
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 1, JANUARY 2008 53
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Abstract—Sparse representations of signals have drawn consid-
erable interest in recent years. The assumption that natural signals,
such as images, admit a sparse decomposition over a redundant
dictionary leads to efficient algorithms for handling such sources
of data. In particular, the design of well adapted dictionaries for
images has been a major challenge. The K-SVD has been recently
proposed for this task [1] and shown to perform very well for var-
ious grayscale image processing tasks. In this paper, we address the
problem of learning dictionaries for color images and extend the
K-SVD-based grayscale image denoising algorithm that appears
in [2]. This work puts forward ways for handling nonhomogeneous
noise and missing information, paving the way to state-of-the-art
results in applications such as color image denoising, demosaicing,
and inpainting, as demonstrated in this paper.

Index Terms—Color processing, denoising, demosaicing, image
decomposition, image processing, image representations, in-
painting, sparse representation.

I. INTRODUCTION

I N signal and image processing, we often impose an arbi-
trary model to describe the data source. Such a model be-

comes paramount when developing algorithms for processing
these signals. In this context, Markov random field (MRF), prin-
cipal component analysis (PCA), and other related techniques
are popular and often used.

The Sparseland model is an emerging and powerful method
to describe signals based on the sparsity and redundancy of their
representations [2], [3]. For signals from a class , this
model suggests the existence of a specific dictionary (i.e., a ma-
trix) which contains prototype signals, also re-
ferred to as atoms. The model assumes that for any signal ,
there exists a sparse linear combination of atoms from that ap-
proximates it well. Put more formally, this reads

such that and .
The notation is the -quasi-norm, which counts the

number of nonzero elements in a vector. We typically assume
that , implying that the dictionary is redundant in de-
scribing .

If we consider the case where is the set of natural images,
dictionaries such as wavelets of various sorts [4], curvelets [5],
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[6], contourlets [7], [8], wedgelets [9], bandlets [10], [11], and
steerable wavelets [12], [13], are all attempts to design dictio-
naries that fulfill the above model assumption. Indeed, these var-
ious transforms have led to highly effective algorithms in many
applications in image processing, such as compression [14], de-
noising [15]–[18], inpainting [19], and more. Common to all
these predefined dictionaries is their analytical nature, and their
reliance on the geometrical nature of natural images, especially
piece-wise smooth ones.

In [1], the authors introduce the K-SVD algorithm, a way to
learn a dictionary, instead of exploiting predefined ones as de-
scribed above, that leads to sparse representations on training
signals drawn from . This algorithm uses either orthogonal
matching pursuit (OMP) [20]–[22], or basis pursuit (BP), [23],
as part of its iterative procedure for learning the dictionary. The
follow-up work reported in [2] and [3] proposes a novel and
highly effective image denoising algorithm for the removal of
additive white Gaussian noise with grayscale images. Their pro-
posed method includes the use of the K-SVD for learning the
dictionary from the noisy image directly.

Greedy algorithms like matching pursuit (MP) and its varia-
tions are commonly used to retrieve sparse approximations of
multichannel signals, with fixed dictionaries and standard Eu-
clidean metric, for various other modalities and applications,
e.g., for compression of color images [24] and for audio source
separation [25], [26].

In this paper, our main aim is to extend the algorithm re-
ported in [2] to color images (and to vector-valued images, in
general), and then show the applicability of this extension to
other inverse problems in color image processing. The exten-
sion to color can be easily performed by a simple concatenation
of the RGB values to a single vector and training on those
directly, which gives already better results than denoising each
channel separately. However, such a process produces false
colors and artifacts, which are typically encountered in color
image processing. The first part of this work presents a method
to overcome these artifacts, by adapting the OMP inner-product
(metric) definition.

This paper also describes an extension of the denoising al-
gorithm to the proper handling of nonhomogeneous noise. This
development is crucial in cases of missing values, such as in the
color image demosaicing and the inpainting problems. Treating
the missing values as corrupted by a strong (impulse) noise,
our general setting fits both problems. We demonstrate the suc-
cess of the proposed scheme in demosaicing and inpainting,
as well as color denoising applications, exhibiting in all cases
state-of-the-art results. We also show that interacting between
the learning and the restoration further improves the color image
processing results.

This paper is organized as follows. In Section II, we describe
prior art on example-based image denoising (and general image
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processing) methods. Section III is devoted to a brief descrip-
tion of the K-SVD-based grayscale image denoising algorithm
as proposed in [2]. Section IV describes the novelties offered
in this paper—the extension to color images, the handling of
color artifacts, and, finally, the treatment of nonhomogeneous
noise, along with its relation to demosaicing and inpainting. In
Section V, we provide various experiments that demonstrate the
effectiveness of the proposed algorithms. Section VI concludes
this paper with a brief description of its contributions and a list
of open questions for future work, including preliminary dis-
cussion and results on how to extend the above to a multiscale
algorithm.

II. PRIOR ART

Many problems in image processing and computer vision are
in a dire need for prior models of the images they handle. This
is especially true whenever information is missing, damaged, or
modified. Armed with a good generic image prior, restoration
algorithms become very effective. The research activity on the
topic of image priors is too wide to be compacted into this paper,
and as our interest is primarily in learned priors, such general
survey is beyond its scope anyhow. We, therefore, restrict our
discussion to recent methods that lean on image examples in
their construction of the prior.

When basing the learned prior on image examples, the first
junction to cross is the one which splits between parametric
and nonparametric prior models. The parametric path suggests
an analytical expression for the prior, and directs the learning
process to tune the prior parameters based on examples. Such
is the case with the MRF prior learned in [27] and later in [28]
and [29]; the wavelet based image prior as appears in [30]; the
Tikhonov regularization proposed by Haber and Tenorio [31];
the super-resolution approach adopted by Baker and Kanade
[32]; and the recent K-SVD denoising as described in [2] and
[3].

The alternative path, a nonparametric learning, uses image
examples directly within the reconstruction process, as prac-
ticed by Efros and Leung for texture synthesis [33], by
Freeman et al. for super-resolution [34], [35], and by several
follow-up works [36]–[39] for super-resolution and inpainting.
Interestingly, most of the above direct methods avoid the prior
and target instead the posterior density, from which reconstruc-
tion is easily obtained.

The second major junction to cross in exploiting examples
refers to the question of the origin of these examples. Many of
the above-described works use a separate corpus of training im-
ages for learning the prior (or its parameters). The alternative
option is to use examples from the corrupted image itself. This
surprising idea has been proposed in [40] as a universal denoiser
of images, which learns the posterior from the given image in
a way inspired by the Lempel–Ziv universal compression algo-
rithm. Another path of such works is the nonlocal means [41],
[42] and related works [43], [44]. Interestingly, the work in [2]
belongs to this family as well, as the dictionary can be based on
the noisy image itself.

Most of the above methods deploy processing of small image
patches, a theme that characterizes our method as well. In this
paper, we present a framework for learning a sparsifying dic-

tionary for color image patches taken from natural images. As
such, the approach we adopt is the parametric one. The learning
we propose leans on both external data-set, as well as on the
damaged image directly. The novelty of this paper is in the way
of introducing the color to the K-SVD algorithm such that it
avoids typical artifacts, and its extension to nonhomogeneous
noise, which enables the handling of color inpainting and de-
mosaicing.

The only work we are aware of, which handles color images
within the framework of parametric learned models, is the one
reported in [28]. This work builds on the field of experts, as de-
veloped in [29], to learn an MRF model for color images, and
uses it successfully for image denoising. The main theme of this
paper is an attempt to circumvent the high dimensionality of
the training space by several simplifications over the original
method in [29]. Color artifacts are not mentioned, and, indeed,
the shown results demonstrate a phenomenon we have experi-
enced, too, of a tendency to washout the color content of the
image. We address this in this paper by proposing a new metric
in the sparsity representation. We will return to this work in the
experimental results section, and show comparisons of perfor-
mance favorable to our framework.

III. GRAYSCALE K-SVD DENOISING ALGORITHM

In [2] and [3], Aharon and Elad present a K-SVD-based al-
gorithm for denoising of grayscale images with additive homo-
geneous white Gaussian noise. We now briefly review the main
mathematical framework of this approach, as our work builds
upon it. First, let be a clean image written as a column vector
of length . Then one considers its noisy version

where is a white Gaussian noise with a spatially uniform
deviation , which is assumed to be known. Given fixed-size
patches , one assumes that all such patches in the
clean image admit a sparse representation. Addressing the
denoising problem as a sparse decomposition technique per
each patch leads to the following energy minimization problem:

(1)

In this equation, is the estimator of , and the dictionary
is an estimator of the optimal dictionary which leads

to the sparsest representation of the patches in the recovered
image. The indices mark the location of the patch in the
image (representing its top-left corner). The vectors
are the sparse representations for the th patch in using the
dictionary . The operator is a binary matrix which
extracts the square patch of coordinates from the
image written as a column vector of size .

The first term in (1) introduces the likelihood force that de-
mands a proximity between and . The second and the third
terms together pose the image prior. This regularization term as-
sumes that good-behaved natural images are to exhibit a sparse
representation for every patch, and from every location in the
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Fig. 1. K-SVD-based image denoising algorithm as proposed in [2].

image, over the learned dictionary . The second term provides
the sparsest representation, and the third term ensures the con-
sistency of the decomposition. The choice of the norm is
relatively arbitrary and could be changed in this formulation, as
later proposed in this paper for color images. Note that norms
different than might lead to difficulties in the minimization.

To approximate a solution for this complex minimization
task, the authors of [2] and [3] put forward an iterative method
that incorporates the K-SVD algorithm, as presented in [1].
Fig. 1 presents this image denoising algorithm in details.

One can notice that different steps in this algorithm reject the
noise. First, the OMP stops when the approximation reaches a
sphere of radius in the patches’ space in order not to
reconstruct the noise. Then, the SVD selects an “average” new
direction for each atom, which rejects noise from the dictionary.

Finally, the last formula comes directly from the minimiza-
tion of (1) when the dictionary and the coefficients are
fixed and consists of averaging the sparse representation of all
overlapping patches. More details are given in [3]. Note also

that finding some other way of performing this average can fur-
ther improve the results and it is topic of current research. Some
ideas along this direction can be found in [43] and [45].

Here, the choice of the parameter is very important and
depends on the dimension of the patches: If is a -dimen-
sional Gaussian vector, is distributed by the generalized
Rayleigh law [46] which leads to the following result:

In [2], was tuned empirically to for .
Here, we choose the rule

(5)

which provides a good parameter for any dimension .
This approach leads to state-of-the-art grayscale image de-

noising performance as shown in [2] and [3]. The main chal-
lenge to extend this work to color images is to make it able to
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capture some correlation between the channels and to recon-
struct the image without adding artifacts. Both simple methods,
such as denoising each channel separately and denoising di-
rectly each patch as a long concatenated RGB vector, fail, re-
spectively, in one of these two challenges. Moreover, for clas-
sical color image processing applications such as demosaicing,
denoising, and image inpainting [47], spatial and/or spectral
nonuniform noise has to be handled. These challenges are ad-
dressed next.

IV. SPARSE COLOR IMAGE REPRESENTATION

We now turn to detail the proposed fundamental extensions
to the above grayscale framework, and put forward algorithms
addressing several different tasks, such as denoising of color im-
ages, denoising with nonuniform noise, inpainting small holes
of color images, and demosaicing.

A. Denoising of Color Images

The simplest way to extend the K-SVD algorithm to the de-
noising of color images is to denoise each single channel using
a separate algorithm with possibly different dictionaries. How-
ever, our goal is to take advantage of the learning capabilities
of the K-SVD algorithm to capture the correlation between the
different color channels. We will show in our experimental re-
sults that a joint method outperforms this trivial plane-by-plane
denoising. Recall that although, in this paper, we concentrate
on color images, the key extension components here introduced
are valid for other modalities of vector-valued images, where
the correlation between the planes might be even stronger.

The problem we address is the denoising of RGB color im-
ages, represented by a column vector , contaminated by some
white Gaussian noise with a known deviation , which has
been added to each channel. (As we show in the following, the
noise does not have to be uniform across the channels or across
the image). Color spaces such as YCbCr, Lab, and other lu-
minance/chrominance separations are often used in image de-
noising because it is natural to handle the chroma and luma
layers differently, and also because the -norm in these spaces
is more reliable and better reflects the human visual system’s
perception. However, in this work, we choose to stay with the
original RGB space, as any color conversion changes the struc-
ture of the noise. Since the OMP step in the algorithm uses an
intrinsic hypothesis of a noise with a sphere structure in the
patches’ space, such an assumption remains valid only in the
RGB domain. Other noise geometries do not necessarily guar-
antee the performance of the OMP in its current form. Another
motivation for working in the RGB space is that digital cam-
eras capture images and add noise within this space. One should
note also that another extension, which is presented later in this
paper, allows to handle nonhomogeneous noise and permits us
to, therefore, process images when the noise characteristics are
estimated in another color space.

In order to keep a reasonable computational complexity for
the color extensions presented in this work, we use dictionaries
that are not particularly larger than those practiced in the
grayscale version of the algorithm. More specifically, in [2],
the authors use dictionaries with 256 atoms and patches of size
8 8. Applying directly the K-SVD algorithm on (3-D) patches

of size 8 8 3 (containing the RGB layers) with 256 atoms
leads already to substantially better results than denoising each
channel separately. However, this direct approach produces
artifacts—especially a tendency to reduce the color saturation
in the reconstruction. We observe that during the algorithm,
the OMP is likely to follow the “gray” axis, which is the axis
defined by in the RGB color space.

Before proceeding to explain the proposed solution to this
color bias and washing effect, let us explain why it happens. As
mentioned before, this effect can be seen in the results in [28],
although it has not been explicitly addressed there.

First, at the intuitive level, relatively small dictionaries within
the order of 256 atoms, for example, are not rich enough to
represent the diversity of colors in natural images. Therefore,
training a dictionary on a generic database leads to many gray or
low chrominance atoms which represent the basic spatial struc-
tures of the images. This behavior can be observed in Fig. 2. This
result is not unexpected since this global dictionary is aiming at
being generic. This predominance of gray atoms in the dictio-
nary encourages the image patches approximation to “follow”
the gray axis by picking some gray atoms (via the OMP step,
see the following), and this introduces a bias and color washing
in the reconstruction. Examples of such color artifacts resulting
from global dictionaries are presented in Fig. 3. Using an adap-
tive dictionary tends to reduce but not eliminate these artifacts.
A look at the dictionary in Fig. 4, learned on a specific image
instead of a database (global dictionary), shows that the atoms
are usually more colored. Our experiments showed that these
color artifacts are still present on some image details even with
adaptive dictionaries. One might be tempted to solve the above
problem by increasing and, thus, adding redundancy to the
dictionary. This, however, is counterproductive in two important
ways—the obtained algorithm becomes computationally more
demanding and, as the images we handle are getting close in
size to the dictionary, over-fitting in the learning process is un-
avoidable.

We address this color problem by changing the metric of the
OMP as will be explained shortly. The OMP is a greedy algo-
rithm that aims to approximate a solution of (2). It consists of se-
lecting at each iteration the best atom from the dictionary, which
is the one that maximizes its inner product with the residual
(minimizing the error metric), and then updating the residual
by performing an orthogonal projection of the signal one wants
to approximate onto the vectorial space generated by the previ-
ously selected atoms. This orthogonalization is important since
it gives more stability and a faster convergence for this greedy
algorithm. For details, the reader should refer to [21]–[23] and
[48].

An additional, more formal way to explain the lack of colors
and the color bias in the reconstruction is to note that the OMP
does not guarantee that the reconstructed patch will maintain
the average color of the original one. Therefore, the following
relationship for the patch

, does not necessarily hold. If the diversity of colors
is not important enough in the dictionary, the pursuit is likely
to follow some other direction in the patches’ space. However,
with color images and the corresponding increase in the dimen-
sionality, our experiments show that this is clearly the case. To
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Fig. 2. Dictionaries with 256 atoms learned on a generic database of natural images, with two different sizes of patches. Note the large number of color-less atoms.
Since the atoms can have negative values, the vectors are presented scaled and shifted to the [0,255] range per channel: (a) 5� 5� 3 patches; (b) 8� 8� 3 patches.

Fig. 3. Examples of color artifacts while reconstructing a damaged version of the image (a) without the improvement here proposed (
 = 0 in the new metric).
Color artifacts are reduced with our proposed technique (
 = 5:25 in our proposed new metric). Both images have been denoised with the same global dictionary.
In (b), one observes a bias effect in the color from the castle and in some part of the water. What is more, the color of the sky is piecewise constant when 
 = 0

(false contours), which is another artifact our approach corrected. (a) Original. (b) Original algorithm, 
 = 0; PSNR = 28:78 dB. (c) Proposed algorithm,

 = 5:25; PSNR = 30:04 dB.

Fig. 4. (a) Training Image; (b) resulting dictionary; (b) is the dictionary learned in the image in (a). The dictionary is more colored than the global one.
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address this, we add a force during the OMP which tends to min-
imize also the bias between the input image and the reconstruc-
tion on each channel. Considering that and x are two patches
written as column vectors , we define a new inner
product to be used in the OMP step

(6)

where

Here, is a matrix filled with ones, and is a new param-
eter which can be tuned to increase or discard this correction.
We empirically fixed this parameter to . The first term
in this equation is the ordinary Euclidean inner product. The
second term with the matrix computes an estimator of
and on each channel and multiplies them, thereby forcing
the selected atoms to take into account the average colors. Ex-
amples of results from our algorithm are presented in Fig. 3,
with different values for this parameter , illustrating the effi-
ciency of our approach in reducing the color artifacts. This cor-
rection proved to be crucial in our process, especially for global
dictionaries which have a lot of gray atoms as mentioned above.
For the tasks we are addressing, the choice of an Euclidean
metric is driven in part by the necessity to respect the noise ge-
ometry, and it is found to be sufficient to obtain state-of-the-art
results. For other purposes, using some metric that is better
adapted to the human visual system could be an interesting di-
rection to study. Note that, conceptually, changing the metric in
the OMP is straightforward (it can though have consequences in
the computational time and convergence theory). Such changes
in the dictionary update stage are more difficult and not all met-
rics are (computationally) easy to handle.

A simple implementation of the above ideas follows from the
simple fact that , with

. Thereby, scaling each patch and each atom of
the dictionary by multiplying them by , and taking
into account a normalization factor, leads to a straightforward
implementation of the OMP with the new inner product. This
approach permits to easily incorporate the new inner product
during the whole OMP process without any further modifica-
tion. This will effectively change the metric in (3), which be-
comes

subject to

We chose not to change the stopping criterion in the OMP to
prevent any blurring effect due to the increase in low frequency
caused by this scaling. One could wonder why we chose not to
change the metric, as well as in (3) and (4), and thereby in (1)
(this could effectively be achieved by keeping the scaled image

and dictionaries all across the algorithm). In fact, this metric
(inner product) modification is here simply to correct a defect
of the OMP when a dictionary can not provide enough diversity
in the choice of colors and does not aim at changing the global
formulation. Indeed, when computing an adaptive dictionary on
an image, when the colors’ variability is high, the dictionary
suffers from a lack of redundancy and fails at representing this
variability. Then, the new metric introduced becomes crucial
during the OMP.

To conclude, the basic color denoising algorithm follows the
original K-SVD, applied to patches, with a new
metric in the OMP step that explicitly addresses critical color
artifacts.

B. Extension to Nonhomogeneous Noise

We now extend the K-SVD algorithm to nonuniform noise.
This problem is very important as nonuniform noise across color
channels is very common in digital cameras. Spatially nonuni-
form noise also becomes very important for color demosaicing
and inpainting. Here, we address the case of removing white
Gaussian noise, but with a different standard deviation for each
pixel/color channel, which makes it nonhomogeneous. In this
section, we will explain how to use a different metric to over-
come this difficulty.

To simplify the presentation, we first consider the case of
grayscale images. We denote by the deviation of the
noise at the pixel . We assume that this vector is known (this
assumption is natural for demosaicing, inpainting, and color de-
pendent noise). In order to be able to use a consistent OMP,
we need to have a sphere structure for the noise in the patches’
space. This can be explained by the fact that this greedy algo-
rithm aims at finding the sparsest path from the null vector to
the vector to approximate in the space generated by the dictio-
nary, by selecting iteratively atoms and reducing the norm of the
residual. To prevent the algorithm to retrieve the noise, one has
to stop the pursuit when it reaches a high probability of finding
the value of the non-noisy patch. As the only aim of the algo-
rithm is to reduce the norm of the residual, the algorithm will
provide a maximum efficiency if the stopping criterion is based
on a threshold for this norm, thereby it imposes a sphere struc-
ture for the noise in the norm’s metric.

The first natural idea would be to scale the data so that the de-
viation of the noise becomes uniform. Scaling the data and then
approximating the scaled models leads to loose the image nat-
ural structure, which is exactly what we are trying to learn and
exploit. Therefore, we need to approximate the nonscaled data
using a different metric for each patch where the noise would
have a sphere structure. Introducing a vector composed of
weights for each pixel

It leads us to define a weighted K-SVD algorithm based on a
different metric for each patch. Denoting by the element-wise
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Fig. 5. Weighted rank-one approximation algorithm used for nonuniform noise.

multiplication between two vectors, we aim at solving the fol-
lowing problem, which replaces (2):

(7)

The OMP step then aims at solving the following equation for
the patch , instead of (2)

subject to

(8)

The term here counts the number of pixels in the patch
without a coefficient equal to zero which should, therefore,

be taken into account. The new inner product (metric) associated
with our problem for any vector and becomes

Concerning the learning step, the natural approach consists of
minimizing for each atom the following energy, instead of (3)

(9)

where is the matrix whose size is the same as , and where
each column corresponding to an index is . This
problem is known as a weighted rank-one approximation ma-
trix, is not simple and does not have an unique solution. In [49],
Srebro and Jaakkola put forward a simple iterative algorithm
which gives an approximated solution of a local minima. We
present in Fig. 5 how we applied this algorithm to solve (4),
with typically just ten iterations.

Finally, note that the averaging expression, (4), remains the
same (modulo the and in the average, which are weighted
by ), since all has been taken into consideration in the previous
stages of the algorithm.

Let us now present the model that combines this nonuniform
noise handling with the one developed to deal with color arti-
facts introduced in the previous section. Mixing these two new
metrics for each patch , we use then the following new inner
product (metric) during the OMP step only:

Concerning the learning step, it remains identical to (9), since it
does not need any color/bias correction.

To conclude, we have now introduced a new metric that ad-
dresses possible color artifacts as well as nonuniform noise. This
paves the way for applications beyond color image denoising,
and these are described next.

C. Color Image Inpainting

Image inpainting is the art of modifying an image in an un-
detectable form, and it often refers to the filling-in of holes of
missing information in the image [47]. Although our model,
with localized patches, is not necessarily an efficient model for
filling large holes, since it would require too much computa-
tional time and memory to use the K-SVD with a highly re-
dundant dictionary, one can still use this proposed framework
for filling holes which are smaller than the size of the atoms.
For larger holes, iterative and/or multiscale or texture synthesis
methods like in [50] are needed. From a practical point of view,
holes smaller than 10 10 pixels were addressed successfully
with the algorithm, which is about to be described. A multiscale
extension of the K-SVD, which is currently being developed, is
able to handle larger holes (results to be reported elsewhere).

The idea for extending the previously described work for in-
painting is quite simple. If one considers holes as areas with
infinite power noise, this leads to some coefficients equal to
0. To make the model consistent, we also fixed in
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Fig. 6. Modified K-SVD algorithm for color image demosaicing. This algorithm combine global dictionaries with data dependent ones learned with a low patch-
sparsity factor.

the known areas to prevent infinite -coefficients. Finally, we
consider two possibilities.

• If we have both noise and missing information (holes), we
use the model exactly as described above for color image
restoration with nonuniform noise.

• If we only have missing information, we change the OMP
so that it runs for not more than a fixed number of iterations
(this replaces the error-based stopping criteria). Then we
use the information of the reconstructed image to fill-in the
holes. This approach is faster because it does not force the
OMP to fit exactly the known areas and gives similar visual
results.

Note also that within the limit of our model, some -coeffi-
cients equal to zero can mask parts of some unnatural atoms,
which could end up being used. Therefore, we initialize the al-
gorithm with a global dictionary learned on a large dataset of
clean and hole-free images, preventing the use of non-natural
patterns like the atoms in the 3-D DCT dictionary, which proved
to be inefficient in our experiments for inpainting.

Another possible problem can occur when the matrix of the
coefficients follows a regular pattern. This can lead our algo-
rithm to learn this pattern, absorb it into the dictionary and, thus,
overfit. A successful strategy for preventing this is presented in
the demosaicing section next, where the holes do form a repet-
itive pattern (this is much more unusual in ordinary inpainting
applications). Note also that with inpainting, we do not have
the problem of color artifacts anymore because the constraints
of reconstruction are hard (meaning they tend to have a perfect
reconstruction on some parts of the image), thereby preventing
any bias problem. That is why we chose in this case.

To conclude, the model for nonuniform noise can be readily
exploited for color image inpainting, and examples on this are
presented in the experimental section.

D. Color Image Demosaicing

The problem of color demosaicing consists of reconstructing
a full resolution image from the raw data produced by a
common colored-filtered sensor. Most digital cameras use
CCD or CMOS sensors, which are composed of a grid of sen-
sors. One sensor is associated to one pixel and is able to measure

the light energy it receives during a short time. Combined with
a color filter [R (red), G (green), or B (blue)], it retrieves the
color information of one specific channel. Therefore, often only
one color for each pixel is obtained and interpolation of the
missing values is necessary. The most used pattern for this is
the Bayer pattern, GRGRGR on odd lines and BGBGBG
on even ones.

Several algorithms have been developed in recent years to
produce high-quality full color images from the mosaic sensor,
e.g., [51]–[54]. Although color demosaicing is becoming less
relevant with the on-going development of sensor and camera
technology, addressing it remains a challenging task that
helps to test the effectiveness of different image models and
image processing algorithms. We thereby chose to address this
problem as a proof of the relevance of our model, helping to
show the generality of our framework. The fact that our general
model performs as well or even better than state-of-the-art algo-
rithms exclusively developed for image demosaicing, shows the
correctness of our approach, and the generality of the sparsity
and redundancy concepts, along with the appropriateness of the
K-SVD algorithm for learning the dictionary.

We opt to define the problem of demosaicing as an in-
painting problem with very small holes which consist of two
missing channels per pixel. Considering that we do not need
any smoothing effects to get rid of some noise (assuming for
the sake of simplicity that the available colors are noise free),
nor do we need to inpaint large holes, we chose to restrain
the algorithm to use small patches well adapted for retrieving
details. We chose, thus, 6 6 3 patches.

One drawback of our modified K-SVD algorithm with co-
efficients is that the presence of a (hole) pattern in the matrix
can lead the algorithm to learn it (the pattern would appear in
the dictionary atoms). A simple way of addressing this problem
is to use a globally learned dictionary with no-mosaic images.
This gives already quite good results that, and as we shall show
next, can be further improved.

We introduce the idea of learning the dictionary on a likely
image with some artifacts but with a low number of steps during
the OMP (low number of atoms will be used to represent the
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Fig. 7. Data set used for evaluating denoising experiments.

TABLE I
PSNR RESULTS OF OUR DENOISING ALGORITHM WITH 256 ATOMS OF SIZE 7� 7� 3 FOR � > 10 AND 6� 6� 3 FOR � � 10. EACH CASE IS DIVIDED IN FOUR

PARTS: THE TOP-LEFT RESULTS ARE THOSE GIVEN BY MCAULEY AND AL [28] WITH THEIR “3� 3 MODEL.” THE TOP-RIGHT RESULTS ARE THOSE OBTAINED BY

APPLYING THE GRAYSCALE K-SVD ALGORITHM [2] ON EACH CHANNEL SEPARATELY WITH 8� 8 ATOMS. THE BOTTOM-LEFT ARE OUR RESULTS OBTAINED

WITH A GLOBALLY TRAINED DICTIONARY. THE BOTTOM-RIGHT ARE THE IMPROVEMENTS OBTAINED WITH THE ADAPTIVE APPROACH WITH 20 ITERATIONS.
BOLD INDICATES THE BEST RESULTS FOR EACH GROUP. AS CAN BE SEEN, OUR PROPOSED TECHNIQUE CONSISTENTLY PRODUCES THE BEST RESULTS

TABLE II
COMPARISON OF THE PSNR RESULTS ON THE IMAGE “CASTLE” BETWEEN [28] AND WHAT WE OBTAINED WITH 256 6� 6� 3 AND 7� 7� 3 PATCHES.

FOR THE ADAPTIVE APPROACH, 20 ITERATIONS HAVE BEEN PERFORMED. BOLD INDICATES THE BEST RESULT, INDICATING ONCE

AGAIN THE CONSISTENT IMPROVEMENT OBTAINED WITH OUR PROPOSED TECHNIQUE

patch), in order to prevent any learning of these artifacts (over-
fitting). We define then the patch sparsity of the decompo-
sition as this number of steps. The stopping criteria in (2) be-
comes the number of atoms used instead of the reconstruction
error. Using a small during the OMP permits to learn a dic-
tionary specialized in providing a coarse approximation. Our
assumption is that (pattern) artifacts are less present in coarse
approximations, preventing the dictionary from learning them.
We propose then the algorithm described in Fig. 6. We typically
used to prevent the learning of artifacts and found out
that two outer iterations in the scheme in Fig. 6 are sufficient to
give satisfactory results, while within the K-SVD, 10–20 itera-
tions are required.

To conclude, in order to address the demosaicing problem, we
use the modified K-SVD algorithm that deals with nonuniform
noise, as described in previous section, and add to it an adaptive
dictionary that has been learned with low patch sparsity in order
to avoid over-fitting the mosaic pattern. The same technique can
be applied to generic color inpainting as demonstrated in the
next section.

V. EXPERIMENTAL RESULTS

We are now ready to present the color image denoising, in-
painting, and demosaicing results that are obtained with the pro-
posed framework.

A. Denoising Color Images

The state-of-the-art performance of the algorithm on
grayscale images has already been studied in [2]. We now
evaluate our extension for color images. We trained some
dictionaries with different sizes of atoms 5 5 3, 6 6 3,
7 7 3 and 8 8 3, on 200 000 patches taken from a
database of 15 000 images with the patch-sparsity parameter

(six atoms in the representations). We used the database
LabelMe [55] to build our image database. Then we trained
each dictionary with 600 iterations. This provided us a set of
generic dictionaries that we used as initial dictionaries in our
denoising algorithm. Comparing the results obtained with the
global approach and the adaptive one permits us to see the
improvements in the learning process. We chose to evaluate
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Fig. 8. Results obtained on the castle image. Bottom left image is the noisy image with � = 25; top left image is the original one. Then, from left to right,
respectively, are presented: the results obtained with patches 5� 5� 3; 7� 7� 3; 10� 10� 3; and the result obtained applying directly the grayscale K-SVD
algorithm [2] on each channel separately using patches 8� 8. The bottom row shows a zoomed-in region for each one of the top row images.

Fig. 9. Result obtained by applying our algorithm with 7� 7� 3 patches on the mushroom image where a white Gaussian noise of standard deviation � = 25

has been added. (a) Original. (b) Noisy. (c) Denoised Image.

our algorithm on some images from the Berkeley segmentation
database, [56], presented in Fig. 7. This data selection allows
us to compare our results with the relevant work on color image
denoising reported in [28], which, as mentioned before, is an
extension of [29]. As the raw performance of the algorithm can
vary with the different noise realization, the results presented
in Tables I and II are averaged over five experiments for each
image and each . Note that the parameter has been tuned
using (5). For all our experiments, we fixed the number of

iterations to be 20, which proved to be appropriate for all our
results on denoising and inpainting. For detailed experiments
about the influence of this parameter, one should refer to [3],
where studies for denoising grayscale images are presented.
Some visual results are also presented in Fig. 8 in the “castle”
image. First of all, one can observe that working on the whole
RGB space provides an important improvement when compared
to applying grayscale K-SVD, [2], on each channel separately,
both in terms of PSNR and visually. Concerning the different
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Fig. 10. Example of nonspatially uniform white Gaussian noise. For each image pixel, � takes a random value from a uniform distribution in [1; 101]. The �
values are assumed to be known by the algorithm. Here, the denoising has been performed with 7� 7� 3 patches and 20 learning iterations. The initial PSNR was
12.83 dB; the resulting PSNR is 30.18 dB. (a) Original. (b) Noisy. (c) Denoised Image.

Fig. 11. Experiment on a real noisy image. (a) Noisy image. (b) Denoised image.

sizes of patches, small patches are better at retrieving the color
of some details whereas large patches are better in flat areas.
For example, considering Fig. 8, the sky on the
image is smoother than on the 5 5 3, whereas the color
of the red curtain behind the windows of the center tower is
slightly washed out on the 10 10 3 image. This motivates
in part the learning of multiscale dictionaries as discussed in
the conclusion of this paper. Another visual result is presented
in Fig. 9 on the “mushroom” image. Besides this, we present
an example of denoising a nonuniform noise in Fig. 10, where
a white Gaussian noise has been added to each data, but with a
different known standard deviation.

The results show that our approach is well adapted to color
images. The quality of the results obtained by applying the ex-
tended color K-SVD algorithm to the RGB space are signifi-
cantly better than when denoising each RGB channel separately.
Moreover, the algorithm outperforms the most recent work on
learning color images reported in [28].

Fig. 11 shows the result of our algorithm on a real noisy
image taken from a camera Canon Ixus 900Ti, with a high level
ISO setting to obtain a noisy image. Most of the consumer
digital cameras today provide pictures that have already been
postprocessed, e.g., demosaicing, noise reduction, color correc-

tion and jpeg compression. This proves to be quite destructive
in terms of information conservation, especially the inner
noise reduction step. This results in a noise that is strongly
not white Gaussian, that depends on many factors (intensity
of the pixel, color channel, spatial location of the sensor) and
is highly spatially correlated. Still, our algorithm, trained on
a standard data base and operating with constant variance on
each R,G,B channel, produces very good results, pointing to
the robustness of the approach. Ideally, of course, our algorithm
should operate inside the camera, e.g., as part of the demosaic
and attacking the raw data. If to be used as a postprocessing
step as here, then to exploit the full power of the framework, a
camera-specific dictionary should be learned, and the matrix
needs to be designed to handle this nonuniform noise (both
spatially and per channel, since, for example, the blue channel
is significantly more noisy). This will lead to even further
improvements. The automatic optimization of these algorithm
components is subject of future work.

The K-SVD algorithm is relatively fast for denoising. The
complexity depends on the number of patches, the sparsity of
the decomposition (which depends on as well), and the size
of the patches. With our experimental software in C and a
parallel implementation of the OMP, it took approximatively
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Fig. 12. From left to right: Original image, the image with 80% of data removed, the result of our inpainting using 7� 7� 3 patches. The restored image PSNR
is 29.65 dB. (a) Original Image. (b) Damaged Image. (c) Restored Image.

Fig. 13. Inpainting for text removal. (a) Original image. (b) Image with text. (c) Restored image.

Fig. 14. Kodak image database, images 1 to 24 from left to right and top to bottom, so that the upper left image is n1, and the upper right image is n6.

1.5 s to remove noise with standard deviation from a
256 256 3 color image with patches of size 6 6 3 with
a global dictionary (one iteration), and about 32 s. when we
performed 20 iterations of the algorithm on a Xeon Quad-core
2.4-GHz processor.

B. Inpainting Color Images

We now present results for inpainting small holes in images.
The first example shows the behavior of our algorithm when re-

moving data from the castle image. It is presented in Fig. 12.
The second example, Fig. 13, is a classical example of text re-
moval [47] and was used in [29], in order to evaluate their model
compared to the pioneer work from [47]. In [29], the Field of
Experts model achieves 32.23 dB using their algorithm on the
YCbCr space and 32.39 dB on the RGB space. With our model,
using 9 9 3 patches which are large enough to fill in the
holes and a dictionary with 512 atoms to ensure the over-com-
pleteness, a patch sparsity of 20, and 20 learning iterations, we
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TABLE III
COMPARISON OF THE PSNR, IN DECIBELS, FOR DIFFERENT DEMOSAICING ALGORITHMS ON THE KODAK DATA SET. SOME RESULTS ARE TAKEN FROM THE PAPER

[51]. BI REFERS TO A SIMPLE BILINEAR INTERPOLATION, THEN, K, AP, OR, SA, CC REFER TO THE ALGORITHMS, RESPECTIVELY, FROM [51], [52], [53], [54],
AND [59]. D REFERS TO THE RESULTS OBTAINED WITH A GLOBALLY TRAINED DICTIONARY (600 ITERATIONS WITH L = 10 ON 200 000 DIFFERENT 6� 6� 3
PATCHES). THEN, DL REFER TO THE RESULT OBTAINED WITH THESE DICTIONARIES AND THE LEARNING PROCESS WE ALREADY DESCRIBED, WITH TWO TIMES

20 LEARNING ITERATIONS WITH A PATCH SPARSITY EQUAL TO 20. BOLD INDICATES THE BEST RESULTS FOR EACH IMAGE, AND THESE ARE MOSTLY ACHIEVED

BY OUR ALGORITHM AND SOMETIMES BY THE ONE RECENTLY REPORTED IN [51], WHICH WAS EXPLICITLY DESIGNED FOR HANDLING DEMOSAICING PROBLEMS

obtained 32.45 dB. The results from these two models are very
similar and both achieve better results than those presented in
the original inpainting algorithm [47].

C. Demosaicing

We now present results for demosaicing images. We ran our
experiments on the images in Fig. 14, which are taken from the
Kodak image database. The size of the images is 512 768, en-
coded in RGB with 8 bits per channel. We simulated the mosaic
effects using the Bayer pattern, present in Table III the results in
terms of PSNR using a globally trained dictionary with atoms
of size 6 6 3, with a patch-sparsity factor , and com-
pare to bilinear interpolation, the results given by Kimmel’s al-
gorithm [53], three very recent methods and state-of-the-art re-
sults presented in [51].

For some very difficult regions of some images, our generic
color image restoration method, when applied to demosaicing,
does not give better results than the best interpolation-based
methods, which are tuned to track the classical artifacts from

the demosaicing problem. On the other hand, on average, our
algorithm performs better than state-of-the-art, improving by a
significant 0.39 dB the average result on this standard dataset
when compared to the best demosaicing algorithm so far re-
ported. The fact that we did not introduce any special procedure
to address the classical demosaicing artifacts and still achieve
state-of-the-art results, clearly indicates the power of our frame-
work. Some visual results are presented in Fig. 15.

VI. DISCUSSION AND CONCLUDING REMARKS

In this paper, we introduced a framework for color image
restoration, and presented results for color image denoising, in-
painting, and demosaicing. The framework is based on learning
models for sparse color image representation. The grayscale
K-SVD algorithm introduced in [2] and [3] proved to be ro-
bust toward the dimensionality increase resulting from the use of
color. Following the extensions here introduced, this algorithm
learns some correlation between the different R,G,B channels
and provides noticeably better results than when modeling each
channel separately.
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Fig. 15. Examples of demosaicing results.(a) Image 19 restored. (b) Zoomed region. (c) Image 17 restored. (d) Zoomed region. (e) Image 7 restored. (f) Zoomed
region. (g) Image 14 restored. (h) Zoomed region.

TABLE IV
PRELIMINARY RESULTS WHEN WORKING WITH TWO SIZES OF PATCHES. THE SVR IS TRAINED ON THE IMAGE OF THE FIRST COLUMN, THEN IT IS USED TO

DENOISE THE IMAGE ON THE SECOND COLUMN, WHICH HAS BEEN NOISED WITH A WHITE GAUSSIAN NOISE OF STANDARD DEVIATION � = 25. THIRD AND

FOURTH COLUMNS INDICATE, RESPECTIVELY, THE PSNR RESULT WHEN DENOISING WITH 5� 5� 3 AND 8� 8� 3 ATOMS. THE LAST COLUMN PRESENTS THE

PSNR RESULT FOR THE JOINT TWO-PATCHES RECONSTRUCTION

Although we already obtain state-of-the-art results with the
framework presented here, there is still room for future improve-
ment. The artifacts found in images modeled with small patches
are often different from those we observed on images modeled
with larger patches. Large patches introduce a smoothing ef-
fect, giving very good results on flat areas, whereas some de-
tails could be blurred. On the other hand, small patches are very
good at retrieving details, whereas they might introduce artifacts
in flat areas. This motivates us to consider a multiscale version
of the K-SVD, and a multiscale learning for image modeling, in
general.

We present here a preliminary result in this multiscale direc-
tion, working with just two different patch sizes. The idea con-
sists of performing a weighted average between the result ob-
tained with these sizes. The weights are derived from the spar-
sity of each pixel in the reconstructed images. We define the

pixel-sparsity of one pixel in the reconstructed image as the av-
erage sparsity of each patch which contains this pixel.

We consider now grayscale images to simplify the notations.
Assume we denoise the image , following our pro-
posed framework, with one patch size , obtaining , and then
with another patch size , obtaining . We want to find the op-
timal set of weights for each pixel , without knowing the
original image , such that

In order to learn the relationship between the pixel-sparsity
and the optimal weights, we use a support vector regression al-
gorithm with a linear kernel [57]. The basic algorithm is pre-
sented in Fig. 16. We observed some improvements with this
two-scale dictionary, as presented in Table IV, encouraging our
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Fig. 16. K-SVD algorithm for denoising with two sizes of patches.

ongoing research on learning multiscale image models and mul-
tiscale sparsity frameworks.

Concerning the computational complexity, the tradeoff be-
tween speed and quality can be chosen by the user. Using global
dictionaries provides fast results. Inpainting/demosaicing can be
performed with a few step in the OMP (parameter ). One great
advantage of the K-SVD algorithm which will be more and more
important in the future is that it can easily be parallelized. Nowa-
days, processors are not progressing a lot in the number of se-
quential operations per second but are multiplying the number
of cores inside each chip. Therefore, it has become very im-

portant to design algorithms which can be parallelized. In our
case, the OMP can be performed with one patch per processor
with maximal efficiency. For the learning step, some libraries
like ARPACK provide incomplete singular value decomposition
for parallel machines and it is possible to perform the learning
of two atoms in parallel if the sets of patches which use them
are not overlapping. One strategy to further improve complexity
consists of reducing the overlapping of the patches and using
only one portion of the patches when working with large images.
With patches of size 8 8 and grayscale images 512 512, a
one-fourth reduction proved not to affect the quality of the re-
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construction [2]. In our examples, we chose to always use a com-
plete set of overlapping patches, but if one wants to use high def-
inition images with more than one million of pixels, this would
be problematic. This is an additional motivation for our current
efforts on multiscale frameworks.

We chose to work with natural color images because of their
practical relevance and because it is a very convenient data
source in order to compare our algorithm with other results
available in the literature. One main characteristic we have not
discussed in this paper is the capability of this algorithm to
be adapted to other types of vectorial data. Future work will
consist of testing the algorithm on multichannel images such
as LANDSAT. Another interesting future direction consists of
learning dictionaries for specific classes of images such as MRI
and astronomical data. We strongly believe that this framework
could provide cutting edge results in modeling this kind of data,
as well.
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