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Abstract—This paper deals with the Bayesian signal denoising
problem, assuming a prior based on a sparse representation mod-
eling over a unitary dictionary. It is well known that the max-
imum a posteriori probability (MAP) estimator in such a case has
a closed-form solution based on a simple shrinkage. The focus in
this paper is on the better performing and less familiar minimum-
mean-squared-error (MMSE) estimator. We show that this esti-
mator also leads to a simple formula, in the form of a plain recur-
sive expression for evaluating the contribution of every atom in the
solution. An extension of the model to real-world signals is also of-
fered, considering heteroscedastic nonzero entries in the represen-
tation, and allowing varying probabilities for the chosen atoms and
the overall cardinality of the sparse representation. The MAP and
MMSE estimators are redeveloped for this extended model, again
resulting in closed-form simple algorithms. Finally, the superiority
of the MMSE estimator is demonstrated both on synthetically gen-
erated signals and on real-world signals (image patches).

Index Terms—Maximum a posteriori probability (MAP), min-
imum mean squared error (MMSE), sparse representations, uni-
tary dictionary.

I. INTRODUCTION

O NE OF THE most fundamental and extensively studied
problems in signal processing is the removal of additive

noise, known as denoising. In this task, it is assumed that the
measured signal is the result of a clean signal
being contaminated by noise,1 . As is often done,
we limit the discussion to zero-mean independent identically
distributed (i.i.d.) Gaussian noise.

In order to be able to distinguish the signal from the noise, it
is important to characterize the signal family as well. One very
successful model, that has attracted attention in recent years,
leans on the signal’s sparsity with respect to some transform.
In such a model, the signal is assumed to be representable as a
linear combination of a few basic signal building blocks known
as atoms. Formally put, can be represented as , where

is a known dictionary (set of atoms ) and
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1While the discussion in this paper is over the reals, all the derivations here
apply over the complex field just as well.

is a sparse vector of coefficients. “Sparse” here means that
contains a small number (compared to ) of nonzero coeffi-

cients. In general, the dictionary may be redundant, containing
more atoms than the dimension of the signal .

How can this model be used for recovering from the mea-
surement ? A commonly used method (see [1] and references
therein) is to seek a signal that is both sparse with respect
to (i.e., has a sparse representation) and close enough to the
measured signal. This task can be written as seeking the repre-
sentation defined by

(1)

where counts the number of nonzeros in and is a pos-
itive parameter. This energy functional contains two terms, the
first promoting sparsity of the signal and the second promoting
proximity to the measurement. This minimization task can be
shown to be related to the maximum a posteriori (MAP) prob-
ability estimator [1].

Solving the minimization task is in general NP-hard [2], and
therefore approximate solvers are required. One approach can
be to replace the -norm with , leading to a family of algo-
rithms known as Basis Pursuit [3]. Another commonly used ap-
proach is a greedy algorithm, such as the Orthogonal Matching
Pursuit (OMP) [4]–[6]. In this algorithm, one atom is selected
at each step, such that the norm of the residual (that portion of
the signal not yet represented) is best decreased.

While MAP estimation, as manifested above, promotes
seeking the single sparsest representation, recent work shows
that a better result (in the sense) is possible using the min-
imum-mean-squared-error (MMSE) estimator [7]–[10]. The
MMSE estimator requires a weighted average of all the possible
sparse representations that may explain the signal, with weights
related to their probability. Just like the MAP in the general
setting, this estimation is infeasible to compute, and thus an
approximation is proposed. For example, the work reported in
[7] and [8] offers approximations based on a tree search for
candidate solutions with pruning of ones less likely to explain
well the signal. Similarly, the work reported in [9] suggests a
random version of the OMP for getting several representations,
followed by plain averaging.

More broadly, in the realm of sparse representations, mixing
several estimators to get a better estimate has been studied in
various directions in the past decade. One such direction con-
siders fusion of estimators that use different dictionaries [11],
[12]. The machine-learning and the statistics literature offers
several recent contributions (see [13]–[15] for representative
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work), where a group of competing estimators are combined
(aggregated) using exponential weights, leading to an estimate
that goes beyond the best of the group. Clearly, there is a
growing interest in Bayesian estimators that go beyond the
MAP, and in non-Bayesian techniques that provide an alterna-
tive motivation for aggregation of sparse estimators.

In this paper we focus on the special case where the dictionary
is square and unitary . In such a case,

the problem formed in (1) need not be approximated, as there
is a closed-form noniterative solution in the form of shrinkage
over simple inner products [16]–[19]. Furthermore, the OMP
becomes exact in such a case. Naturally, these facts make the
MAP estimator a very appealing approach for the unitary case.

The question we address in this paper is the following: Does
the MMSE estimator also enjoy a simple closed-form solution
for the unitary case? We show that this is indeed the case, and
develop a recursive formula that leads to the exact MMSE esti-
mation. We start our treatment with a simple model that assumes
that all the nonzero entries in the representation are drawn from
the same distribution (i.i.d), and with a fixed and known cardi-
nality. We then present a more general signal model based on
a sparse representation, considering heteroscedastic nonzero
entries in the representation, allowing varying probabilities
for the chosen atoms, and imposing a probability rule on the
cardinality of sparse representation. We extend both the MAP
and MMSE estimators to this more complex model, and derive
simple and exact algorithms for obtaining these estimators. We
test these estimators on both synthetic and real-world signals
(image patches) and demonstrate the superior performance of
the proposed MMSE estimator in these tests.

We note that a preliminary version of this paper has appeared
in [10], showing the core recursive formula for the MMSE
computation for a simple sparse representation modeling, and
demonstrating it on elementary synthetic experiments. Here we
present a much-extended version of this work that includes: 1)
a richer model that better fits general content signals; 2) full
development of the MAP and MMSE closed-form solutions
for this extended model, and with more details; 3) a numerical
stability analysis of the recursive formula; and 4) a wider ex-
perimental part with new tests on real-world signals, where the
parameters of the model are estimated as part of the denoising
process.

The structure of the paper is as follows. In the next section
we formulate the denoising problem and review the prior work
on the MAP and the MMSE estimators. Section III derives the
closed-form recursive formula for the MMSE estimator for a
simple signal model and analyzes its numerical behavior. In
Section IV we propose an extended generative signal model
and develop the MAP and MMSE estimators for it, resulting
in simple and exact algorithms for their recovery. We also dis-
cuss the need and means to estimate the many free parameters
of this model. Section V presents an empirical study on both
synthetic and real-world signals, demonstrating the various al-
gorithms developed, and Section VI presents conclusions.

II. PRIOR WORK

In order to deploy the MAP and MMSE estimators for the
denoising task, we need to start by defining the signal creation

process. The literature on sparse representation modeling, and
orthogonal wavelet coefficients in particular, is rich with ideas
on how to model signals. A hierarchical Bernoulli-Gaussian
mixture is commonly used to model such coefficients, in order
to derive the shrinkage to be applied on them [20]–[24]. Alter-
natively, Generalized Gaussians have also been used to model
these coefficients [25], [26]. Such models assume independence
between these coefficients, which makes the consequent esti-
mation task easier. In this work we take a different path, and
follow closely the source model considered in [7]–[9], where
a nonuniform prior on the selection of the nonzero coefficients
is considered, with a subsequent coupling between the different
coefficients.

We assume that is generated by first choosing the
support of (locations of nonzero coefficients), denoted by ,
using the probability function . Following [9] and [10] we
shall restrict our treatment for now to the case where all supports
with are equally probable, and all the others have zero
probability. In Section IV we remove this limiting assumption
and extend the analysis to the more general case. We denote
this set of permissible supports by . Once is chosen, the
representation’s nonzeros are formed as a set of random i.i.d.
entries drawn from the Normal distribution .2 As ex-
plained above, the signal is then contaminated by a
random i.i.d. Gaussian noise vector , resulting in the measured
noisy vector .

We define the matrix that extracts the nonzero
entries from a sparse vector , i.e., .
We further denote by the submatrix of that
contains only the columns corresponding to the support. We in-
troduce the following two additional notations for simplicity of
later expressions and analysis:

For the signal model described herein, if the support is known,
the MMSE estimator for (termed the oracle) is obtained by
minimizing

and is given by

(2)

This result can easily be obtained by observing that
is proportional to (using Bayes’s

rule). Due to the Gaussian noise, we have
. Similarly, the Gaussian dis-

tribution of the nonzero entries in implies
. Thus, is a Gaussian distribution,

and its mean (or maximum, as the two align) yields the oracle
estimation of . A multiplication by leads to the oracle
estimation of the corresponding signal , as in (2).

2We depart from the Zellner g-prior as used in [9]. This prior assumes orthog-
onalization of the columns of the support as part of the signal generation. See
[8] and [9] for more details.
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As the support in the actual problem is random and unknown,
the MMSE estimation becomes an expectation over all possible
supports. This is a weighted average of many such “oracles,” ,
as given in (2), each considering one possible support. Those are
to be weighted by their probability to explain , which leads to

(3)

It can be shown [9] that, up to a normalization factor, is
given by

(4)

Roughly speaking, if we assume that is approximately pro-
portional to , this expression suggests that highly probable sup-
ports are those with high energy remaining in the projection of

onto . For a more elaborate derivation of these terms we
refer the interested reader to [9, eqs. (7) and (8)].

The MAP estimator is obtained by choosing the support
that maximizes the above probability, , and computing
the oracle estimation for this support. Both this estimation and
the MMSE one require in general a sweep through all sup-
ports in , which is an infeasible task in general, due to the
exponentially growing size of this set. Thus, OMP is used to
approximate the MAP by solving an exact MAP estimator for

(one atom), peeling the portion of the signal found, and
repeating the process [4].

Similarly, the MMSE needs to be approximated, and several
methods have been proposed for this task in recent years. The
work in [7] and [8] proposes a deterministic process of selecting
a small group of well-chosen supports over which to average.
Those are found in a greedy fashion, by forming a tree search
and pruning less likely solutions. The Random-OMP algorithm
[9] repeats the OMP several times, with a random choice of the
next atom, based on for . This yields an approx-
imate Gibbs sampler for this distribution, and thus plain aver-
aging of the representations found leads to a good approxima-
tion of the MMSE estimation. It is important to note in this
context that the MMSE estimator and the Random-OMP that
approximates it, generally do not result in a sparse representa-
tion, but they are still better than the MAP (as shown in [9]),
even though the original signal is in fact sparse. This property
of the estimators results from the aggregation of many (or in fact
all) different supports, leading to an equivalent support which is
not sparse. For a more detailed discussion of the phenomenon,
see [9].

In the unitary case, any subset of columns from is orthog-
onal (i.e., ), and thus the above expressions can be
further simplified. Starting with the matrix , it becomes

(5)

Similarly, the weights become

(6)

Note that the log-factor has been removed as it is equal for all
the supports in . Furthermore, this probability is computed
only up to a factor which equals . Instead of computing
it directly, we use the fact that the sum of probabilities must
equal to 1 in order to normalize the probabilities correctly.

Equation (6) clarifies that the MAP support is the one that
maximizes , and is easily found by computing ,
sorting the resulting vector by (absolute) size, and choosing the
first elements. Thus, MAP for this case can be computed ex-
actly with a simple algorithm. Furthermore, OMP in such a case
is also exact, as the sequential detection of the largest inner
product leads to the same outcome.

Naturally, we should wonder whether the unitary case offers
such a simple and closed-form solution for the MMSE, which
bypasses the need for the above described approximations (e.g.,
the Random-OMP). This is the topic of the next two sections.

III. CASE OF A UNITARY DICTIONARY

A. MMSE Over a Unitary Dictionary—Fundamentals

The development in this section follows the one in [10] with
important modifications to make the derivation clearer, more
precise, and more general. Our goal is to show that for a unitary
dictionary , the MMSE estimation can be computed exactly
(up to rounding errors) while avoiding combinatorial computa-
tions. Recall that for a unitary matrix , we have

where and the th entry of . This will be helpful
in later derivations.

The MMSE estimation in (3) can be read differently. Every
possible support in the summation provides a candidate repre-
sentation vector . Multiplication of the form

provides a sparse vector of length that contains the en-
tries of as its nonzeros. Thus, the MMSE estimator is given
by

(7)
Here we have used the relation , and thus the mul-
tiplication by is performed outside the summation. This ex-
pression suggests that there is one effective representation that
governs the estimated outcome, given (removing the multipli-
cation by ) by

This implies that every one of the (recall that ) atoms
contributes a prespecified portion to the overall MMSE estima-
tion. We shall exploit the fact that the matrix is unitary, and
construct a closed-form formula for these contributions, thus
turning this estimator into a practical algorithm.
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Denote . Returning to (6), we observe that
in the unitary case

where we have denoted

(8)

Thus we have

where is a normalizing constant yielding
. Note that for , the probability of the support being the
th atom is simply , hence , since

the ’s are properly normalized. Now we can obtain a simpler
formulation for the MMSE estimator. Using the notations of

and , we can write [from (5)] and
. Assigning these and the formula for into (7),

we get that

(9)

Computing this formula in a straightforward manner requires
a prohibitive operations, as every group of atoms
has to be considered and summed. In order to simplify this ex-
pression, we introduce the indicator function

and rewrite (9) as

Rearranging the order of summations and multiplications in this
equation yields the equivalent expression

(10)

where we have introduced the notation

(11)

The straightforward way to compute this scalar value would be
by sweeping through all supports in that contain the th
atom (there are of those), computing for each of them

i.e.,

and summing these up. Thus, is nothing but the probability
that atom will be included in the support. This computation is
still exponential and thus prohibitive, but, as we show next, an
efficient recursive formula for these values is within reach. Note
that, using this notation, the MMSE estimator can be written as

, where is a vector of length
comprised of the probabilities , and is a diag-
onal matrix containing the values of along its main diagonal.

B. Obtaining a Closed-Form MMSE Formula

We proceed toward our goal of a closed-form formula by con-
sidering by way of analogy the following game. Suppose that
balls are tossed independently at a group of buckets of var-
ious sizes. Suppose that, if we were to toss a single ball, the
probability that it would land in bucket would be (with

for all , and , i.e., the ball always
lands in some bucket). This “round” of tosses is repeated over
and over again. If the balls fall into different buckets in
a given round, this round is declared valid and this -tuple of
buckets is tallied. However, if two or more balls fall into any
single bucket in a given round of tosses, the round is void and
nothing is tallied. The task is to calculate the —the proba-
bility that some ball will fall into bucket in a valid round of
tosses—for .

Why is this game relevant? A valid round consists of inde-
pendent tosses landing in different buckets, and therefore the
probability of any particular -tuple of buckets is clearly propor-
tional to the product of its ’s. The probability of each bucket
participating in the -tuple is therefore the sum of probabilities
of the -tuples that contain it, analogously to (11). Based on
this analogy, we make the following observations, which will be
useful later:

• Base: For (only a single toss) we get , the
vector whose elements are (the individual probabilities
of each bucket), as defined in (8).

• Bounds on : Since every bucket has a nonzero proba-
bility, and at most participates in all tuples, we have

elementwise for , and ,
where and are the -vectors of all zeros and all ones,
respectively.

• Preservation of order: If then for
, with equality occurring if and only if

or . That is, a more likely bucket (with greater prob-
ability of being hit in a single toss) remains more likely as
we increase the number of balls per round.
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• Monotonicity in : For , elemen-
twise, because increasing the number of balls increases the
probability of every one of the buckets.

• Monotonicity of ratios in : If then
, for . This claim is nontrivial, and

its proof is given in Appendix A.3

• Symmetry: Assume henceforth that one of the balls (only)
is colored red. Since the color has no effect of any signifi-
cance, the probability that the red ball will fall into bucket
in a given round is clearly equal to the probability that any
one of the other balls will fall into this bucket.

• Normalization: The vectors satisfy the normalization
condition , that is, the sum of probabilities of
all buckets is equal to the number of balls per round. This
allows us to determine the ’s. This property is implied
by the Symmetry property, by which the probability that
the red ball will fall into bucket in a valid round is .
Since the overall probability that the red ball will fall into
some bucket in a valid round is 1, we have ,
from which the Normalization property follows.

We next derive the recursive formula for computing . For
we have by the Base property, and for ,

we have that is proportional to the probability that the red ball
will fall into bucket (which is ) times the probability that the
remaining balls will comprise a valid round of balls that
does not include bucket (which is . This product needs
to be normalized so as to satisfy the Normalization property,
yielding

(12)

The full vector of probabilities is thus given by

(13)

with given in (8)

C. Numerical Instability

Unfortunately, the recursive formula (13) tends to suffer from
instability, manifest in a fast growth of numerical errors during
the iterations when is not small. To study this effect, we per-
form a linear stability analysis. Suppose that contains an
error (vector), . Then, ignoring the (typically machine-ac-
curacy, hence negligible) numerical errors in and in the arith-
metic operations of (13), we obtain by taking the first term of
the Taylor series of , given by

(14)

3A particular implication of this property is that it shows that the
Random-OMP algorithm [9] remains inexact, even if given an infinite
number of iterations to run. This is because the Random-OMP selects the
atoms with probabilities according to the initial ratios � �� , while those
ratios should decrease as � increases. This also hints that the inexactness of the
Random-OMP increases with �.

where is the gradient matrix of , which
can be computed easily from (12). After rearrangement, the el-
ements of can be written as

if

otherwise.
(15)

The error propagation per iteration is determined by the spec-
tral properties of . These are hard to compute in general, but
we can clearly see the source of the numerical trouble by con-
sidering a special case where two elements of happen to be
exactly the same. Without loss of generality, assume that these
are the first two elements, i.e., , and therefore, by the
Preservation of order property, for all . For all we
then have by (15)

for all

for all

It is now immediate to verify that the vector of size given by
is an eigenvector of for all , with

eigenvalue given by

For , we get , and the iteration is stable with
respect to errors of the form . However, by the Monotonicity
property, grows with , eventually reaching 1 at .
Once crosses 0.5, an oscillating (since ) pairwise
antisymmetric divergence of the error kicks in, with the diver-
gence rate growing with each iteration, because grows with
. A key feature here is that the eigenvector is shared by all

the ’s, so it grows in absolute value at each iteration (once
).

Although this analysis assumes a pair of equal elements, the
unstable behavior it implies is quite general. Nevertheless, the
instability can largely be kept at bay by enforcing the known
constraints implied by the properties above on solutions ob-
tained from the recursive formula. Imposing these constraints
at each iteration of the recursive formula is a relatively cheap
method of keeping the numerical errors under control. Further-
more, if at stage during the calculation of the formula it is de-
termined that one (or more) probability attains a value suffi-
ciently close to 1 (which also means that it is a source of numer-
ical instability, cf., discussion above), we can set this value to
1 at all subsequent iterations due to the Monotonicity property.
To improve the numerical accuracy for the rest of the entries,
we may eliminate this element of and then recalculate
for the remaining entries.
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TABLE I
GENERAL SIGNAL GENERATION MODEL, AND THE IMPLIED MAP AND MMSE ESTIMATORS

IV. EXTENDING THE MODEL TO REAL-WORLD SIGNALS

The model we have relied on so far has simplified the analysis
and the derivation of the MAP and MMSE estimators. However,
this model is far too limited for handling real-world signals.
More specifically, we have relied on three assumptions that we
cannot generally make:

• All coefficients in the support are assumed to be drawn
according to the same normal distribution with the same
variance .

• The size of the support is fixed and known.
• Given that is known, is equal for all supports of

this size, and hence all atoms are (a priori) equally likely
to be selected.

Unfortunately, these assumptions are too simplistic for faith-
fully describing real-world signals (such as image patches), and
thus cannot function as a good prior signal model for denoising.
In order to construct a model fitting real-world signals, these as-
sumptions must be relaxed and generalized, and the formulas for
the MAP and MMSE estimators must be adapted accordingly.
The assumption regarding the equal distribution of the coeffi-
cients is the first we choose to tackle. We relax the remaining
two assumptions together by proposing a general signal gener-
ation model. The resulting model is general enough to describe
a wide range of signals, and can be successfully harnessed for
image denoising, as will be shown in Section V. We now de-

scribe in detail the required extensions and adaptations, which
are then summarized in Table I.

A. Treating a Heteroscedastic Coefficient Set

Previously it was assumed that all coefficients share the same
prior variance . Assuming that all coefficients behave iden-
tically is unrealistic, so we now allow the variance to be atom-
dependent and denote it by . Accordingly, we define

, which also becomes atom dependent. The oracle
in the unitary case becomes

(16)

This is easily verified following the explanation given in
Section II for the derivation of the oracle formula in the general
case. Using the fact that for the nonzero portion of we now
have , we observe that the
posterior probability is Gaussian, and the expression
given in (16) is its mean.

A second effect of the different variances per atom appears
in the posterior probability . Using (4) and (6) one no-
tices that the log-factor cannot be discarded, and this expression
becomes

(17)
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which implies a somewhat modified definition for .
The MAP estimator selects the atoms with the largest

values and projects onto them using the oracle formula in (16).
The MMSE estimator uses a formula very similar to the one
introduced before in (10)

(18)

with the two changes being the redefinition of and the atom-
dependent value replacing the constant . Interestingly, the
recursive formula for the update of remains the same as in
(12), as do the constraints that are employed in stabilizing its
numerical evaluation.

B. Extending the Signal Generation Model

The assumption that only a specific cardinality exists, and
moreover, that all supports of this cardinality are equally likely,
is unrealistic. For example, smooth and slowly varying signals
may have a very sparse representation, while highly textured
signals may require many more atoms for an adequate represen-
tation. Furthermore, some atoms are expected to appear more
frequently than others, increasing the probability of some sup-
ports and reducing the probability of other supports. These ob-
servations lead to the generative signal model we now consider.

Assume that the size of the support is chosen randomly ac-
cording to a known probability , thus re-
laxing the fixed support size constraint introduced in Section II.
Then, atoms are chosen sequentially, where atom has a prob-
ability of being selected (normalized such that ).
If the resulting group consists of distinct atoms, this sup-
port draw is considered valid; otherwise (i.e., in the event of
at least one repetition) it is discarded and the random atom se-
lection process is restarted. Lastly, the active coefficients for
the selected support are drawn at random from the distributions

, as before.
In order to adapt the estimators to this more general model,

we should update the definition of to reflect the new signal
model. The probability of a specific support to be chosen is
proportional to the probability of the size of the support mul-
tiplied by the individual probabilities of the atoms to be chosen

, with a normalization such that for
every , . This implies that the choice
of atoms is independent of the choice of support size. Denoting

, the probability of a specific support
is given by

(19)

The formula for the normalization factor is reminiscent of
the formula for given in (11). Indeed, in order to compute
we need to apply the recursive formula on the values ,
and for each , sum the resulting values (after undoing the nu-
merically stabilizing normalization), and divide by (as each
possible support contributes to entries). Note that in the gen-
eral case, in which the signal model is to be applied to a large set

of signals, this procedure is needed only once, as it is a property
of the model and does not depend on the specific signal.

Using the a priori probability of each support, the overall
posterior probability of each support becomes

(20)

with , and taken from (17).
The MAP estimator for this more general model is simply the

one that maximizes the probability given in (20). Recovering it
starts by computing for each atom. Then, at each step, one
atom is added to the current representation, in descending order
of magnitude of , and the relative posterior probability of this
support is computed according to (20). Of the supports gen-
erated in this procedure, the likeliest one (which is also the like-
liest over all supports) is selected, and by computing the oracle
for this support, the MAP estimator emerges. Note that the value
computed by (20) is not normalized, and therefore it does not
represent a true probability. This has no effect on the MAP es-
timator, however, as we seek the support with the largest proba-
bility, and the order is not changed by the lack of normalization.

For the MMSE estimator, all cardinalities with their appro-
priate probabilities must be considered. Going back to (9), this
translates into

The summation over is exactly the same as was devel-
oped for the single cardinality case in (18), with the slight redefi-
nition of instead of . Therefore, the recursive formula devel-
oped in the previous section can be used to obtain the MMSE
estimator, by obtaining the MMSE estimate for each support
size, and merging them with appropriate weights.

Some care is required, however, in the application of the re-
cursive formula. In the single cardinality case, the various sta-
bilizing normalizations could be ignored, as a normalization by
the sum of weights was to be applied in the end. When applying
the formula to this more general model, this normalization must
be tracked and then undone, in order to properly reflect the rel-
ative weights of the different cardinalities.

C. Model Summary and Parameter Estimation

The generative model and its estimators are summarized in
Table I. There are several parameters that govern the behavior
of the model, and those are assumed to be known for the estima-
tion task to complete. The model requires explicit and a priori
knowledge of the variances per atom, the prior proba-
bility of each support size and the prior probability
of each atom to be chosen .

This model has a large number of parameters, and when ap-
plying the MAP and MMSE estimators to real-world signals,
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these are unknown to begin with. Therefore, some method of
estimating these parameters must be used, or else, the estima-
tors are rendered useless.4 One approach can be to use a set of
high-quality (i.e., almost noise-free) signals in order to learn
the parameters, and then apply the estimators based on these
parameters. This approach, however, assumes that different im-
ages share the same parameter set.

An alternative method is to estimate these parameters from
the noisy data directly. We assume that when facing a denoising
task, many noisy signal instances are to be denoised together.
For example, for image denoising, as will be the case in the ex-
perimental section, each 8 8 patch extracted from the image is
considered as one noisy signal. Taking all these signals together,
we may ask what would be the best set of parameters that de-
scribe these signals (taking into account that they are also noisy).

From the noisy signals, a direct maximum-likelihood (ML)
approach can be undertaken to find the most likely set of pa-
rameters to have generated the noisy signals. Unfortunately, the
maximization task obtained is quite complex. Instead, we adopt
a block-coordinate-descent like approach, where the signals are
first denoised by a parameter-less method (hard-thresholding,
which is equivalent to a specific set of parameters that includes
equal and for all atoms), and from the cleaner signals
we estimate the parameters using an ML formulation, which
is built on clean-data. This approach of predenoising has been
suggested elsewhere, such as in [27]. In principle, this method
should be iterated, updating the parameters after the denoising.
However, we found that one such iteration is sufficient to get a
reliable set of estimates for the parameters, and this is indeed the
way we operate in subsequent experiments. Therefore, the only
manually set parameter is the parameter that controls the initial
denoising, the threshold under which coefficients are considered
to be zeros. More details on the parameter estimation process are
given in Appendix B.

V. EXPERIMENTAL RESULTS

We now proceed to demonstrate the proposed exact MMSE
estimator and its superiority over the MAP. We also present one
possible approximation of the MMSE, the Random-OMP algo-
rithm [9], to illustrate the gain achieved by using the closed-
form solution proposed. Our tests are performed first on syn-
thetic signals, where the model parameters are known and are
used by the estimators. We also introduce tests on real-world
signals (image patches), where the parameters are unknown and
therefore the estimation of the model parameters is required for
the estimators as part of the overall treatment.

A. Synthetic Experiments

When performing synthetic tests, we have complete control
over the signal generation process and its parameters. Since
the parameters are known, as well as the standard deviation
of the noise, their exact values are given to the estimators in
order to check the estimators’ performance in “optimal” set-
tings. The dictionary used in all of the synthetic tests is gen-
erated randomly and then orthogonalized, to create a random
unitary dictionary. We start by focusing on the simplest model

4Note that �, which characterizes the noise, is not part of these parameters,
and in this work it is assumed as known.

Fig. 1. Relative denoising achieved (compared to the noisy signal), averaged
over a 1000 signals, by several methods, for different noise amplitudes and
��� � �.

(introduced in Section III), in which the support size is known
and fixed, and all supports are equally likely. Generating a signal
according to this model is done by randomly choosing a set of

unique atoms, using a uniform probability over all possi-
bilities. For the selected atoms, coefficients are drawn inde-
pendently from a Normal distribution . The resulting
sparse vector of coefficients is multiplied by the dictionary to
obtain the ground-truth signal. Each entry is independently con-
taminated by white Gaussian noise to create the
input signal (note that due to being unitary, this is equiva-
lent to contaminating the coefficients themselves with additive
white Gaussian noise with the same parameters). For all tests,
the dimension of the signals is .

The noisy signal is denoised by several methods: 1) MAP es-
timator; 2) Random-OMP that approximates the MMSE [9] (av-
eraging 20 representations); 3) an exact and exhaustive MMSE
using (3) (the complexity of this estimator is exponential in );
4) the recursive MMSE formula; and 5) an oracle that knows
the exact support. This process is repeated for 1000 signals, and
the mean error is averaged over all signals to obtain an es-
timate of the expected quality of each estimator. The denoising
effect is quantified by the relative mean squared error (RMSE),
which is obtained by dividing the MSE of each sample by the
standard deviation of the noise, averaged over all signals. The
RMSE reflects exactly the ratio between the noise energies in
the reconstructed image and the initial one (e.g., an RMSE of
0.1 implies that the noise has been attenuated by a factor of 10).

In order to test the performance of these estimators under dif-
ferent noise conditions, several such tests are run, with

kept constant in all tests, and the noise level varying in
the range 0.1–2. This is sufficient, since the important param-
eter is the ratio , and not their individual absolute values.
Fig. 1 shows the denoising effect achieved by each method,
when .

Next, we slightly generalize the generation model, by keeping
the support size fixed as before, but using a het-
eroscedastic coefficient set (where are linearly spaced in the
range 0.5–2), and allowing each atom to have a different prob-
ability to appear ( , normalized to 1 and randomly as-
signed to the atoms). The result of such a test appears in Fig. 2. It
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Fig. 2. Relative denoising achieved (compared to the noisy signal), averaged
over a 1000 signals, by several methods, for different noise amplitudes, for
��� � �, a heteroscedastic coefficient set and different probabilities for each
atom.

Fig. 3. Relative denoising achieved (compared to the noisy signal), averaged
over a 1000 signals, by several methods, for different noise amplitudes, for
��� � ��, a heteroscedastic coefficient set and different probabilities for each
atom.

is apparent that there is quite a big gap in performance between
the MMSE estimator and its approximation via the Random-
OMP, demonstrating the importance of the closed-form formula
presented here.

The same test, but when the signals are not very sparse
is displayed in Fig. 3, showing similar behavior. This test

does not feature the exhaustive MMSE, due to its exponential
complexity. In the last synthetic test, we apply the most gen-
eral model, where the probability of each cardinality is given
by , (normalized to sum to 1),
with and as in the previous test. The results for this test
appear in Fig. 4, and are an average over five different random
assignments (all of which yield similar results). This test does
not include the Random-OMP estimator, which was originally
developed only for the fixed support size scenario. As the focus
of the paper is the exact estimator, we chose to avoid extending
the approximate (and inferior) Random-OMP to the most gen-
eral signal model.

To better understand the differences between the estimators,
we show in Fig. 5 the effective representation achieved by each

Fig. 4. Relative denoising achieved (compared to the noisy signal), averaged
over a 1000 signals, by several methods, for the most general signal model (av-
eraged over five different random assignments of atom probabilities).

Fig. 5. Effective representation achieved by different methods for one example
signal, with noise standard deviation � � ���.

method (for ), for one example signal. The MAP esti-
mator selects the wrong atoms, due to the relatively strong noise

.

B. Real-World Signals

In order to present experiments on real-world signals, we use
8 8 image patches drawn without overlap from an image, to
which white Gaussian noise has been added. These are selected
to compose the real-world data-set for our experiments. The uni-
tary dictionary for these experiments is the discrete cosine trans-
form (DCT) dictionary, which is known to serve natural image
content adequately (i.e., sparsely).

It is important to note that there is no attempt to compare the
estimators to the state of the art in image denoising. This is be-
cause our building blocks—such as a nonadaptive and unitary
dictionary—are too limited for this comparison to be fair. Our
goal is to demonstrate the superior performance of the MMSE
estimator, and to offer the possibility that incorporating it into
more complex denoising mechanisms may indeed improve de-
noising results.

Unlike the synthetic experiments detailed in the previous sec-
tion, when working on real-world images the various parameters
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Fig. 6. Relative denoising achieved (compared to the noisy signal), averaged
over all blocks in seven images, by the MAP and MMSE estimators.

of the model are unknown, and must be estimated from the data.
We note that we assume the noise variance is known (or
estimated using other methods), and the values of the parameters
of the signal generation model are estimated from the noisy data,
as detailed in Section IV and in Appendix B. Only one parameter
is to be set by the user, and that is the parameter controlling the
hard-thresholding in the initial denoising that is used to estimate
the parameters.

The test set for the experiments includes seven different
images (15th frame from “garden,” “tennis,” and “mobile”
sequences, and the images “Barbara,” “boat,” “fingerprint,” and
“peppers”), and various noise-levels: , 15, 20, 25, 30,
40, 50, 75 (which are equivalent to PSNR5 of 28.12, 24.64,
22.10, 20.16, 18.60, 16.11, 14.14, and 10.61 dB, respectively),
with pixel values in the range [0, 255]. The average (over all
images) improvement in PSNR of the cleaned image compared
to the noisy image appears in Fig. 6. The MMSE estimator
outperforms the MAP estimator by about 0.5 dB on average,
with this gap being fairly consistent over the different images.
In order to highlight the gap between the MMSE and the MAP,
Fig. 7 displays the advantage in PSNR of the MMSE estimator
over the MAP estimator. The error bars in this figure indicate
one standard deviation of this gap. Comparisons using the
Structural Similarity Index (SSIM) [30] were also carried out,
displaying similar behavior—a slight advantage for the MMSE
estimator.

As discussed above, the parameter estimation relies on a set-
ting of a single parameter—the amount of energy to remove
from the signals in the crude preliminary denoising stage—and
the performance of the estimators relies on the quality of the pa-
rameter estimation. In order to run a fair comparison, we varied
the value of this parameter in order to optimize the average per-
formance (over all the images in the set) of each estimator in-
dividually (i.e., one optimization for the MAP estimator, and
another for the MMSE estimator).

One conclusion from these experiments is that for weak noise
levels , it is beneficial to remove relatively little en-

5���� � �� ��� ���		 � �
�� ��������� 
 �dB, where ���� and��� are the
clean and reconstructed images, respectively, and � is the number of pixels in
the image.

Fig. 7. PSNR gap between MMSE and MAP (with positive values indicating
the MMSE is better performing), averaged over all blocks in seven images. The
error bars indicate one standard deviation of the gap.

ergy in the crude denoising stage, e.g., , for both
estimators. When working on moderate and strong noise, the
best choice is . This phenomena can be explained
mostly by model mismatch, as the model we force on the signals
(sparse representation over a unitary dictionary) in itself inserts
some “noise” into the estimation process, and therefore the de-
noising performance when the noise is weak is limited.

A further analysis of the sensitivity to the setting of this pa-
rameter has been carried out. When deviating from the optimal
choice, even considerably, the MMSE estimator loses at most
0.1 dB on average PSNR performance, while the MAP estimator
displays a more considerable drop in performance, up to 0.5 dB.
This hints that the MMSE may be more robust to errors in the
parameter estimation stage, i.e., it is more robust to model mis-
matches.

A visual comparison of the results of the different estima-
tors is presented in Fig. 8, for “Boat” image to which white
Gaussian noise with has been added. The images are
constructed by returning the processed patches to their orig-
inal location (again, with no overlap). It is well known that in-
creasing the overlap between the patches improves results [28],
[29]. We choose to refrain from doing this, as a large overlap
between patches introduces an MMSE flavor, regardless of the
estimator itself, and it thus partly obscures the differences be-
tween the estimators. In order to complete the picture, the pa-
rameters estimated for this image appear in Fig. 9.

VI. SUMMARY

In this work we discuss the problem of denoising a signal
known to have a sparse representation, studying the MAP and
the MMSE estimators. We focus on unitary dictionaries, for
which we show that a closed-form, exact, and simple recur-
sive formula exists for the MMSE estimator. This replaces the
need for an approximation, such as the Random-OMP algo-
rithm. We show experimentally that this exact MMSE formula
outperforms the Random-OMP and the OMP (which is the exact
MAP). We also discuss several numerical issues which arise
when this formula is implemented in practice.
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Fig. 8. Visual comparison of the reconstructed image by the MAP and MMSE
estimators, for the different training options, on the center portion of the “boat”
image with noise level � � ��.

Fig. 9. Values of the estimated model parameters, using the block-coordinate-
descent method described in Appendix B, for the “Boat” image with noise � �
��. The values for � and � are arranged as 8� 8 arrays, corresponding to the
increasing vertical and horizontal frequencies that construct the DCT dictionary.
Note that the value for the top-left atom (the DC atom) is much larger than the
rest, for both � and � , and its value is “saturated” in both figures.

This work then extends the somewhat limited signal gener-
ation model to accommodate real-world signals. We describe
how the parameters of this model are estimated, and present ex-
periments in which the parameters are estimated from the noisy
signals themselves. We show the clear advantage of the MMSE
estimator over the MAP estimator in these tests, both objectively
and visually.

The main drawbacks of the work presented here is the com-
plexity of the signal generation model. This complexity leads
to two difficulties. The first is that the recursive formula, while
relatively efficient, still requires a large number of computa-
tions. This also limits the dimensions of the signals to work on,
inducing us to work on image patches instead of a full-scale
image. The second problem that arises is that the parameter es-
timation process, while mathematically justifiable, is still rela-
tively weak.

We believe that future work should address different sparse
signal generation models, and by doing so, find an even more
efficient way to compute the MMSE, and perhaps gain a more
stable estimation of the parameters involved. Another possible
future direction is obtaining efficient optimal estimators for dif-
ferent types of risks, such as the mean over absolute errors.

APPENDIX A
RECURSIVE FORMULA—MONOTONICITY OF RATIOS PROOF

In this appendix we aim to prove the monotonicity property
as described in Section III. Given that , then

for all

Proof: Let us start by writing out as in (11). The tuples
the th element participates in are divided into two groups, based
on whether the th element also participates in the tuple or not

(A1)

where we have denoted

and note that the two terms are related through
.

Let us analyze more closely. This is in fact the sum of
products over all tuples of size from the elements of , ex-
cluding and . The sum of these elements, due to the nor-
malization , is . Let us now denote
by
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all the elements of , excluding and , and after being mul-
tiplied by . The multiplication leads to . Sub-
stituting into we obtain that

Now, we observe that the second term is the sum of products
over all -tuples of elements from . Since , this
is exactly the game described in Section III-B. Therefore, we
can use the normalization property to claim that

and arrive at

(A2)

Going back to what we set to prove, and substitute into (A1),
we now need to prove that

Multiplying along the diagonals, removing common terms
and rearranging, our new goal to prove is

where the last step is valid since we know .
Now we substitute the formulas for and given in (A2),

changing what we need to prove the statement shown at the
bottom of the page, which is a true statement, and therefore all
the inequalities are true, and we have proven what we set out to
prove.

APPENDIX B
PARAMETER ESTIMATION

A. Direct Maximum-Likelihood Approach

In this appendix, we discuss more elaborately how the param-
eter estimation process described in Section IV-C is developed.
The goal of this stage is to estimate the values of the different
parameters of the signal generation model, given a set of noisy
signals , or equivalently (due to the unitary dictionary)
a set of noisy coefficients (where ). We
note again that we assume the variance of the noise is known
or was estimated by other means.

A possible approach to this problem is the ML ap-
proach. Our goal is to find a set of parameters

which is the most likely to
have produced this set of noisy signals. The parameters are then
found by solving the following maximization problem:

(B1)
where the second step is the maximization of the log-likelihood.
The probability of a specific signal to be generated given this set
of parameters is

This probability is obtained by considering each possible sup-
port, and computing the probability that this support generated
the signal, multiplied by the probability of the support to have
been chosen. The sum over all possible supports is the actual
probability of the signal to have been generated from the set of
parameters .

The probability of a signal to be generated, given a known
support , a set of parameters and with the Gaussian noise
assumption is

(B2)

and the probability of a support to be generated given the set of
parameters is given in (19)

with a normalization factor. Note that
the probability in (B2) is computed only over the coefficients in
the support. Since the support is assumed to be known, we focus
only on the coefficients inside the support, and the probability
of them being generated, while ignoring the coefficients outside
the support (which are known to be 0).

Unfortunately, assigning those into the full ML expression
in (B1) yields a highly complex argument, the maximization
of which is very complicated (due to both the summation over
all supports and the normalization factors ). Therefore, we
change our course slightly and turn to a block coordinate descent
approach, which may assume that the data it operates on is clean.

B. Block Coordinate Descent Approach

In the block coordinate descent approach, the denoising stage
and the parameter estimation stage are carried out alternatingly,
where one is estimated while the other is considered known, and
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vice versa. In practice, the first stage is a simple denoising mech-
anism, such as hard-thresholding. An initial crude denoising
stage prior to a more complex denoising mechanism is common;
see for example [27].

The set of denoised signals—or in fact, the supports
found—can then be used to estimate the parameters, again
in an ML formulation. Then, a denoising stage can be again
carried out, using the explicit signal generation model, ob-
taining a better result. The new denoised set can then be used
to better estimate the parameters, and so on. In the experiments
described above, the parameters were estimated only using the
initial crude denoising.

Given the denoised signals, how can we estimate the param-
eters? We assume that instead of the denoised signals, we ob-
tain the hypothesized support for each signal . Inserting the
known support for each signal into (B1), we no longer need to
sum over all supports and we can use (B2), arriving at the fol-
lowing maximization problem:

This argument can be divided into four separate sums: the
first depending only on , the second depending only
on , and the third and fourth depending only
on . Therefore, we can separate the maximization
problem into three parts, and recover each set of parameters.

The values of are recovered by taking a derivative of
the first term, and finding the zero crossing. This gives rise to
independent maximization problems. We omit this straightfor-
ward (but tedious) procedure, which eventually leads to

Maximizing over , we must remember the con-
straint that . For this constrained maximiza-
tion, we use lagrange multipliers. Again, we jump straight to the
result, being

The last part of finding is more challenging compared
to the first two, and a closed-form solution is not available, be-
cause of the existence of inside the formula, which re-
quires the application of the recursive formula at each evaluation
of the function. Instead, we shall try to maximize the function
value using gradient ascent. In order to simplify the notation,
we now denote , and the function to maximize is

We denote by the number of supports containing the th
atom, and by the number of supports of size . Now we
can rewrite this function as

(B3)

We rewrite as a function of

From this last step it can be seen that only the first term depends
on . Taking a derivative of with respect to leads therefore
to

Now, we remind ourselves of the recursive formula in-
troduced in Section III-A. This formula allows us to effi-
ciently compute . Observing that

, we get a simple formula for computing
the function value in (B3), as well as a simple way to compute
the derivative

An efficient initialization for this maximization problem is
, which is the relative number of supports the th atom

appears in divided by the total number of supports. While this
is not the optimal choice, it is quite near, and in both synthetic
experiments (done to validate the parameter estimation process)
and real-world experiments, the change of the values in the opti-
mization problems was very mild. Since the initial denoising is
inaccurate, it makes sense not to try to obtain extreme accuracy
for , and instead remain with the initial estimate sug-
gested here. The synthetic and real-world experiments demon-
strate that indeed, the results obtained by the two options are
extremely close.
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