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Part I
Motivation for Modeling 

Dependencies

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad
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Sparse & Redundant Representations

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad

 We model a signal x as a multiplication of a (given) dictionary D by a 
sparse vector .

 The classical (Bayesian) approach for modeling  is as a                              
Bernoulli-Gaussian RV,                                                                    
implying that the entries of                                                                      
 are iid. 

 Typical recovery: find  from

.

This is done with pursuit                                                                    
algorithms (OMP, BP, … ) that                                                            
assume this iid structure.

 Is this fair? Is it correct? 
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Lets Apply a Simple Experiment

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad

 We gather a set of 100,000 randomly chosen image-patches of size 8×8, 
extracted from the image ‘Barbara’. These are our signals        . 

 We apply sparse-coding for these patches using                                  
the OMP algorithm (error-mode with =2) with                                      
the redundant DCT dictionary (256 atoms). Thus,                                      
we approximate the solution of 

 Lets observe the obtained representations’                                               
supports. Specifically, lets check whether                                                  
the iid assumption is true. 

 k k
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The Experiment’s Results (1)

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad
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 The supports are denoted by s of length K (256), with {+1} for          
on-support element and {-1} for off-support ones.

 First, we check the                                                                         
probability of each atom                                                    
participate in the support.

As can be seen, these                                                                     
probabilities are far                                                                       
from being uniform,                                                                  
even though OMP gave                                                                    
all atoms the same weight.   
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The Experiment’s Results (2)

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad
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3.5 Next, we check whether there                                                                  
are dependencies between the                                                             
atoms, by evaluating 

 This ratio is 1 if si and sj are                                                         
independent, and away from 1                                                               
when there is a dependency.                                                                 
After abs-log, a value away from                                                              
zero indicates a dependency.

As can be seen, there are some dependencies between the 
elements, even though OMP did not promote them. 
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The Experiment’s Results (3)

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad

50 100 150 200 250

50

100

150

200

250
0

0.5

1

1.5

2

2.5

3

3.5

4
 We saw that there are dependencies                                                        

within the support vector. Could we                                                          
claim that these form a                                                                        
block-sparsity pattern? 

 If si and sj belong to the same                                                            
block, we should get that

 Thus, after abs-log, any value                                                               
away from 0 means a non-block                                                     
structure.  

We can see that the supports do not form a block-sparsity
structure, but rather a more complex one. 

 i jP s 1| s 1 1  
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Our Goals

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad

 We would like to (statistically) model these dependencies somehow. 

 We will adopt a generative model for  of the following form: 

 What P(s) is? We shall follow recent work and choose                             
the Boltzmann Machine [Garrigues & Olshausen ’08]                                      
[Cevher, Duarte, Hedge & Baraniuk ‘09]. 

 Our goals in this work are: 

o Develop general-purpose pursuit algorithms for this model.

o Estimate this model’s parameters for a given bulk of data. 

Generate the support 
vector s (of length K)         
by drawing it from the 

distribution P(s)

Generate the non-zero 
values for the on-support 
entries, drawn from the 
distributions             .     2

iN(0, )

α
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Part II
Basics of the                

Boltzmann Machine

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad
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BM – Definition

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad

 Recall that the support vector, s, is a binary vector of length K, 
indicating the on- and the off-support elements: 

 The Boltzmann Machine assigns the following probability to this vector:

 Boltzmann Machine (BM) is a special case of the more general Markov-
Random-Field (MRF) model. 

   
T T1 1

P s exp b s
,b

s s
Z 2
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The Vector b

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad

 If we assume that W=0, the BM becomes

 In this case, the entries of s are independent.

 In this case, the probability of sk=+1 is given by

Thus, pk becomes very small (promoting sparsity) if bk<<0.
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The Matrix W

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad

 W introduces the inter-dependencies between the entries of s: 

 Zero value Wij implies an ‘independence’ between si and sj.

 A positive value Wij implies an ‘excitatory’ interaction between si and sj. 

 A negative value Wij implies an ‘inhibitory’ interaction between si and sj. 

 The larger the magnitude of Wij, the stronger are these forces.

 W is symmetric, since the interaction between i-j is the same as the 
one between j-i.

 We assume that                                                                                    
diag(W)=0, since
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Special Cases of Interest

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad

 When W=0 and b=c·1, we return to 
the iid case we started with. If c<<0, 
this model promotes sparsity. 

 When W is block-diagonal (up to 
permutation) with very high and 
positive entries, this corresponds to a 
block-sparsity structure. 

 A banded W (up to permutation)     
with 2L+1 main diagonals         
corresponds to a chordal graph that 
leads to a decomposable model.

 A tree-structure can also fit this     
model easily. 

iid

Block-Sparsity

Chordal

Tree
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Part III
MAP/MMSE Sparse           
Recovery Revisited

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad
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The Signal Model

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad

K

N

D
The Dictionary

α

x  D is fixed and known.

 We assume that α is built by:

 Choosing the support s with BM 
probability P(s) from all the 2K

possibilities Ω. 

 Choosing the αs coefficients 
using independent Gaussian                
entries              we shall assume 
that σi are the same (= σα).            

 The ideal signal is x=Dα=Dsαs.

The p.d.f. P(α) and P(x) are clear and known

 2
iN 0,
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Adding Noise

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad

K

N

D
A fixed Dictionary

α

x

y
e

+
Noise Assumed:
The noise e is additive 
white Gaussian vector   
with probability PE(e)

The conditional p.d.f.’s P(y|), P(|y), and even 
P(y|s), P(s|y), are all clear and well-defined 

(although they may appear nasty).

 
2

2
e

x y
P y x C exp

2
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Pursuit via the Posterior

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad

 P s | yWe have 
access to

MMSEMAP

s
ŝ ArgMax P(s|y)




 MMSE E | ŷ  

 There is a delicate problem due to the mixture of continuous and discrete PDF’s. 
This is why we estimate the support using MAP first.

 MAP estimation of the representation is obtained using the oracle’s formula. 

Oracle       
known          

support s

oraclê
MAP̂

MAP
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The Oracle

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad
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Comments: 

• This estimate is both 
the MAP and MMSE.

• The oracle estimate 
of x is obtained by 
multiplication by Ds. 
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MAP Estimation

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad
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Based on our prior for 
generating the support
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21Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad

The MAP

Implications:                                                                        
 The MAP estimator requires to test all the possible supports for the 

maximization. For the found support, the oracle formula is used. 

 In typical problems, this process is impossible as there is a 
combinatorial set of possibilities.

 In order to use the MAP approach, we shall turn to approximations.

T 1
s ss s

2
eMAP

T2s
T

2
e

h h log(det( ))
2 2

ŝ ArgMax exp
1 1

b log s s s
4 2
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22Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad

The MMSE

  s
1

ss hˆs,y|E  Q

This is the oracle for s, as we 
have seen before
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23Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad

The MMSE

    
s

MMSE s,y|E)y|s(Py|Eˆ

 
s

s
MMSE ˆ)y|s(Pˆ

Implications:        

 The best estimator (in terms of L2 error) is a weighted average of 
many sparse representations!!! 

 As in the MAP case, in typical problems one cannot compute this 
expression, as the summation is over a combinatorial set of 
possibilities.  We should propose approximations here as well. 
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Part IV
Construct Practical           
Pursuit Algorithms 

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad



25Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad

An OMP-Like Algorithm

The Core Idea – Gather s one element at a time greedily:
 Initialize all entries with {-1}.

 Sweep through all entries and check which gives the maximal growth 
of the expression – set it to {+1}.

 Proceed this way till the overall expression decreases for any 
additional {+1}.  

T 1
s ss s

2
eMAP

T2s
T

2
e

h h log(det( ))
2 2

ŝ ArgMax exp
1 1

b log s s s
4 2
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26Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad

A THR-Like Algorithm

The Core Idea – Find the on-support in one-shut:
 Initialize all entries with {-1}.

 Sweep through all entries and check for each the obtained growth of 
the expression – sort (down) the elements by this growth.

 Choose the first |s| elements as {+1}. Their number should be chosen 
so as to maximize the MAP expression (by checking 1,2,3, …).

T 1
s ss s

2
eMAP

T2s
T

2
e

h h log(det( ))
2 2

ŝ ArgMax exp
1 1

b log s s s
4 2
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27Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad

An Subspace-Pursuit-Like Algorithm

The Core Idea – Add and remove entries from s iteratively:
 Operate as in the THR algorithm, and choose the first |s|+ entries as 

{+1}, where |s| is maximizes the posterior.

 Consider removing each of the |s|+  elements, and see the obtained 
decrease in the posterior – remove the weakest  of them.

 Add/remove  entries … similar to [Needell & Tropp `09],[Dai & Milenkovic `09].

T 1
s ss s

2
eMAP

T2s
T

2
e

h h log(det( ))
2 2

ŝ ArgMax exp
1 1

b log s s s
4 2
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28Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad

An MMSE Approximation Algorithm

The Core Idea – Draw random supports from the posterior 
and average their oracle estimates:
 Operate like the OMP-like algorithm, but choose the next +1 by 

randomly drawing it based on the marginal posteriors.

 Repeat this process several times, and average their oracle’s solutions.

 This is an extension of the Random-OMP algorithm [Elad & Yavneh, `09]. 

MMSE 1
ss

s

P(s | y) hˆ 
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29Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad

Lets Experiment

Choose       
W & b

Choose   
D

Choose   
α

Generate 
Boltzmann Machine 
supports {si}i using 

Gibbs Sampler

Choose      
e

Generate 
representations 
{i}i using the 

supports

Generate 
signals {xi}i by 
multiplication      

by D

Generate 
measurements 
{yi}i by adding 

noise

Plain OMP

Rand-OMP 

THR-like

OMP-like 

Oracle



Image Denoising & Beyond Via Learned 
Dictionaries and Sparse representations
By: Michael Elad
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Chosen Parameters
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Gibbs Sampler for Generating s
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Initialize s
randomly 

{1} 

Set 
k=1

Fix all entries of s
apart from sk and 
draw it randomly 
from the marginal 

Set 
k=k+1 till 

k=K

Repeat J (=100) 
times
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histogram 
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For Sparse  Approximation
By: Michael Elad

Results – Representation Error
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MAP-OMP
MAP-THR
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Plain-OMP

 As expected, the oracle 
performs the best.

 The Rand-OMP is the second 
best, being an MMSE 
approximation. 

 MAP-OMP is better than 
MAP-THR.

 There is a strange behavior 
in MAP-THR for weak noise –
should be studied.

 The plain-OMP is the worst, 
with practically useless 
results. 
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For Sparse  Approximation
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Results – Support Error
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 Generally the same story. 

 Rand-OMP result is not 
sparse! It is compared by 
choosing the first |s| 
dominant elements, where 
|s| is the number of 
elements chosen by the 
MAP-OMP. As can be seen, it 
is not better than the MAP-
OMP.
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For Sparse  Approximation
By: Michael Elad

The Unitary Case

 What happens when D is square and unitary?

 We know that in such a case, if W=0 (i.e., no interactions), then 
MAP and MMSE have closed-form solutions, in the form of a 
shrinkage [Turek, Yavneh, Protter, Elad, `10].

 Can we hope for something similar for the more general W? The 
answer is (partly) positive!

 T ŷ   D
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The Posterior Again
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When D is unitary, the BM prior and the         
resulting posterior are conjugate distributions
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For Sparse  Approximation
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Implications
The MAP estimation becomes the following Boolean 

Quadratic Problem (NP-Hard!) 

 
2 2
k k

T T

s s 1 s s 1

1
ŝ ArgMaxP s y ArgMax exp q s s s

2 

    
 

W

Approximate Assume         
W≥0

Assume     
banded W

Multi-user detection in 
communication

[Verdu, 1998]

Graph-cut can be used for 
exact solution

[Cevher, Duarte, Hedge, & 
Baraniuk 2009]

Our work: Belief-
Propagation for exact 
solution with O(K·2L)

What about exact MMSE? It is possible too! We are working on it NOW. 
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Results
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Oracle
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Plain-OMP

 W (of size 64×64) in this 
experiment has 11 
diagonals.

 All algorithms behave as 
expected.

 Interestingly, the exact-MAP 
outperforms the 
approximated MMSE 
algorithm.

 The plain-OMP (which would 
have been ideal MAP for the 
iid case) is performing VERY 
poorly. 
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Results

e
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 As before …
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Part V
First Steps Towards        
Adaptive Recovery  

Exploiting Statistical Dependencies 
in Sparse Representations
By: Michael Elad
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The Grand-Challenge 
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Estimate the model 
parameters and the 

representations  
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Assume known 

and estimate the 
representations

 ,b, , W D
Assume known 

and estimate the 
BM parameters

   i ii i
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 ,bW

Assume known 

and estimate the 
dictionary

 i , ,b,  W D
Assume known 

and estimate the 
signal STD’s

 i
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Maximum-Likelihood? 

ML-Estimate           
of the BM 

parameters
 ,bW N

i i 1
s



      

 

N
N

i ii 1,b ,b i 1

N
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ˆˆ ,b ArgMax P s ,b ArgMax P s ,b
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2Z ,b
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Problem !!! We do not have access to the 
partition function Z(W,b).
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Solution: Maximum-Pseudo-Likelihood

MPL-Estimate           
of the BM 

parameters
 ,bW N

i i 1
s
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function  
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 The function (·) is log(cosh(·)). This is a convex programming task.
 MPL is known to be a consistent estimator.
 We solve this problem using SESOP+SD.
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Simple Experiment & Results
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We perform the following 
experiment: 

 W is 64×64 banded, with L=3, 
and all values fixed (0.2).

 b is a constant vector (-0.1).
 10,000 supports are created from 

this BM distribution – the average 
cardinality is 16.5 (out of 64).

 We employ 50 iterations of the 
MPL-SESOP to estimate the BM 
parameters.

 Initialization: W=0 and b is set 
by the scalar probabilities for 
each entry. 
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Simple Experiment & Results
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Testing on Image Patches

 N

i i 1
y



 N
i i 1

Assume known 

and estimate the 
representations

 ,b, , W D
Assume known 

and estimate the 
BM parameters

   i ii i
s 

 ,bWD Assume known 

and estimate the 
signal STD’s

 i

 

Unitary DCT 
dictionary

Image patches 
of size 8×8 
pixels

Use        
Exact-MAP

Use        
MPL-SESOP

Use        
simple ML

2 rounds

Denoising Performance? 

 This experiment was done for patches from 5 images (Lenna, Barbara, 
House, Boat, Peppers), with varying e in the range [2-25].

 The results show an improvement of ~0.9dB over plain-OMP.

*

* We assume that W is banded, and estimate it 
as such, by searching (greedily) the best 
permutation.
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Part VI                    
Summary and               

Conclusion

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Today We Have Seen that …

No! We know that the 
found representations 
exhibit dependencies. 

Taking these into account 
could further improve the 
model and its behavior  

Is it  
enough?  

Sparsity and Redundancy
are important ideas that 
can be used in designing 

better tools in 
signal/image processing 

In this    
work

We use the Boltzmann 
Machine and propose:
 A general set of 

pursuit methods
 Exact MAP pursuit for 

the unitary case
 Estimation of the BM 

parameters

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

What    
next?

We intend to explore:
 Other pursuit 

methods
 Theoretical study of 

these algorithms
 K-SVD + this model
 Applications …


