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Noise Removal?
Today we focus on signal/image denoising …

Important: (i) Practical application; (ii) A convenient platform          
for testing basic ideas in signal/image processing.

Many Considered Directions: Partial differential equations, Statistical 
estimators, Adaptive filters, Inverse problems & regularization,
Wavelets, Example-based techniques, Sparse representations, …

Main Massage Today: Several sparse representations can be                     
found and used for better denoising performance – we introduce,              
demonstrate and explain this new idea. 

Remove 
Additive 

Noise?
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Part I
The Basics of              

Denoising by Sparse         
Representations
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Relation to 
measurements

Denoising By Energy Minimization 

Thomas Bayes
1702 - 1761

Prior or regularizationy : Given measurements  

x : Unknown to be recovered

( ) ( )xPryx
2
1

xf
2
2

+−=

Many of the proposed signal denoising algorithms are related to the 
minimization of an energy function of the form

This is in-fact a Bayesian point of view, adopting the 
Maximum-A-posteriori Probability (MAP) estimation.

Clearly, the wisdom in such an approach is within the 
choice of the prior – modeling the signals of interest. 
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The Evolution Of Pr(x)

During the past several decades we have made all sort of guesses
about the prior Pr(x) for signals/images:   

• Hidden Markov Models,

• Compression algorithms as priors, 

• …

( ) 2
2xxPr λ=

Energy

( ) 2
2xxPr Lλ=

Smoothness

( ) 2xxPr WLλ=

Adapt+ 
Smooth

( ) { }xxPr Lλρ=

Robust 
Statistics

( )
1

xxPr ∇λ=

Total-
Variation

( ) 1xxPr Wλ=

Wavelet 
Sparsity

( ) 0

0
xPr αλ=

Sparse & 
Redundant

α= Dxfor
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Sparse Modeling of Signals 

M K

N

D
A fixed Dictionary

Every column in    
D (dictionary) is    
a prototype signal 
(atom).

The vector α is 
generated 
randomly with few 
(say L) non-zeros 
at random 
locations and with 
random values. 

A sparse 
& random 
vector

=

α
x

N
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Back to Our MAP Energy Function 

We L0 norm is effectively                                            
counting the number of                                          
non-zeros in α. 

The vector α is the                                                         
representation (sparse/redundant).

Bottom line: Denoising of y is done by minimizing 

or                                          .

x
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=

Next steps: given the previously found atoms, 
find the next one to best fit the residual.

The algorithm stops when the error            is below the destination 
threshold.

The MP  is one of the greedy 
algorithms that finds one atom 
at a time [Mallat & Zhang (’93)].

Step 1: find the one atom that  
best matches the signal. 

The Orthogonal MP (OMP) is an improved version that re-evaluates 
the coefficients by Least-Squares after each round.

2
y−αD

The Solver We Use: Greed Based 

22
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0
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α
D
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Orthogonal Matching Pursuit 
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OMP finds one atom at a time for 
approximating the solution of 
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Part II
Finding & Using More        

than One Sparse 
Representation  
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Back to the Beginning. What If …

Consider the denoising problem

and suppose that we can find a 
group of J candidate solutions

such that   

22
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Basic Questions:
What could we do with such a 
set of competing solutions in 
order to better denoise y? 

Why should this work? 

How shall we practically find 
such a set of solutions?

These questions were studied          
and answered recently                     
[Elad and Yavneh (’08)]
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Motivation

Why bother with such a set? 

Because of the intriguing relation                       
to example-based techniques,                      
where several nearest-neighbors               
for the signal are used jointly.

Because each representation conveys          
a different story about the desired               
signal.

Because pursuit algorithms are                   
often wrong in finding the sparsest 
representation, and then relying                         
on their solution becomes too sensitive.

… Maybe there are “deeper” reasons? 

1α

2α

D

D

2ε≤−

2ε≤−
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Generating Many Representations 

Our Answer: Randomizing the OMP
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Lets Try 

100
00 =α

y

Proposed Experiment :

Form a random D. 

Multiply by a sparse vector α0 (             ).

Add Gaussian iid noise (σ=1) and obtain  .

Solve the problem 

using OMP, and obtain       . 

Use RandOMP and obtain                  .

Lets look at the obtained representations …
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Some Observations 
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Random-OMP denoising
OMP denoising
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We see that

• The OMP gives 
the sparsest 
solution

• Nevertheless, it  
is not the most 
effective for 
denoising.

• The cardinality of 
a representation 
does not reveal 
its efficiency. 
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The Surprise …
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Lets propose the average 

as our representation

This representation IS 
NOT SPARSE AT ALL but 
its noise attenuation is: 
0.06 (OMP gives 0.16)
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Is It Consistent? Yes!
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OMP versus RandOMP results
Mean Point

Here are the results of 
1000 trials with the 
same parameters …
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The Explanation – Our Signal Model

K

N

D
A fixed Dictionary

α

x
Signal Model Assumed

D is fixed and known

α is built by:

Choosing the support S w.p. P(S) 
of all the 2K possibilities Ω,

Choosing the coefficients using iid
Gaussian entries* N(0,σx): P(x|S).

The ideal signal is x=Dα.

* Not exactly, but this does not change our analysis.

The p.d.f. of the signal P(x) is: ( ) ( ) ( )∑=
Ω∈S

SPSxPxP
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The Explanation – Adding Noise

K

N

D
A fixed Dictionary

α

x

y
v

+
Noise Assumed:
The noise v is additive 
white Gaussian vector   
with probability Pv(v)

The p.d.f. of the noisy signal P(y), and the 
conditionals P(y|S) and P(S|y) are clear and 

well-defined (although nasty).
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( ) )S(P
2

y
expySP 2

2
S

22
x

2
x

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

σ
⋅

σ+σ

σ
∝

Projection of the signal y 
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Implications:
The best estimator (in terms of L2 error) is a weighted 

average of many sparse representations!!! 
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As It Turns Out …

The MMSE estimation we got requires a sweep through all 2K

supports (i.e. combinatorial search) – impractical. 

Similarly, an explicit expression for P(x/y) can be derived and 
maximized – this is the MAP estimation, and it also requires a 
sweep through all possible supports – impractical too.

The OMP is a (good) approximation for the MAP estimate. 

The RandOMP is a (good) approximation of the Minimum-Mean-
Squared-Error (MMSE) estimate. It is close to the Gibbs sampler of 
the probability P(S|y) from which we should draw the weights. 

Back to the beginning: Why Use Several Representations?
Because their average leads to provable better noise suppression. 
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Comparative Results 
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1. Emp. Oracle
2. Theor. Oracle
3. Emp. MMSE
4. Theor. MMSE
5. Emp. MAP
6. Theor. MAP
7. OMP
8. RandOMP

The following results 
correspond to a small 
dictionary (20×30), 
where the combinatorial 
formulas can be 
evaluated as well.

Parameters: 

• N=20, K=30 

• True support=3

• σx=1

• Averaged over 1000     
experiments Known 

support
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Part III                   
Summary and              

Conclusion
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Today We Have Seen that …

In our work on we 
cover theoretical, 
numerical, and 

applicative issues 
related to this model 
and its use in practice 

What do    
we do?  

Sparsity, Redundancy,      
and the use of examples
are important ideas that 
can be used in designing 

better tools in 
signal/image processing 

and              
today

We have shown that averaging 
several sparse representations 

for a signal lead to better 
denoising, as it approximates 

the MMSE estimator.

More on these (including the slides, the papers, and a Matlab toolbox) in 
http://www.cs.technion.ac.il/~elad


