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Part I - Motivation
Denoising By Averaging 

Several Sparse  
Representations



3

Sparse Representation Denoising
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 Sparse representation modeling:

 Assume that we get a noisy 
measurement vector

 Our goal – recovery of x (or α).

 The common practice – Approximate 
the solution of   

= + = α +y x v v

where is AWGN

D
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Orthogonal Matching Pursuit 
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Using several Representations

Consider the denoising problem

and suppose that we can find a 
group of J candidate solutions

such that   
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Basic Questions:
 What could we do with such a 

set of competing solutions in 
order to better denoise y? 

 Why should this help? 

 How shall we practically find 
such a set of solutions?

 Relevant work: [Leung & Barron 
(’06)] [Larsson & Selen (’07)] [Schintter 
et. al. (`08)] [Elad and Yavneh (’08)] 
[Giraud (‘08)] [Protter et. al. (‘10)] …

Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad



6

Generating Many Representations 

Our  Answer: Randomizing the OMP
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* Larsson and Schnitter
propose a more             
complicated and 
deterministic tree            
pruning method
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Generating Many Representations 

Our  Answer: Randomizing the OMP
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For now, lets set the parameter c 
manually for best performance. 

Later we shall define a way to set 
it automatically
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Lets Try 

0
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Proposed Experiment :

 Form a random D. 

 Multiply by a sparse vector α0 (             ).

 Add Gaussian iid noise (σ=1) and obtain   .

 Solve the problem 

using OMP, and obtain       . 

 Use RandOMP and obtain                  .

 Lets look at the obtained representations …
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Some Observations 
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We see that

• The OMP gives 
the sparsest 
solution

• Nevertheless, it  
is not the most 
effective for 
denoising.

• The cardinality of 
a representation 
does not reveal 
its efficiency. 
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The Surprise … (to some of us)
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as our representation

This representation IS 
NOT SPARSE AT ALL but 
its noise attenuation is: 
0.06 (OMP gives 0.16)
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Repeat this Experiment …
• Dictionary (random) of    

size N=100, K=200 

• True support of α is 10

• σx=1 and ε=10

• We run OMP for denoising. 

• We run RandOMP J=1000 
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Part II - Explanation
It is Time to be                      
More Precise  
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Our Signal Model

K

N

D
A fixed Dictionary

α

x
 D is fixed and known.

 Assume that α is built by:
 Choosing the support s with 

probability P(s) from all the 2K

possibilities Ω. 

 Lets assume that P(i∈S)=Pi  
are drawn independently.

 Choosing the αs coefficients using     
iid Gaussian entries            .

 The ideal signal is x=Dα=Dsαs.

The p.d.f. P(α) and P(x) are clear and known

Topics in MMSE Estimation 
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By: Michael Elad
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Adding Noise
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D
A fixed Dictionary

α

x
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v

+
Noise Assumed:
The noise v is additive 
white Gaussian vector   
with probability Pv(v)

The conditional p.d.f.’s P(y|α), P(α|y), and even 
P(y|s), P(s|y), are all clear and well-defined 

(although they may appear nasty).
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The Key – The Posterior P(α|y)

( )P | yαWe have 
access to

MAP MMSE

α
α = αMAP ArgMax P( | y)ˆ { }MMSE E | yα̂ = α

Oracle       
known          

support s

oracleα̂
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*

* Actually, there is a delicate problem with this definition, 
due to the unavoidable mixture of continuous and discrete 
PDF’s. The solution is to estimate the MAP’s support S. 
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Lets Start with The Oracle
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* When s is known

*

Comments: 

• This estimate is both 
the MAP and MMSE.

• The oracle estimate 
of x is obtained by 
multiplication by Ds. 

Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad



s

s s s

T 1
|s| s ss s

x

P(y | s) P(y | s, )P( )d

....

h h log(det( ))
exp

2 2

α

−
−

= α α α

=

  ∝ σ ⋅ − 
  

∫

Q Q

Based on our prior for 
generating the support

( ) ( )i j
i s j s

P s P 1 P
∈ ∉

= −∏ ∏

17

The MAP Estimation
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The MAP Estimation

Implications:
 The MAP estimator requires to test all the possible supports for the 

maximization. For the found support, the oracle formula is used. 

 In typical problems, this process is impossible as there is a 
combinatorial set of possibilities.

 This is why we rarely use exact MAP, and we typically replace it with 
approximation algorithms (e.g., OMP).
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For Sparse  Approximation
By: Michael Elad

( )i
j

T 1
s ss s

MAP

s

i s j sx

h h log(det( ))
2 2
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This is the oracle for s, as we 
have seen before

The MMSE Estimation
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The MMSE Estimation

{ } { }∑ α⋅=α=α
Ω∈s
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Ω∈s

s
MMSE ˆ)y|s(Pˆ

Implications:

 The best estimator (in terms of L2 error) is a weighted average of 
many sparse representations!!! 

 As in the MAP case, in typical problems one cannot compute this 
expression, as the summation is over a combinatorial set of 
possibilities.  We should propose approximations here as well. 
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This is our              
c in the    

Random-OMP

The Case of |s|=1 and Pi=P 
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The i-th 
atom in D Based on this we can propose a greedy                                    

algorithm for both MAP and MMSE:

 MAP – choose the atom with the largest inner product (out of K), and 
do so one at a time, while freezing the previous ones (almost OMP).

 MMSE – draw at random an atom in a greedy algorithm, based on the 
above probability set, getting close to P(s|y) in the overall draw 
(almost RandOMP).
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Comparative Results 

The following results 
correspond to a small 
dictionary (10×16), 
where the combinatorial 
formulas can be 
evaluated as well.

Parameters: 

• N,K: 10×16

• P=0.1                                     
(varying cardinality)

• σx=1

• J=50 (RandOMP)

• Averaged over 1000     
experiments
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By: Michael Elad
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Part III – Diving In
A Closer Look At the             

Unitary Case  
IDDDD == TT
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Few Basic Observations 
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Back to the MAP Estimation
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The MAP Estimator
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The MMSE Estimation
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Some algebra                                  
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and we get that

This result leads to a dense 
representation vector. The 

curve is a smoothed version 
of the MAP one.
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What About the Error ? 
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A Synthetic Experiment
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The following                        
results correspond                             
to a dictionary of                 
size (100×100)

Parameters: 

• n,K: 100×100

• P=0.1

• σx=1

• Averaged over       
1000 experiments

The average errors               
are shown relative                    
to nσ2
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Part IV - Theory
Estimation Errors
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Useful Lemma
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Then                 .

Let (ak,bk) k=1,2, … ,n be 
pairs of positive real numbers. 
Let m be the index of a pair 
such that
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the ratios ak/bk are equal. 
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We are interested in this 
result because : 

This 
leads 
to …
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Theorem 1 – MMSE Error
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Theorem 2 – MAP Error

Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad

2
k

k
k

P 1 c
G

1 P
−

=
−

{ }
{ }

2 1MAP
m

2 m
2oracle

2
m

1
1 2log G eE ˆ G

2E ˆ 1 Otherwise
G e

− + ≤α − α ≤ 
α − α +


Define                        . Choose m such that                   . m kk, G G∀ ≤

this error ratio 
bound becomes

kP P 1
K

= = <<


{ }
{ }

2MMSE

2

2oracle

2

E ˆ
Const logK

E ˆ

α − α
≤ ⋅

α − α



34

The Bounds’ Factors vs. P
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Parameters: 

• P=[0,1]

• σx=1

• σ=0.3

Notice that the 
tendency of the 
two estimators 

to align for P→0 
is not reflected 

in these bounds.
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Part V – We Are Done                                 
Summary and                
Conclusions

Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad
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Today We Have Seen that …

By finding the sparsest 
representation and 

using it to recover the 
clean signal

How ?  

Sparsity and 
Redundancy are 

used for denoising 
of signals/images

Can                   
we do 
better? 

Yes! Averaging 
several rep’s 
lead to better 

denoising, as it 
approximates 

the MMSE

More on these (including the slides and the relevant papers) can be found in 
http://www.cs.technion.ac.il/~elad

Unitary  
case?

MAP and MMSE enjoy 
a closed-form, exact 
and cheap formulae. 

Their error is bounded 
and tightly related to 

the oracle’s error

Topics in MMSE Estimation 
For Sparse  Approximation
By: Michael Elad
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