR=26.56 [dB]

Fig. 13. The image Ridges with peak 2 and blur kernel (ii) - deblurring results.
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tion between the Anscombe transform-based framework and ours.
We have found that under certain initialization conditions, in the
first step P4IP does variance stabilization that is as good as
Anscombe’s one. It would be possible that more could be said
about this matter.

Different noise models are also treatable by a similar scheme.
For instance, when dealing with Poisson- Gaussian noise, which
is common in CCD sensors, lðxÞ is given in [15]. It would be inter-
esting to see the effectiveness of the P&PP approach for this case.

Appendix A. Derivation of first denoising ADMM step

In the denoising case H ¼ I and we get that lðxÞ is given by

l Xð Þ ¼ �yT ln xð Þ þ 1T ln C yþ 1ð Þð Þ þ 1Tx: ð19Þ
The augmented Lagrangian is thus

Lk ¼ �yT ln xð Þ þ 1Tx� b ln P vð Þð Þ þ k
2

x� v þ uk k � k
2

uk k22; ð20Þ

and the first ADMM step becomes

xkþ1 ¼ arg min
x

Lk x;vk;uk
� �

¼ arg min
x

�yT ln xð Þ þ 1Txþ k
2

x� vk þ uk
�� ��2

2: ð21Þ
The first step (x update) is a convex and separable, implying that
each entry of x can be treated separately. Furthermore, computing
the elements of x is easily handled leading to a closed form expres-
sion. By differentiating Lk by x½i� and equating to 0 we get

� y½i�
x½i� þ 1þ k x½i� � vk½i� þ uk½i�� � ¼ 0: ð22Þ

Thus, we get that

x½i� ¼ k vk½i� � uk½i�� �� 1
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k vk½i� � uk½i�ð Þ � 1ð Þ2 þ 4ky½i�
q

2k
: ð23Þ

As y is non negative, the expression inside the square root is also
non negative and causes the resulted x to be non negative
also. Another possible solution could have been the second
root of Eq. (22), but this solution is purely negative and thus
uninformative.
Appendix B. Derivation of multiple P&PP

We start by looking at the general ADMM formulation

argmin lðxÞ þ sðvÞ
s:t: Ax� Bv ¼ c:

ð24Þ
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Anscombe with IDD-BM3D,
PSNR=18.97 [dB]

degraded, peak=1, PSNR=3.26 [dB]

P4IP,
PSNR=19.40 [dB]

Fig. 14. The image Cameraman with peak 1 and blur kernel (iii) - deblurring results.
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The augmented Lagrangian is:

Lk ¼ l xð Þ þ sðvÞ þ k
2

Ax� Bv � c þ uk k22 �
k
2

uk k22: ð25Þ

Choosing appropriate matrices A and B, and using sð�Þ as a func-
tion of two separable priors leads to the multiple prior version of

P&PP. Let A ¼ I
I

	 

, B ¼ I, c ¼ 0, v ¼ v1

v2

	 

, and

sðvÞ ¼ b1s1ðv1Þ þ b2s2ðv2Þ. By plugging the above into Eq. (24) we
have:

argmin lðxÞ þ b1s1ðv1Þ þ b2s2ðv2Þ
s:t: x ¼ v1; x ¼ v2:

ð26Þ

The augmented Lagrangian is:

Lk ¼ l xð Þ þ b1s1ðv1Þ þ b2s2ðv2Þ þ k
2

x� v1 þ u1k k22

þ k
2

x� v2 þ u2k k22 �
k
2

u1k k22 �
k
2

u2k k22; ð27Þ

where u ¼ u1

u2

	 

, which leads to the multiple version of the P&PP.
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