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Abstract

We study the efficiency of greedy algorithms with regard to redundant dictionaries in Hilbert spaces. We
obtain upper estimates for the errors of the Pure Greedy Algorithm and the Orthogonal Greedy Algorithm in
terms of the best m-term approximations. We call such estimates the Lebesgue-type inequalities. We prove
the Lebesgue-type inequalities for dictionaries with special structure. We assume that the dictionary has
a property of mutual incoherence (the coherence parameter of the dictionary is small). We develop a new
technique that, in particular, allowed us to get rid of an extra factor m1/2 in the Lebesgue-type inequality
for the Orthogonal Greedy Algorithm.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A. Lebesgue proved the following inequality: for any 2�-periodic continuous function f one
has

‖f − Sn(f )‖∞ �
(

4 + 4

�2 ln n

)
En(f )∞, (1.1)

where Sn(f ) is the nth partial sum of the Fourier series of f and En(f )∞ is the error of the
best approximation of f by the trigonometric polynomials of order n in the uniform norm ‖ · ‖∞.
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Inequality (1.1) relates the error of a particular method (Sn) of approximation by the trigonometric
polynomials of order n to the best possible error En(f )∞ of approximation by the trigonometric
polynomials of order n. By the Lebesgue-type inequality we mean an inequality that provides an
upper estimate for the error of a particular method of approximation of f by elements of a special
form, say, form A, by the best possible approximation of f by elements of the form A. In the case
of approximation with regard to bases (or minimal systems), the Lebesgue-type inequalities are
known both in linear and in nonlinear settings (see surveys [4,7]). It would be very interesting
to prove the Lebesgue-type inequalities for redundant systems (dictionaries). However, there are
substantial difficulties on this way. We begin our discussion with the Pure Greedy Algorithm
(PGA). We say a set of functions D from a Hilbert space H is a dictionary if each g ∈ H has
norm one (‖g‖ := ‖g‖H = 1) and the closure of span D coincides with H. We describe the PGA
for a general dictionary D. If f ∈ H , we let g(f ) ∈ D be an element from D which maximizes
|〈f, g〉|. We will assume for simplicity that such a maximizer exists; if not suitable modifications
are necessary (see Weak Greedy Algorithm in [6]) in the algorithm that follows. We define

G(f, D) := 〈f, g(f )〉g(f )

and

R(f, D) := f − G(f, D).

Pure Greedy Algorithm (PGA). We define f0 := R0(f, D) := f and G0(f, D) := 0. Then,
for each m�1, we inductively define

Gm(f, D) := Gm−1(f, D) + G(Rm−1(f, D), D)

fm := Rm(f, D) := f − Gm(f, D) = R(Rm−1(f, D), D).

It is natural to compare performance of the PGA with the best m-term approximation with regard
to a dictionary D. We let �m(D) denote the collection of all functions (elements) in H which can
be expressed as a linear combination of at most m elements of D. Thus, each function s ∈ �m(D)

can be written in the form

s =
∑
g∈�

cgg, � ⊂ D, #��m,

where the cg are real or complex numbers. In some cases, it may be possible to write an element
from �m(D) in this form in more than one way. The space �m(D) is not linear: the sum of two
functions from �m(D) is generally not in �m(D).

For a function f ∈ H we define its best m-term approximation error

�m(f ) := �m(f, D) := inf
s∈�m(D)

‖f − s‖.

It seems like there is no hope to prove a nontrivial Lebesgue-type inequality for the PGA in the
case of an arbitrary dictionary D. This pessimism is based on the following result from [2].

Let B := {hk}∞k=1 be an orthonormal basis in a Hilbert space H. Consider the following element:

g := Ah1 + Ah2 + aA
∑
k �3

(k(k + 1))−1/2hk
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with

A := (33/89)1/2, a := (23/11)1/2.

Then, ‖g‖ = 1. We define the dictionary D = B ∪ {g}. It has been proved in [2] that for the
function

f = h1 + h2

we have

‖f − Gm(f, D)‖�m−1/2, m�4.

It is clear that �2(f, D) = 0.
Therefore, we look for conditions on a dictionary D that allow us to prove the Lebesgue-type

inequalities. The condition D = B is an orthonormal basis for H guarantees that

‖Rm(f, B)‖ = �m(f, B).

This is an ideal situation. The results that we will discuss here concern the case when we replace
an orthonormal basis B by a dictionary that is, in a certain sense, not far from an orthonormal
basis.

Let us begin with results that are close to known results from [5]. We give a definition of a
�-quasiorthogonal dictionary with depth D. In the case D = ∞ this definition coincides with the
definition of a �-quasiorthogonal dictionary from [5].

Definition 1.1. We say D is a �-quasiorthogonal dictionary with depth D if for any n ∈ [1, D]
and any gi ∈ D, i = 1, . . . , n, there exists a collection �j ∈ D, j = 1, . . . , J, J �N := �n, with
the properties:

gi ∈ XJ := span(�1, . . . ,�J ), i = 1, . . . , n,

and for any f ∈ XJ we have

max
1� j �J

|〈f, �j 〉|�N−1/2‖f ‖.

Remark 1.1. It is clear that an orthonormal dictionary is a 1-quasiorthogonal dictionary.

The following theorem in the case D = ∞ has been established in [5]. The corresponding
proof from [5] also works in the case D < ∞ and gives the following result.

Theorem 1.1. Let a given dictionary D be �-quasiorthogonal with depth D and let 0 < r <

(2�)−1 be a real number. Then for any f such that

�m(f, D)�m−r , m = 1, 2, . . . , D,

we have

‖fm‖ = ‖f − Gm(f, D)‖�C(r, �)m−r , m ∈ [1, D/2].
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In this paper we consider dictionaries that have become popular in signal processing. Denote

M(D) := sup
g 
=h;g,h∈D

|〈g, h〉|

the coherence parameter of a dictionary D. For an orthonormal basis B we have M(B) = 0. It is
clear that the smaller the M(D), the more the D resembles an orthonormal basis. However, we
should note that in the case M(D) > 0, D can be a redundant dictionary. We show in Section 2
(see Proposition 2.1) that a dictionary with coherence M := M(D) is a (1 + 4�)-quasiorthogonal
dictionary with depth 1 + �/M , for any � ∈ (0, 1/7]. Therefore, Theorem 1.1 applies to M-
coherent dictionaries. We will prove here a general Lebesgue-type inequality for the PGA with
regard to a M-coherent dictionary.

Theorem 1.2. Let a dictionaryD have the mutual coherenceM=M(D).Then for anyS�1/(2M)

we have the following inequality:

‖fS‖2 �2‖f ‖(�S(f, D) + 5MS‖f ‖). (1.2)

As a direct corollary of this theorem we obtain the following inequality for functions f that
allow a S-sparse representation in D (�S(f ) = 0):

‖fS‖�(10MS)1/2‖f ‖.
Inequality (1.2) is the first Lebesgue-type inequality for the PGA in the case of incoherent dictio-
nary D.

We now proceed to a discussion of the Orthogonal Greedy Algorithm (OGA). If H0 is a finite
dimensional subspace of H, we let PH0 be the orthogonal projector from H onto H0. That is PH0(f )

is the best approximation to f from H0. As above we let g(f ) ∈ D be an element from D which
maximizes |〈f, g〉|. We shall assume for simplicity that such a maximizer exists; if not suitable
modifications are necessary (see Weak Orthogonal Greedy Algorithm in [6]) in the algorithm that
follows.

Orthogonal Greedy Algorithm (OGA). We define f o
0 := Ro

0(f ) := Ro
0(f, D) := f and

Go
0(f ) := Go

0(f, D) := 0. Then for each m�1, we inductively define

Hm := Hm(f ) := span{g(Ro
0(f )), . . . , g(Ro

m−1(f ))}
Go

m(f ) := Go
m(f, D) := PHm(f ), f o

m := Ro
m(f ) := Ro

m(f, D) := f − Go
m(f ).

It is clear from the definition of the OGA that at each step we have

‖f o
m‖2 �‖f o

m−1‖2 − |〈f o
m−1, g(f o

m−1)〉|2.
We note that the use of this inequality instead of the equality

‖fm‖2 = ‖fm−1‖2 − |〈fm−1, g(fm−1)〉|2

that holds for the PGA allows us to prove an analogue of Theorem 1.1 for the OGA. The proof
repeats the corresponding proof from [5]. We formulate this as a remark.

Remark 1.2. Theorem 1.1 holds for the OGA instead of the PGA (for ‖f o
m‖ instead of ‖fm‖).
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The first general Lebesgue-type inequality for the OGA for the M-coherent dictionary has been
obtained in [3]. The authors proved that

‖f o
m‖�8m1/2�m(f ), m < 1/(32M).

The constants in this inequality were improved in [8] (see also [1]):

‖f o
m‖�(1 + 6m)1/2�m(f ), m < 1/(3M). (1.3)

We prove here an analogue of (1.2) for the OGA.

Theorem 1.3. Let a dictionaryD have the mutual coherenceM=M(D).Then for anyS�1/(2M)

we have the following inequalities:

‖f o
S ‖2 �2‖f o

k ‖(�S−k(f
o
k ) + 3MS‖f o

k ‖), 0�k�S. (1.4)

Inequality (1.4) can be used for improving (1.3) for small m. We prove here the following
inequality. We use the notation log for the base-2 logarithm.

Theorem 1.4. Let a dictionary D have the mutual coherence M=M(D). Assume m�0.05M−2/3.
Then for l�1 satisfying 2l � log m we have

‖f o
m(2l−1)

‖�6m2−l

�m(f ).

Corollary 1.5. Let a dictionary D have the mutual coherence M=M(D). Assume m�0.05
M−2/3. Then we have

‖f o[m log m]‖�24�m(f ),

where [x] denotes the biggest integer less than or equal to x.

The inequality ‖f o[m log m]‖�24�m(f ) from Corollary 1.5 is almost (up to a log m factor) perfect
Lebesgue inequality. However, we are paying a big price for it in the sense of a strong assumption
on m. We do not know if the assumption m�0.05M−2/3 can be substantially weakened.

2. Proofs

We will use the following simple known lemma (see, for instance, [1]).

Lemma 2.1. Assume a dictionary D has mutual coherence M . Then we have for any distinct
gj ∈ D, j = 1, . . . , N and for any aj , j = 1, . . . , N the inequalities⎛

⎝ N∑
j=1

|aj |2
⎞
⎠ (1 − M(N − 1))�

∥∥∥∥∥∥
N∑

j=1

ajgj

∥∥∥∥∥∥
2

�

⎛
⎝ N∑

j=1

|aj |2
⎞
⎠ (1 + M(N − 1)).

Proof. We have∥∥∥∥∥∥
N∑

j=1

ajgj

∥∥∥∥∥∥
2

=
N∑

j=1

|aj |2 +
∑
i 
=j

ai āj 〈gi, gj 〉.
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Next, ∣∣∣∣∣∣
∑
i 
=j

ai āj 〈gi, gj 〉
∣∣∣∣∣∣ � M

∑
i 
=j

|aiaj | = M

⎛
⎝∑

i,j

|aiaj | −
N∑

i=1

|ai |2
⎞
⎠

= M

⎛
⎝
(

N∑
i=1

|ai |
)2

−
N∑

i=1

|ai |2
⎞
⎠ �

(
N∑

i=1

|ai |2
)

M(N − 1). �

We now proceed to one more technical lemma (see [1]).

Lemma 2.2. Suppose that g1, . . . , gN are such that ‖gi‖ = 1, i = 1, . . . , N ; |〈gi, gj 〉|�M ,
1� i 
= j �N . Let HN := span(g1, . . . , gN). Then for any f we have(

N∑
i=1

|〈f, gi〉|2
)1/2

�
(

N∑
i=1

|ci |2
)1/2

(1 − M(N − 1)),

where {ci} are from

PHN
(f ) =

N∑
i=1

cigi .

Proof. We have 〈f − PHN
(f ), gi〉 = 0, i = 1, . . . , N and therefore

|〈f, gi〉| = |〈PHN
(f ), gi〉| =

∣∣∣∣∣∣
N∑

j=1

cj 〈gj , gi〉
∣∣∣∣∣∣ � |ci |(1 + M) − M

N∑
j=1

|cj |.

Next, denoting � := (
∑N

j=1 |cj |2)1/2 and using the inequality
∑N

j=1 |cj |�N1/2� we get

(
N∑

i=1

|〈f, gi〉|2
)1/2

��(1 + M) − MN� = �(1 − M(N − 1)). �

The following proposition is a direct corollary of Lemmas 2.1 and 2.2.

Proposition 2.1. Let � ∈ (0, 1/7]. Then any dictionary with mutual coherence M is a (1 + 4�)-
quasiorthogonal dictionary with depth 1 + �/M .

Proof. Let n�1 + �/M . Consider any distinct gi ∈ D, i = 1, . . . , n. Following the Definition
1.1 we specify J = n, �j = gj , j = 1, . . . , n. For any f = ∑n

j=1 ajgj we have by Lemma 2.2

max
1� j �n

|〈f, gj 〉|�n−1/2

⎛
⎝ n∑

j=1

|〈f, gj 〉|2
⎞
⎠

1/2

�n−1/2

⎛
⎝ n∑

j=1

|aj |2
⎞
⎠

1/2

(1 − M(n − 1)).

Using the assumption n�1 + �/M we get from here by Lemma 2.1

max
1� j �n

|〈f, gj 〉|�n−1/2 1 − �

(1 + �)1/2 ‖f ‖.
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By the inequality

1 − �

(1 + �)1/2 �(1 + 4�))−1/2, ��1/7,

we obtain

max
1� j �n

|〈f, gj 〉|�(n(1 + 4�))−1/2‖f ‖.

This completes the proof of Proposition 2.1. �

The proofs of Theorems 1.2 and 1.3 are similar. We combine these theorems in one Theorem
2.3 and carry out the detailed proof only for the OGA.

Theorem 2.3. Let a dictionaryD have the mutual coherenceM=M(D).Then for anyS�1/(2M)

we have the following inequalities:

‖f o
S ‖2 �2‖f o

k ‖(�S−k(f
o
k ) + 3MS‖f o

k ‖), 0�k�S, (2.1)

‖fS‖2 �2‖f ‖(�S(f ) + 5MS‖f ‖).

Proof. Denote

d(f ) := sup
g∈D

|〈f, g〉|. (2.2)

For simplicity we assume that the maximizer in (2.2) exists. Then

‖fm‖2 = ‖fm−1‖2 − d(fm−1)
2, ‖f o

m‖2 �‖f o
m−1‖2 − d(f o

m−1)
2.

We carry out the proof for the OGA and later point out the necessary changes for the PGA. It is
clear that inequality (2.1) holds for k = S. Let k ∈ [0, S) be fixed. Assume f o

k 
= 0. Denote by
g1, . . . , gS−k ⊂ D the elements (distinct) that have the biggest inner products with f o

k :

|〈f o
k , g1〉|� |〈f o

k , g2〉|� · · · � |〈f o
k , gS−k〉|� sup

g∈D,g 
=gi ,i=1,...,S−k

|〈f o
k , g〉|.

We define a natural number s in the following way. If 〈f o
k , gS−k〉 
= 0 then we set s := S − k,

otherwise s is chosen such that 〈f o
k , gs〉 
= 0 and 〈f o

k , gs+1〉 = 0. Let m ∈ [k, k + s) and

f o
m = f − PHm(f ) = f o

k − PHm(f o
k ), Hm = span(�1, . . . ,�m),

where �j ∈ D are obtained by realization of the OGA. We note that 〈f o
k , �l〉 = 0, l ∈ [1, k].

Therefore, each gi , i ∈ [1, s], is different from all �l , l = 1, . . . , k. By the counting argument
there exists an index i ∈ [1, m + 1 − k] such that gi 
= �j , j = 1, . . . , m. For this i we estimate

〈f o
m, gi〉 = 〈f o

k , gi〉 − 〈PHm(f o
k ), gi〉. (2.3)

Let

PHm(f o
k ) =

m∑
j=1

cj�j .
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Clearly, ‖PHm(f o
k )‖�‖f o

k ‖. Then by Lemma 2.1

⎛
⎝ m∑

j=1

|cj |2
⎞
⎠

1/2

�‖f o
k ‖(1 − M(m − 1))−1/2.

We continue

|〈PHm(f o
k ), gi〉|

�M

m∑
j=1

|cj |�Mm1/2

⎛
⎝ m∑

j=1

|cj |2
⎞
⎠

1/2

�MS1/2‖f o
k ‖(1 − MS)−1/2. (2.4)

Thus, we get from (2.3) and (2.4) that

d(f o
m)� |〈f o

m, gi〉|� |〈f o
k , gi〉| − MS1/2‖f o

k ‖(1 − MS)−1/2, i ∈ [1, m + 1 − k],
and, using the inequality |〈f o

k , gi〉|� |〈f o
k , gm+1−k〉| that follows from the definition of {gj }, we

obtain

d(f o
m)� |〈f o

k , gm+1−k〉| − MS1/2‖f o
k ‖(1 − MS)−1/2.

Therefore,(
k+s−1∑
v=k

d(f o
v )2

)1/2

�
(

s∑
i=1

(|〈f o
k , gi〉| − MS1/2‖f o

k ‖(1 − MS)−1/2)2

)1/2

�
(

s∑
i=1

|〈f o
k , gi〉|2

)1/2

− MS‖f o
k ‖(1 − MS)−1/2. (2.5)

Next, let

�S−k(f
o
k ) = ‖f o

k − PH(n)(f
o
k )‖, PH(n)(f

o
k ) =

n∑
j=1

bj�j , n�S − k,

where �j ∈ D, j = 1, . . . , n, are distinct. Then

‖PH(n)(f
o
k )‖�‖f o

k ‖ − �S−k(f
o
k )

and by Lemma 2.1

n∑
j=1

|bj |2 �(‖f o
k ‖ − �S−k(f

o
k ))2(1 + MS)−1. (2.6)

By Lemma 2.2

n∑
j=1

|〈f o
k , �j 〉|2 �

⎛
⎝ n∑

j=1

|bj |2
⎞
⎠ (1 − MS)2. (2.7)
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We get from (2.6) and (2.7)

s∑
i=1

|〈f o
k , gi〉|2 �

n∑
j=1

|〈f o
k , �j 〉|2 �(‖f o

k ‖ − �S−k(f
o
k ))2(1 + MS)−1(1 − MS)2.

Finally, by (2.5) we get from here(
k+s−1∑
v=k

d(f o
v )2

)1/2

�(‖f o
k ‖ − �S−k(f

o
k ))

1 − MS

(1 + MS)1/2 − MS‖f o
k ‖(1 − MS)−1/2. (2.8)

Using

k+s−1∑
v=k

d(f o
v )2 �‖f o

k ‖2

we obtain

‖f o
S ‖2 �‖f o

k ‖2 −
k+s−1∑
v=k

d(f o
v )2 �2‖f o

k ‖
⎛
⎝‖f o

k ‖ −
(

k+s−1∑
v=k

d(f o
v )2

)1/2⎞⎠ .

We now use (2.8) to estimate

‖f o
k ‖ −

(
k+s−1∑
v=k

d(f o
v )2

)1/2

��S−k(f
o
k ) + ‖f o

k ‖
(

1 − 1 − MS

(1 + MS)1/2 + MS

(1 − MS)1/2

)
. (2.9)

Let MS� 1
2 . Denote x := MS. Using the inequalities

1 − x

(1 + x)1/2 �1 − 3

2
x

and

(1 − x)−1/2 �21/2 � 3
2 ,

for x� 1
2 , we continue (2.9)

��S−k(f
o
k ) + 3MS‖f o

k ‖.
This completes the proof of Theorem 2.3 for the OGA. A few changes adapt the above proof for
k = 0 to the PGA setting. As above we write

fm = f − Gm(f ), Gm(f ) =
m∑

j=1

bj�j , �j ∈ D,

and estimate |〈fm, gi〉| with i ∈ [1, m + 1] such that gi 
= �j , j = 1, . . . , m. Using instead of
‖PHm(f )‖�‖f ‖ the inequality

‖Gm(f )‖�‖f ‖ + ‖fm‖�2‖f ‖
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we obtain the following analogue of (2.4):

|〈Gm(f ), gi〉|�2MS1/2‖f ‖(1 − MS)−1/2. (2.10)

The rest of the proof is the same with (2.4) replaced by (2.10). �

We now show how one may combine the inequalities from Theorem 1.3 with inequality (1.3).
We formulate Theorem 1.4 here for convenience.

Theorem 2.4. Let a dictionary D have the mutual coherence M=M(D). Assume m�0.05M−2/3.
Then for l�1 satisfying 2l � log m we have

‖f o
m(2l−1)

‖�6m2−l

�m(f ). (2.11)

Proof. We will prove (2.11) by induction on l. In the case l = 1 by (1.3) inequality (2.11) holds
because 0.05M−2/3 �M−1/3. We now assume that (2.11) holds for l −1�1. Using Theorem 1.3
with S = m(2l − 1), k = m(2l−1 − 1) we get

‖f o
m(2l−1)

‖2 �2‖f o
m(2l−1−1)

‖(�m2l−1(f
o
m(2l−1−1)

) + 3Mm(2l − 1)‖f o
m(2l−1−1)

‖). (2.12)

The application of Theorem 1.3 is justified by the inequality

MS�M2lm�0.05M1/3(log(1/M)) 2
3 � 1

2 ,

where we have used the estimate

xa ln(1/x)�(ae)−1, x ∈ [0, 1], (2.13)

for a > 0. By the induction assumption, using the inequality �n(f
o
k )��n−k(f ), k�n, we obtain

from (2.12)

‖f o
m(2l−1)

‖2 �12m21−l

�m(f )(�m(f ) + 3Mm2l6m21−l

�m(f )). (2.14)

We will prove that under our assumptions

18Mm1+21−l

2l �2. (2.15)

It is clear that (2.14) and (2.15) imply (2.11). So, it remains to establish (2.15). In the case l = 2
we have

18Mm3/24�72(0.05)3/2 �2.

Let l > 2 be such that 2l � log m. Then we have

18Mm1+21−l

2l �0.9M(1−22−l )/3 log m�0.6M1/6 log(1/M).

We obtain from (2.13) that

x1/6 ln(1/x)�6/e, x ∈ [0, 1].
Therefore,

M1/6 log(1/M)�6(log e)/e�9/e.
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It remains to note that

0.6(9/e)�2.

This completes the proof of (2.15) and the proof of Theorem 1.4. �

Corollary 2.5. Let a dictionary D have the mutual coherence M=M(D). Assume m�0.05
M−2/3. Then we have

‖f o[m log m]‖�24�m(f ).

Proof. Let l be such that 2l � log m < 2l+1. Then

m2−l = 22−l log m �4,

and

6m2−l �24.

It remains to apply Theorem 2.4. �
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