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S
parse, redundant representations offer a powerful emerging model 
for signals. This model approximates a data source as a linear 
combination of few atoms from a prespecified and over-com-
plete dictionary. Often such models are fit to data by solv-
ing mixed ,1 -,2  convex optimization problems. 

Iterative-shrinkage algorithms constitute a new family of highly 
effective numerical methods for handling these problems, sur-
passing traditional optimization techniques. In this article, we 
give a broad view of this group of methods, derive some of 
them, show accelerations based on the sequential subspace 
optimization (SESOP), fast iterative soft-thresholding algo-
rithm (FISTA) and the conjugate gradient (CG) method, 
present a comparative performance, and discuss their 
potential in various applications, such as compressed 
sensing, computed tomography, and deblurring.

INTRODUCTION
Among the many ways to mathematically model signals, 
a recent and appealing approach employs sparse and 
redundant representations (see e.g., [1] and [2]). In this 
model, the signal of interest x [ Rn is assumed to be 
composed as a linear combination of few atoms from a 
prespecified and redundant dictionary A [ Rn3m, i.e., 

x5 Az, (1)

where z [ Rm is expected to be sparse, ||z||0 V n. The  ,0-“norm” 
notation used here stands for the number of nonzeros in the vec-
tor z. Given a signal x and a dictionary A, the atom-decomposition 
problem aims to find the sparsest representation for x. A relaxed ver-
sion of this problem permits a small deviation in the representation, 
leading to the problem
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 min
z

 ||z||0  subject to  ||x2 A z||2 # P, (2)

where P stands for the permissible deviation of the representa-
tion A z from the original signal x. As this problem is known 
to be NP-hard [1], approximation algorithms are often consid-
ered. One appealing such method is basis-pursuit (BP) [3] or 
LASSO [4], which replaces the ,0 by an ,1-norm. Various 
encouraging theoretical results on the uniqueness of a suffi-
ciently sparse solution to this problem and equivalence between 
the sparsest solution and the minimal ,1-norm solution all sug-
gest that finding the signal’s representation z is a computation-
ally feasible task [1], [2], [5]–[8]. 

On the practical front, a sequence of papers in recent years suc-
cessfully apply this model to different applications in signal and 
image processing, such as denoising, inpainting, deblurring, com-
pressed sensing, source-separation, and more, all leading to state-
of-the-art results [9]–[12], [14]–[16]. 

Many of these applications lead to an optimization task that 
mixes ,2 and ,1 expressions in the form 

 f 1z 2 5 1
2

 ||x2 A z||2
21l||z||1. (3)

In our notation, f  is a function of the vector z, where x and A are 
assumed to be known. This problem is a variant of the one posed 
in (2), where the constraint is replaced with a penalty. The param-
eter l replaces the threshold P in (2), in governing the tradeoff 
between the representation error and its sparsity. We should note 
that while the ,1-norm is used here to measure the sparsity of 
z, one could use many other similar additive measures r 1z 2 , for 
which most of the derivations in this article remain the same 
(see [17] for more details). In various applications, the desire is to 
minimize f 1z 2  with respect to z. Thus, the use of sparse and 
redundant representations in these applications is achieved by 
solving a convex program.

Until recently, this form of optimization problems was tra-
ditionally treated using: 1) various classical iterative optimiza-
tion algorithms, ranging from steepest descent, CG, and 
iterative reweighed least-squares, and all the way to the more 
involved interior-point algorithms [3]; 2) homotopy solvers 
[18], [19]; and 3) greedy techniques [20]. However, these 
methods are often inefficient, requiring many iterations and 
excessive central processing unit time to reach their solution. 
Furthermore, the homotopy and greedy techniques are 
impractical in high-dimensional problems (e.g., m5 106), as 
often encountered in image processing problems.

In recent years, an alternative family of numerical algo-
rithms has gradually built, addressing the above optimization 
problems very effectively. These emerged initially as a heuris-
tic approach for dealing with the sparse representation prob-
lem in a computationally effective way [22]–[24]. These were 
followed by more thorough derivation and analysis [25]–[33], 
[17]. This family is the iterative-shrinkage algorithms, which 
extend the classical Donoho-Johnstone shrinkage method 
[34]–[36]. Roughly speaking, in these methods, each itera-
tion consists of a multiplication by A  and its adjoint, along 

with a scalar shrinkage step on the obtained z. Despite their 
simple structure, these algorithms are shown to be very 
effective in minimizing f 1z 2  in (3). A thorough theoretical 
analysis proves the convergence of these techniques, guaran-
tees that the solution is the global minimizer for convex f, 
studies the rate of convergence these algorithms exhibit, and 
proposes speedup techniques for further improvement [26], 
[37], [17].

THE NEED: SPARSE AND REDUNDANT REPRESENTATIONS
Suppose we accept the fundamental assumptions of the sparse 
and redundant representation model, implying that the signal x 
emerges from the multiplication x5 A z with a very sparse z. 
How sparse is “very” sparse? There is no conclusive answer to 
this question, but we shall assume hereafter that 1) z is the 
sparsest solution to the linear equation x5 A z, and 2) it is 
reconstructible via practical algorithms, such as BP [5], [6], i.e., 
the solution of BP recovers z exactly. We now show that this 
model assumption implies clear and constructive methods for 
various applications.

DENOISING 
Consider a noisy version of x, obtained by the addition of a zero-
mean independent and identically distributed (i.i.d.) Gaussian 
vector v [ Rn, i.e., we measure y5 x1 v and we would like to 
recover x from it. Assuming an independent Laplacian distribu-
tion on the entries of z, P 1z 2  , exp52l 7z 7 16, the maximum a 
posteriori probability (MAP) estimation [3] leads this denoising 
task to optimization problem

 ẑ5 arg min
z

 1
2

||y2 A  z||2
21l||z||1, (4)

and the result is obtained by x̂5 A ẑ. As we can see, the objec-
tive function we face is f 1z 2  in (3). 

GENERAL (LINEAR) INVERSE PROBLEMS 
Similar to the above, assume that the original signal x went 
through a linear degradation operation H and then additive 
noise as above. This means that we measure y5Hx1 v, and 
aim to recover x. MAP estimation leads to the expression 

 ẑ5 arg min
z

 
1
2

||y2HA z||2
21l||z||1, (5)

and the estimated result is x̂5 A ẑ, as before. This time, we 
obtained an objective function exactly as in (3) with the effective 
dictionary HA. This structure could serve various tasks, such as 
denoising (where H5 I), deblurring (where H is the blur opera-
tor), inverse-Radon transform in tomography (where H is the 
projection operator), and signal interpolation (demosaicing, 
inpainting), where H represents the various sampling/blurring 
masks, and more. 

SIGNAL SEPARATION
Assume that we are given a mixture signal y5 x11 x21 v, 
where v is an additive noise, x1 emerges from a model that uses 
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the dictionary A1, and x2 refers to a model that uses A2. We 
desire to separate the signal into its three components. MAP is 
used again to obtain [12] 

 ẑ1, ẑ25 arg min
z1, z

 

2
 
1
2

||y2 A1z12 A2 
z2||2

2 

 1l||z1||11l||z2||1. (6)

The estimated pieces are obtained by x̂15 A1ẑ1 and x̂25 A2 ẑ2. 
The above problem, known as morphological component anal-
ysis (MCA) [12], fits again the general structure described in 
(3), using the z5 [z1

T, z2
T 4T  and [A1, A2 4  replacing A in (3).

COMPRESSION
Given a signal x, we aim to compress it by allowing some pre-
specified ,2 error P. This implies that we consider its represen-
tation ẑ that solves 

 ẑ5 arg min
z

||z||1  subject to  ||x2 A z||2
2 # P2. (7)

Instead of solving this problem, we could solve the problem 
described in (3), while seeking l that satisfies the above con-
straint with near-equality. The actual compression is done by 
quantizing the nonzeros in the vector ẑ and transmitting these 
values, along with their indices. Again we find ourselves han-
dling the same format as in (3). 

COMPRESSED SENSING
Suppose that we aim to sample the signal x  while com-
pressing it. Compressed sensing suggests that we sense the 
vector y5Qx,  where Q [ R 

q3n  contains a set of q V n 
projection directions onto which the signal is projected 
[14], [15]. Reconstruction of the signal from its samples is 
obtained by solving 

 ẑ5 arg min
z

 
1
2

||y2QA z||2
21l||z||1, and  x|5 A ẑ, (8)

and again we resort to the need to handle (3). 
The bottom line is that the structure described in (3) is 

fundamental to all these (and other) applications, and thus we 
are strongly motivated to handle this optimization problem 
with efficient algorithms.

THE UNITARY CASE—A SOURCE OF INSPIRATION

A CLOSED-FORM SOLUTION FOR THE UNITARY CASE
If A is unitary, the minimization of f 1z 2  can be manipulated in 
a sequence of simple steps and turned into a set of m indepen-
dent and identical one-dimensional (1-D) optimization tasks, 
that are easily handled. Starting from (3), and using the identity 
AAT5 I, we get 

 f 1z 2 5 1
2

||x2 A z||2
21l||z||1 

 5
1
2

||A 1ATx2 z 2 ||221l||z||1. (9)

Exploiting the fact that ,2-norm is unitarily invariant, we can 
remove the multiplication by A  in the first term. Denoting 
z05 ATx, we obtain 

 f 1z 2 5 1
2

||z2 z0||2
21l||z||1 

 5 a
m

k51
c 1
2
1z0 3k 42 z 3k 4 2 21l|z 3k 4|d . (10)

Minimization of the scalar function g 1t 2 5 0.5 1t02t 2 21l|t| 
with respect to t is easily obtained as 

 topt5 e 0 k t0 k # l

t02sign 1t0 2l otherwise
5Sl 1t0 2 . (11)

This function maps values near the origin to zero, and others 
are shrunken towards zero, thus the name of this operator. 

Back to our original problem, we found a closed-form solu-
tion to the minimizer of f 1z 2 , with the following two steps: 1) 
Compute z05 ATx, and 2) apply Sl on the entries of z0 and 
obtain the desired ẑ. The natural question raised is: when 
turning from a unitary matrix A to a nonunitary (and perhaps 
nonsquare) one, must we lose all this simplicity? To answer 
this question, we consider first a somewhat more general form 
of A—a concatenation of unitary matrices, where the shrink-
age step is performed iteratively. 

THE BLOCK-COORDINATE-
RELAXATION ALGORITHM
What happens when A  is built as a union of several unitary 
matrices? The answer to this was given by Sardy, et al. [38], 
leading to their block-coordinate-relaxation (BCR) algorithm. 
We present this method here very briefly, as it is a direct 
extension of the unitary case solver shown above. For sim-
plicity, we shall assume that A5 3C, F4, where C are F are 
n 3 n unitary matrices. Out minimization can be rewritten 
with respect to the two n-length portions of z, denoted as zC 
and zF, 

 f 1z 2 5 f 1zC, zF 2
 5

1
2

||x2 A z||2
21l||z||1 

 5
1
2

||b2CzC 2FzF||2
21l||zC||11l||zF||1. (12)

The core idea in the BCR algorithm is to minimize f 1zC, zF 2  
with respect to the two parts of z separately and alternately, 
explaining the name BCR. Assume that we hold a current solu-
tion at the kth iteration, denoted by z 

k, built of the two por-
tions, z C

k  and z F
k . Assuming that z F

k  is kept fixed, the function 
f 1zC, z F

k 2  can be written as 

 f 1zC, z F
k 2 5 1

2
||x|2CzC||21l||zC||1, (13)



IEEE SIGNAL PROCESSING MAGAZINE   [79]   MAY 2010

where x|5 x2Fz F
k .  This is 

the same function as in the 
unitary case, for which a 
closed-form solution is readily 
available to us. This solution is 
given as 

 z C
k115Sl 1CTx| 2 5Sl 1CT 1x2Fz F

k 2 2 . (14)

Similarly, once x C
k11 has been computed and now kept fixed, the 

function f 1x C
k11, xF 2  is easily minimized with respect to xF with 

a closed-form expression, given by 

 x F
k115Sl 1FT 1b2Cx C

k11 2 2 .  (15)

This way, alternating between these two update stages, the over-
all function is monotonically decreasing and proven to converge 
to a global minimum of the penalty function. 

An alternative to the above sequential process can be pro-
posed, where the two updates are done in parallel. As before, we 
start with a current solution at the kth iteration, z 

k, built of the 
two portions z C

k  and z F
k . We can propose an update of the two 

parts in parallel using 

 z C
k115Sl 1CT 1x2Fz F

k 2 2
 z F

k115Sl 1FT 1x2Cz C
k 2 2 .

The only difference from the previous algorithm is in the update 
of x F

k11 that uses x C
k  instead of x C

k11. Merging these two into 
one formula can be done by the following simple steps and 
exploiting the fact that the shrinkage operator operates on sca-
lars independently, 

 z 
k115Sla cC

T 1x2 A z 
k1Cz C

k 2
FT 1x2 A z 

k1Fz F
k 2 d b

 5  Sl 1AT 1x2 A z 
k 2 1 z 

k 2 . (16)

This way we got an interesting closed-form formula for the 
update of the entire solution from one iteration to the next. 
Naturally, we should wonder whether this formula (or a varia-
tion of it) could be used for more general matrices A. 
Surprisingly, the answer is positive, as we show next.

ITERATIVE-SHRINKAGE ALGORITHMS
There are various iterative-shrinkage algorithms, with important 
variations between them. Early signs of these methods appear in 
Jansson’s deconvolution [21] for spectroscopic and chromato-
graphic measurement systems, and later in the work by Hoch, 
et al. in 1990 in the context of maximum-entropy estimation 
applied to nuclear magnetic resonance  spectroscopy [22]. The 
work by Starck, et al. in 1995 considered the general image 
deblurring problem with such an algorithm [23]. Kingsbury and 
Reeves followed in 2002 with a similar approach for complex 
wavelets [24]. However, all these attempts were done without a 

clear connection to the objec-
tive function in (3). 

Iterative-shrinkage algo-
rithms can be derived using 
very different considerations, 
such as the expectation-maxi-
mization (EM) algorithm in 

statistical estimation theory [25], proximal point and surrogate-
functions [26], [27], [30], the use of the fixed-point strategy 
[29], employment of a parallel coordinate-descent algorithm 
[28], [17], variations on greedy methods [39], Bregman iterative 
regularization [32], and more. This exposes the wealth with 
which one could design a solver for the above-described optimi-
zation task.

In this article, we present two of these algorithms in detail. 
We deliberately omit a discussion on the theoretical study of 
these algorithms. Nevertheless, we should state the following 
main fact: these algorithms are guaranteed to converge to a 
global minimizer of the function in (3) [26], [17], [31]. 

As this field of research is very active, new contributions on 
novel iterative shrinkage methods, their analysis, or applications 
employing them, are emerging almost on a daily basis. We men-
tion here a partial list of such work [31]–[33], [40] as we will not 
be able to provide a full and updated picture of this “racing train.”

SURROGATE FUNCTIONS AND 
THE PROXIMAL-POINT METHOD
We start with the proximal (or surrogate) objectives that were 
used by Daubechies, et al. in their construction [26]. 
Considering the original function in (3), 

 f 1z 2 5 1
2

||x2 A z||2
21l||z||1,

let us add to it the following term 

 dist 1z, z0 2 5 c
2

 ||z2 z0||2
22

1
2

 ||A z2 A z0||2
2 .

The parameter c will be chosen such that the function dist is 
strictly convex (w.r.t. z), implying that we require its Hessian to 
be positive definite: cI2 ATA . 0. This is satisfied by the choice 
c . ||ATA||25lmax 1ATA 2  (the maximal eigenvalue of the matrix 
ATA). This new objective function 

 f|1z, z0 2 5 1
2

||x2 A z||2
21l||z||1 

 1
c
2

||z2 z0||2
22

1
2

||A z2 A z0||2
2 , (17)

is the surrogate objective that will be used in the proposed 
algorithm. As we shall see next, the fact that the term ||A z||2

2 
disappears from f

|
, turns the minimization task into a much 

simpler one. Reorganizing (17), we obtain a new expression of 
the form 

 f
|1z, z0 2 5 Const2 zT[AT 1x2 A z0 2 1 cz0 4

  1l||z||11
c
2

||z||2
2. (18)

AMONG THE MANY WAYS TO MODEL 
SIGNALS MATHEMATICALLY, A 

RECENT AND APPEALING APPROACH 
EMPLOYS SPARSE AND REDUNDANT 

REPRESENTATIONS. 
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The constant in the above expression and in our later derivations 
contains all the terms that are dependent on x and z0 alone. 
Defining the term 

 v05
1
c

AT 1x2 A z0 2 1 z0, (19)

the surrogate objective above can be rewritten as 

 f
|1z, z0 2 5 Const2 czTv01l||z||11

c
2

||z||2
2

 5 Const1l||z||11
c
2

||z2 v0||2
2. (20)

Notice the resemblance between this formulation and the one 
obtained in the unitary case, in (10). This immediately implies 
that the minimizer of the surrogate objective is

 zopt5Sl/c 1v0 2 5Sl/c a1
c

AT 1x2 A z0 2 1 z0b. (21)

So far we managed to convert the original function f  to a new 
function f

|
, for which we are able to get a closed-form expres-

sion for its global minimizer. This change of the objective 
function depends on the choice of the vector z0. The core idea 
of using the surrogate objective is that we minimize the func-
tion f  iteratively, producing the sequence of results 5zi6i, 
where at the i1 1th iteration we minimize f

|
 with the assign-

ment z05 zi. Interestingly, it can be shown that the sequence 
of solutions 5zi6i converges to the minimizer of the original 
function f. Thus, the proposed algorithm is simply given by

 zi115Sl/ca1
c

AT 1x2 A zi 2 1 zib. (22)

We shall refer hereafter to this algorithm as the separable surro-
gate functionals (SSF) method.

The above approach can be interpreted as the proximal-point 
algorithm [41], a well-known method in optimization theory 
[17]. The function dist 1z, z0 2  is a distance measure to the previ-
ous solution. When added to the original function at the ith 
iteration, it promotes proximity between subsequent estimates 
of the iterative process. Surprisingly, while this is expected to 
have a slowing-down effect, in the case discussed here it is actu-
ally enabling a substantial speed-up relatively to the conven-
tional gradient descent.

The discussion above could be replaced with a different set of 
considerations, and yet, one that leads to the very same algorithm. 
This alternative perspective appears in the work of Figueiredo, 
et  al. that uses the expectation-maximization (EM) estimator, or 
better yet, its alternative deterministic optimization foundation—
the bound-optimization method [25], [27], [30]. This technique is 
also known as the majorization-minimization method.

Starting from the function f 1z 2  in (3), which is hard to mini-
mize, the bound-optimization method suggests to use a related 
function Q 1z, z0 2  that has the following properties:

1) equality at z5 z0: Q 1z0, z0 2 5 f 1z0 2
2) upper bounding the original function: Q 1z, z0 2 $ f 1z 2  for 
all z.

Under certain regularity conditions, the sequence of solutions 
generated by the recurrent formula

 zi115 arg min
z

Q 1z, zi 2  (23)

converges to a local minimum of the original function f 1z 2  
[42], [43], [17]. As can be easily verified, the choice from the 
previous subsection, Q 1z, z0 2 5 f 1z 2 1 dist 1z, z0 2  satisfies the 
above two conditions, and as such, leads to the desired optimi-
zation algorithm. Note that minimization of Q 1 # 2  is easy due 
to its separability.

THE PARALLEL COORDINATE 
DESCENT ALGORITHM
We now describe the parallel coordinate descent (PCD) algo-
rithm [28], [17]. It starts from a simple coordinate descent algo-
rithm, but merges a set of such descent steps into one easier 
joint step, leading to the PCD iterative shrinkage method. The 
rationale practiced here should remind the reader of the BCR 
algorithm mentioned previously, and the parallel-update modifi-
cation we proposed for it.

Returning to f 1z 2  in (3), we can propose a coordinate 
descent (CD) algorithm that updates z one entry at a time. A 
sequence of such rounds of m steps (addressing each coordinate 
of z [ Rm) is necessarily converging. Interestingly, as we are 
about to show, each of these steps is obtained via shrinkage, 
similar to the process described above.

Assuming that the current solution is z0, we desire to update 
the kth entry around its current value z0 3k4. This leads to a 1-D 
function of the form

 g 1g 2 5 1
2

||x2 A z02 ak 1g2 z03k4 2 ||221l|g|. (24)

The vector ak is the kth column in A. The term ak 1g2 z03k4 2  
removes the effect of the old value and adds the new one. 
Several simple algebraic steps leads to an equivalent expression 

 g 1g 2 5 1
2

||a||2
2 # 1g2 g0 2 21l|g|, (25)

where we have defined

 g05
ak

T 1x2 A z0 2
||ak||2

2 1 z0[k 4.
As before, we find ourselves with a formulation similar to the 
one found in (10), which implies that the optimal value for 
z3k4 is

 zk
opt5Sl/||ak||2

2 aak
T 1x2 A z0 2

||ak||2
2 1 z0 3k4b. (26)

While using this update rule and sweeping through the entries 
of z repeatedly may work well in low-dimensional cases, it is 
impractical in some of the most important applications, which 
are based on attacking very large problem sizes 1.106 2  using 
implicit representations of the matrix A. In such applications, A 
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is never explicitly available, but instead one has available func-
tion calls that can rapidly apply A or AT to appropriate vectors. 
Equation (27) requires to explicitly have specific columns of A 
available on demand, and is inappropriate for use in such 
implicit-operator settings.

Thus, we consider a modification of the above method. We 
rely on the following property: When minimizing a convex 
smooth function, if there are several descent directions depart-
ing from the same point, then any nonnegative combination of 
them is also a descent direction. As we show in the section 
“Modified Penalty Functions,” we smooth the ,1-term and thus 
we can assume that the objective is smooth. Thus, we propose a 
simple addition of these m steps in (27). Since each of these 
steps handles one entry in the destination vector, we can write 
this sum as

 v05 a
m

k51
ek
# Sl /||ak||2

2 aak
T 1x2 A z0 2

||ak||2
2 1 z0 3k4b  

 5SWl 1WAT 1x2 A z0 2 1 z0 2  , (27)

where W5 diag 1ATA 221. This term consists of the norms of 
the columns of the dictionary A. These are used both for the 
weighting of the back-projected error AT 1x2 A z0 2  and for the 
shrinkage operator. This set of weights can be computed 
offline, before the algorithm starts, and there are fast ways to 
approximate them [17]. Notice that the obtained formula does 
not call for an extraction of columns from A as in (27), and the 
operations required are a direct multiplication of A  and its 
adjoint by vectors and in (23).

While each of the CD directions is guaranteed to descend, 
their linear combination is not necessarily descending without a 
proper scaling. Thus, as proposed in [28], we consider this direc-
tion and perform a line search along it. This means that the 
actual iterative algorithm is of the form

 z15 z01m 1v02 z0 2 , (28)

with m chosen by a line-search algorithm of some sort. This 
requires another multiplication by A. This overall process will 
be referred to hereafter as the PCD algorithm.

Compared to the SSF algorithm in (23), the PCD differs in 
two ways: 1) the norms of the atoms in A play an important 
role in weighting the back-projected error, whereas the previ-
ous algorithm uses a constant; and 2) the new algorithm 
requires a line-search to obtain a descent direction. Recall that 
the constant c  in SSF must satisfy c . lmax 1ATA 2 . On the 
other hand, the PCD uses a scaling of the same term using the 
weight matrix diag 1ATA 221. As an example, for a dictionary 
built as a union of N  unitary matrices, the SSF requires 
c . N, implying a weight of 1/N  in (23). In the PCD algo-
rithm, the weight matrix is simply the identity due to the nor-
malized columns in A. Thus, PCD gives O 1N 2  times stronger 
weight to the term AT 1x2 A zi 2 , and because of that we expect 
it to perform better. 

There is another interpretation of the above shrinkage 
method, worth mentioning. In the realm of solving least-
squares (LS) problems, the Gauss-Seidel algorithm can be 
interpreted as a sequential CD solver. Alternatively, one can 
compute the coordinate descent steps for all coordinates 
without moving away from the current solution and merge 
all into one step—this results with the well-known Jacobi 
method for linear systems, which parallels the PCD devel-
oped here.

ACCELERATION TECHNIQUES

LINE SEARCH
The above algorithms can be further accelerated in several ways. 
First, the idea of performing a line search as described for the 
PCD is relevant to the SSF algorithm as well. All that is required 
is to use (23) to compute a temporary result vi, and then define 
the solution as zi115 zi1m 1vi2 zi 2 , optimizing f 1zi11 2  with 
respect to the scalar m.

SEQUENTIAL SUBSPACE OPTIMIZATION
A second and much more effective speed-up option for these 
algorithms is the deployment of the SESOP method [44]. The 
story of SESOP begins with the CG method [45]. Quadratic CG 
(i.e., CG applied to a quadratic function) has remarkable conver-
gence properties. Its linear convergence rate (see for example, 
[46]) is 1 !r2 1 2 / 1 !r1 1 2 , where r is the condition number 
of the Hessian of the objective. This rate is much better than the 
steepest descent rate, 1r2 1 2 / 1r1 1 2 .

One can also rely on a 1/i2 sublinear worst-case convergence 
of the quadratic CG, which does not depend on the Hessian con-
ditioning (see, for example, [47], [48], and [44])

 f 1zi11 2 2 foptimal #
L||z02 zoptimal||

2

i2 , (29)

where i is the iteration index and L is the Lipschitz constant of 
the gradient of f. The presented convergence rates are intimate-
ly related to the well-known expanding manifold property of 
quadratic CG: At every iteration the method minimizes the 
objective function over an affine subspace spanned by directions 
of all previous propagation steps and gradients.

In the case of a smooth convex function (not necessarily 
quadratic), one could propose a similar algorithm that preserves 
the expanding manifold property. Such an algorithm should 
minimize the objective function over an affine subspace spanned 
by directions of all previous propagation steps and the latest 
gradient. This method inherits the 1/i2 convergence of CG, 
however, the cost of an iteration of such a method will increase 
with iteration count.

To alleviate this problem, Nemirovski [47] suggested to 
restrict the optimization subspace just to three directions: the 
current gradient, the sum of all previous steps, and a “cleverly” 
weighted sum of all previous gradients (a version of such 
weights is given in [44]). The resulting ORTH-method inherits 
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the optimal worst case 1/i2 convergence (29), but it does not 
coincide with CG, when the objective is quadratic, and  typically 
converges slower than CG, when the function become “almost” 
quadratic in the neighborhood of solution.

The SESOP method [44] extends the ORTH subspaces with 
several directions of the last propagation steps. This way, the 
method, while preserving a 1/i2 convergence for smooth con-
vex functions, becomes equivalent to the CG in the quadratic 
case. This property boosts the efficiency of the algorithm.

In [17], SESOP was merged with iterative-shrinkage algo-
rithms, by substituting the current gradient direction with the 
direction of the shrinkage step. In the quadratic case, the 
resulting PCD-SESOP method is equivalent to the diagonally 
preconditioned CG. On the other hand, the PCD and SSF 
directions provide much faster progress at initial steps, when 
compared to the ordinary nonlinear CG. This partially explains 
extremal efficiency of these methods on difficult problems, 
presented in the experimental section below. 

The low-dimensional subspace optimization task at every 
iteration of SESOP can be addressed using the Newton algo-
rithm. The main computational burden in this process is the 
need to multiply the spanning directions by A, but these multi-
plications can be stored in previous iterations, thus enabling the 
SESOP speed-up with hardly any additional cost. In our experi-
ence, the use of additional ORTH directions does not improve 
practical convergence speed, and therefore, we do not use them 
in our simulations.

NESTEROV METHODS AND FISTA
In 1983, Nesterov [49] suggested a method with 1/i2 rate of 
convergence of type (29), which stands as an alternative to 
ORTH. Nesterov’s method combines gradient directions with 
results of previous iterations in a “clever” way that does not 
require a subspace optimization or a line search. On the other 
hand, it is typically slower than CG in the quadratic case; 
experiments in [44] show the advantage of SESOP over 
Nesterov’s approach.

Recently in [50], Nesterov generalized his method to the 
case of an objective function consisting of two convex terms. 
One term is smooth, with a limited Lipschitz constant of its 
gradient, and the second one is easily optimized but can be 
nonsmooth. This situation resembles the ,2-,1 objective func-
tion considered in this article. Using SSF-type steps (instead of 
gradients), combined with results of previous iterations, [50] 
presents a method without a line-search, with a 1/i2 conver-
gence rate as in (29), where the Lipschitz constant of the gra-
dient is determined by the smooth term only. Along similar 
lines, an alternative method, termed FISTA, was developed in 
[33]. Put simply, FISTA applies an iteration step very similar to 
the SSF, as given in (22)

 zi115Sl/c a1
c

AT 1x2 A zi 2 1 zib.

However, instead of applying this formula on zi, it is applied on 
a modified vector ẑi given by 

 ẑi5 zi1
ti2 1
ti1 1

1zi2 zi21 2 ,

where z05 0  and ti5 111"11 4ti21
2 2 /2 with t15 1. We 

present tests of FISTA in the experimental section that follows.

MERGING WITH CONJUGATE GRADIENTS
The last acceleration option we mention here is a generalization 
of the Polak-Ribiere CG method [46], which may incorporate 
either the PCD or the SSF directions. Starting with the search 
direction obtained by PCD (or SSF, for that matter), d05 d pcd

0 , 
at the ith iteration we compute z i11 via an exact line-search 
along the direction di and then prepare the next direction as 
di115 dPCD

i11 1 bi di, where

 bi5
=f 1z i11 2T 1dPCD

i11 2 dPCD
i 2

=f 1zi 2TdPCD
i .

Here dPCD
i  is a PCD direction at point zi. We call this method 

PCD-CG. In the case of a quadratic objective function, PCD-CG 
is equivalent to the diagonally preconditioned CG method, and 
thus its fast asymptotic convergence. Global convergence of 
PCD-CG and SSF-CG have not been studied yet.

MODIFIED PENALTY FUNCTIONS
Just before we turn to demonstrate the above algorithms in 
experiments, we return to the definition of the objective func-
tion (3) and discuss its generalization. In this function we can 
substitute the ,1-norm with a general penalty function

 fs 1z 2 5 1
2

||x2 A z||2
21la

k
ws 1z3k 4 2 ,   (30)

where ws 1t 2  should be chosen such that 1) it serves the applica-
tion in mind better while 2) giving an analytical closed-form 
expression for the scalar nonlinearity that implements the 
shrinkage operation as in (11).

We start with a smooth and convex choice for ws, which 
tends to accelerate convergence. While the natural choice for 
such a function is the replacement of the |t|  by 
ws 1t 2 5 |t|p, p . 1, this does not lead to a closed-form expres-
sion for the scalar nonlinearity [36]. An appealing alternative is 
given by [17]

 ws 1t 2 5 |t|2 s ln 111 |t|/s 2 ,   s [ 10, ` 2 ,  (31)

which approximates well |t|p, up to a scaling factor that depends 
on s. This choice of w 1t 2  gives the following antisymmetric scalar 
nonlinearity

 Sl,s 1t0 2 5 |t0|2l2 s1"1 |t0|2l2 s 2 21 4s|t0|

2sign 1t0 2 . (32)

Turning to concave penalty choices of w 1t 2 , a function like 
|t|p,   0 , p , 1 leads to smaller distortion of large coeffi-
cients, thereby enabling a “refined” optimization that 
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 further sparsifies the solution, while allowing large nonzero 
entries in it. Again, as this option does not permit a closed-
form expression for the scalar nonlinearity, we can use the 
logarithmic function 

 ws 1t 2 5 s ln 111 |t|/s 2 ,  s [ 10, ` 2 ,  (33)

or its smoothed alternative

 wcp 1t 2 5 ln 111 |t|/s 2
ln 111 1/s 2 2 1

p
ln 111 p/s 2

2
1
p

ln 111 p|t|/s 2 , 

where p and s control the smoothness at the origin and the 
concavity. Both functions allow the derivation of a closed-form 
scalar nonlinearity.

AN EXPERIMENTAL STUDY
In this section, we present four sets of experiments. The first cor-
responds to image deblurring, the second to tomographic recon-
struction, the third discusses compressed sensing, and the fourth 
is an experiment adopted from [51], using a 
synthetic matrix A termed geoGaussian. 
Common to all these tests is the desire to 
minimize the function posed in (3), or more 
precisely, its smoothed version given in (31) 
and (32) with s5 0.001.

The algorithms we explore in these tests 
are the SSF [using c5lmax 1ATA2] and the 
PCD, their accelerated versions with CG 
and SESOP (using seven dimensions, and 
up to seven Newton steps per update), the 
CG, and the SESOP algorithms directly, the 
L-BFGS algorithm, FISTA [33], and the 
L1-LS interior-point method [40]. For the 
L-BFGS algorithm, we used the MATLAB 
MINFUNC package by Mark Schmidt.

We now turn to present the four experi-
ments and their results.

IMAGE DEBLURRING
Following the explanations given in the sec-
tion “The Need: Sparse and Redundant 
Representations,” we assume that the origi-
nal image x (these are the actual pixels of 
the ideal image) went through a known 
blur operation H, followed by an additive 
noise with known variance s2. Thus, we 
measure the blurred and noisy image 
y5Hx1 v, and aim to recover x, with the 
assumption that x could be described as A z 
with a known dictionary A and a sparse 
vector z. Our goal is to minimize 

 ẑ5 arg min
z

 
1
2

||y2HA z||2
21l||z||1, 

and the restored image is x̂5 A ẑ. The ingredients of this penalty 
function are:

Original image: We experiment on the image  ■ Phantom of 
size 128 3 128 pixels, as shown in Figure 3.

Dictionary: We use the redundant (undecimated) wave- ■

let transform using Daubechies’ four-taps filter and four 
layers of resolution, leading to a redundancy factor of ten 
to one.

Blur kernel: Following the tests in [27], we consider a  ■

15 3 15 kernel with values being 1/ 1 i21 j21 1 2  for 
27 # i, j # 7, normalized to have a unit sum.

Noise properties: The additive noise is white zero-mean  ■

Gaussian noise with s5 0.01, where the image pixels are in 
the range [0, 1 2 . 

Figures 1–3 show the results obtained for l5 0.001. This 
value was found manually to lead to satisfactory results. 
Automatic tuning of this parameter for best performance is 
possible, using the generalized Stein unbiased risk estimator 
(GSURE) method (see [52] and [53]). Figure 1 presents the 
value of the objective for various tested algorithms. As can be 
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[FIG1] Deblurring: The objective function value as a function of iteration number for 
the various tested algorithms.
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[FIG2] Deblurring: The SNR as a function of iteration number for the various 
tested algorithms.
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seen, while the core PCD and SSF algorithms are slow, their 
accelerated versions are much better, and in fact the best 
among the group of methods explored. The PCD and SSF with 
the SESOP acceleration (employing a subspace of seven 
dimensions) converge faster than the CG algorithm, the 
L-BFGS, and the L1-LS and FISTA. Note that the L1-LS meth-
od uses a sequence of inner-CG steps and thus the wide gap 
between the markings in the graph.

Figure 2 addresses the true goal of our experiment—the 
recovery of the original image. We measure the quality of a pro-
posed solution by signal-to-noise ratio (SNR),

 SNR5 10 # log10 a ||x||2
2

||x2 x̂||2
2b. (34)

The higher this value is, the better the quality of the solution. 
The results again point to the accelerated PCD (with SESOP-7 
or CG) as the best algorithms, both giving a high-quality out-
come after few iterations. Since there are methods that auto-
matically stop when the SNR is at its peak [52], [53], this implies 
that in terms of the output quality, we need not iterate beyond 
the tenth iteration in this case.

Figure 3 shows the original image, 
Phantom, on which this test was per-
formed. The figure also shows the observed 
image y, the initialization image A ẑ0, and 
the PCD-SESOP-7 result after 20 itera-
tions. In all the experiments, we initialize 
by ẑ05 const # ATHTy, where the constant 
is chosen as the maximal singular value of 
HD for proper normalization. As one can 
see, while the result still suffers from some 
artifacts, its sharpness surpasses that of the 
measurement by far. 

TOMOGRAPHIC RECONSTRUCTION
Operating on the same image Phantom, 
using the same dictionary, and following 
the same formulation as above, we now 
turn to the second experiment, where the 
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[FIG3] Deblurring: (a) The original image, (b) the observed 
image, (c) the initialization image, and (d) the recovered image 
obtained by 20 iterations of the PCD-SESOP-7 algorithm.
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[FIG4] Tomography: (a) The original image, (b) the observed 
projections, (c) the initialization image, and (d) the recovered 
image obtained by 20 iterations of the PCD-SESOP-7 algorithm.
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[FIG5] Tomography: The effect of the signal dimension. In (a), the graph corresponds 
to the tomography experiment applied on the image Phantom of size 32 3 32 pixels. 
In (b), the graph corresponds to a higher resolution version of this image of size 
256 3 256 pixels.
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degradation operator H consists of the 
Radon-projection. This operator produces 
256 line-projections, each containing 
"2 3 1285 181 scalars, and l is cho-
sen as 0.001 as before.

Figure 4 shows the results obtained, 
following the same structure as in Figure 
3. We omit the graphs showing the value 
of the objective and the SNR as functions 
of the iteration, as they are very similar to 
those seen in the deblurring test (see 
Figures 1 and 2). 

Figure 5 demonstrates a different 
aspect of iterative-shrinkage algorithms—
their tendency to be robust to the dimen-
sion of the signal treated. Building on the 
same tomography experiment, we per-
form two similar tests, one with an image 
of size 32 3 32 pixels and the other with 
a much larger image of size 256 3 256 
pixels. Figure 5 summarizes the results 
obtained for a selected set of algorithms, 
and as can be seen, the behavior is nearly 
identical. This implies that the same num-
ber of iterations is required to recover the 
image, regardless of its dimension. This 
also suggests that the complexity of these 
recovery processes remains linear with 
respect to the number of unknowns.

COMPRESSED SENSING
Our third experiment corresponds to the 
recovery of an image from random mea-
surements of it, also known as compressed 
sensing. As opposed to the previous two 
experiments, we operate on a synthetic 
sparse image x of size 64 3 64 pixels, with 
5% of its pixels (in random locations) 
being nonzeros, drawn from an i.i.d. 
Gaussian distribution N 10, 10 2 . Such an 
image may correspond to actual images 
obtained in astronomy or in radar imaging 
applications. Since the signal in question is 
sparse, the dictionary we use in our formu-
lation is the trivial identity operator, A5 I.

The degradation operator H (or Q to 
better fit the description in the section 
“The Need: Sparse and Redundant 
Representations”) consists of 410 projec-
tions, obtained by choosing at random 
410 samples of the two-dimensional-fast 
Fourier transform applied on x. Thus, there are twice as many 
measurements in y, compared to the cardinality in x, from 
which we aim to recover x. The values in y are further con-
taminated by additive noise with s5 0.01.

Figures 6 and 7 show the results obtained for l5 0.001, fol-
lowing the same structure as in the previous experiments. 
While most of the algorithms behave as before, the L1-LS shows 
a marked difference, being highly effective and fast in getting a 
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[FIG6] Compressed sensing: The objective function value as a function of iteration 
number for the various tested algorithms.
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high-quality recovered result. 
The reason for the very differ-
ent behavior of the L1-LS in 
this simulation, as compared to 
the two previous tests, is the 
following: In cases where the 
number of nonzero coefficients 
in z is relatively small (as in 
this simulation), L1-LS is expected to be very effective, because 
the Hessian of the log-barrier function becomes a low-rank 
matrix, with a rank corresponding to the number of active con-
straints (number of nonzero coefficients in the signal). In this 

case, the inner CG method for 
solving the Newton system 
becomes very effective.

The obtained results can 
be dramatically improved by 
replacing the ,1 term in the 
objective function by a con-
c a v e  p e n a l t y  ( 3 4 )  w i t h 

parameter s5 1.  This promotes further sparsity in the 
outcome, with the hope to get closer to the ideal image x. 
We use the result of the PCD-SESOP-7 with 1,000 itera-
tions from the previous round as the initialization for the 
same group of algorithms. Figure 8 shows the objective 
function and the SNR for this refinement round, with a 
clear and substantial improvement obtained by the PCD-
CG. Figure 9 shows the original image, the initialization 
to this refinement stage, and the resulting image, which 
appears as a near-perfect recovery of the desired image. 

SYNTHETIC EXPERIMENT WITH LORIS DATA
The fourth and last experiment we bring in this article is 
adopted from [51]. This problem uses an explicit matrix H of 
size 1,848 3 8,192, termed K4. This matrix is built from a 
Gaussian random matrix, by shaping its singular values to fit a 
classical and highly ill-conditioned geoscience problem 

(known as K1). As for the compressed 
sensing case, the ideal signal z* is creat-
ed synthetically, as a vector of length 
8,192 with 5% of its entries (in random 
locations) being nonzeros, drawn from 
an i.i.d. Gaussian distribution N 10, 10 2 . 
The dictionary in this case is the identity 
matrix, and our goal is the recovery of z* 
from a noisy measurements Hz*1 v, 
where v ,N 10, sI 2  with s5 1e2 4. 
In [51], this is considered to be the most 
difficult problem handled. 

Beyond the natural goal of comparing 
various algorithms, in this experiment 
we aim to address the following addition-
al issues: 1) run time and its relation to 
number of iterations and 2) the behavior 
of the explored algorithms for very small 
value of l, for which iterative-shrinkage 
algorithms are known to deteriorate. 
Figure 10 presents the objective function 
and he SNR, both as a function of the 
iteration count, and as a function of 
time, all for l5 1e2 3. Figure 11 pres-
ents the results of the same tests applied 
for l5 1e2 6.

As we can see, FISTA converges much 
faster than SSF, which corresponds to 
the observations in [51]. On the other 
hand, PCD-SESOP and SSF-SESOP are 

(a) (b) (c)

[FIG9] Compressed sensing: (a) The original image, (b) the image 
obtained by 20 iterations of the PCD-SESOP-7 algorithm, and 
(c) the recovered image obtained using the concave objective 
function, employing 500 iterations of the PCD-CG.
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[FIG10] The K4 experiment: Using l5 1e2 3.

ITERATIVE-SHRINKAGE ALGORITHMS 
CONSTITUTE A NEW FAMILY OF 

EFFECTIVE NUMERICAL METHODS 
FOR HANDLING THESE PROBLEMS, 

SURPASSING TRADITIONAL 
OPTIMIZATION TECHNIQUES.
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far superior to all other methods. There 
is no fast matrix multiplication in this 
problem, and therefore the iteration cost 
is dominated by products of vectors with 
A, and a single SESOP iteration is about 
as fast as one iteration of FISTA. 

We also performed experiments (not 
shown here) with matrices K2 and K3 from 
[51], and observed the same relation 
between the algorithms, as seen above. 

CONCLUSIONS
When considering the minimization of 
an ,2-,1 mixture penalty function with 
sparse solutions, iterative-shrinkage 
algorithms pose an appealing family of 
techniques that may surpass classical 
tools. In this article, we reviewed the 
activity in this field, described several 
such algorithms, explored ways to fur-
ther accelerate these methods, and stud-
ied their comparative performance versus 
their leading competitors. 

This article presented a set of experi-
ments that test these algorithm for 
practical applications. These include 
image deblurring, tomographic recon-
struction, compressed sensing of sparse 
images, and a test borrows from [51], 
which imitates a highly ill-conditioned 
inverse problem from geophysics. These 
experiments all indicated that iterative 
shrinkage methods are indeed very 
effective, and especially so if merged 
with SESOP acceleration. Among the various methods 
explored, the PCD-SESOP performs the best in most of the 
tests. FISTA, a recently introduced alternative acceleration 
algorithm, may become faster than the SESOP approach in 
cases where the operator A is implicit and has a fast deploy-
ment algorithm. 

The work on this breed of algorithms is far from done, as 
there are new methods to propose, various analysis questions 
that remain open, and interesting applications that could 
greatly benefit from these tools, which have not yet been 
explored. We hope that this article will stimulate the readers 
to further study these topics, and expand the knowledge and 
capabilities of this special branch of convex optimization. To 
support such an activity, we released a complete MATLAB 
package that reproduces all the figures in this article. This 
package is freely accessed for download at http://ie.technion.
ac.il/~mcib/ under the name “iterative-shrinkage package.” 
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